1
|
Xu R, Su Y, Ji H, Jiang M, Zhang R, Ding L, Chen Y, Song D. Enhanced detection of 4-nitrophenol in drinking water: ECL sensor utilizing velvet-like graphitic carbon nitride and molecular imprinting. Food Chem 2024; 460:140599. [PMID: 39067383 DOI: 10.1016/j.foodchem.2024.140599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/25/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
In this work, a molecularly imprinted electrochemiluminescence (ECL) sensor was developed for selective detection of 4-nitrophenol (4-NP) in drinking water for the first time. By synthesizing velvet-like graphitic carbon nitride (V-g-C3N4) via one-step thermal polycondensation and integrating it with a molecularly imprinted polymer (MIP), the ECL sensor was fabricated. The MIP-modified V-g-C3N4 composites (MIP/V-g-C3N4) were synthesized using a sol-gel method with 4-NP as the template molecule. Under optimal conditions, the ECL sensor exhibited a wide detection range (5 × 10-10-1 × 10-5 mol/L) and a low detection limit (1.8 × 10-10 mol/L). In testing with actual drinking water samples, it displayed high accuracy (recoveries for intraday and inter-day: 93.50-106.2% and 97.00-107.3%, separately) and precision (RSDs for intraday and inter-day: 1.54-4.59% and 1.53-4.28%, respectively). The developed MIP-based ECL sensor demonstrated excellent selectivity, stability, and reproducibility, offering a promising and reliable approach for highly sensitive and selective determination of 4-NP in drinking water.
Collapse
Affiliation(s)
- Rui Xu
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yu Su
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Hongfei Ji
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Man Jiang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Ruizhong Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Lan Ding
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Yanhua Chen
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China; Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Daqian Song
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China; Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
2
|
Wang Y, Dai S, Liu T, Wu C, Sun M, Su G, Ye J, Wang X, He J, Rao H, Lu Z. Sulfur vacancy defects mediated CdZnTeS@BC heterojunction: Artificial intelligence-assisted self-enhanced electrochemiluminescence molecularly imprinted sensing of CTC. Biosens Bioelectron 2024; 248:115941. [PMID: 38160634 DOI: 10.1016/j.bios.2023.115941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Environmental pollution caused by tetracycline antibiotics is a major concern of global public health. Here, a novel and portable molecularly imprinted electrochemiluminescence (MIECL) sensor based on smartphones for highly sensitive detection of chlortetracycline (CTC) has been successfully established. The high-performance ECL emitter of biomass carbon (BC) encapsulated CdZnTeS (CdZnTeS@BC) was successfully synthesized by hydrothermal. The enhanced ECL performance was ascribed to the introduction of the BC and increased the overall electrical conductivity of the nanoemitter, as well as increased the number of sulfur vacancies and doping on the surface of the emitter based on density functional theory calculations. An aniline-CTC molecular imprinted polymer was synthesized on the surface of the CdZnTeS@BC modified electrode by in-situ electropolymerization. The decrease in MIECL signal was attributed to the increase in impedance effect. The MIECL nanoplatform enabled a wide linear relationship in the range of 0.05-100 μmol/L with a detection limit of 0.029 μmol/L for spectrometer sensors. Interestingly, the light emitted during the MIECL reaction can be captured by a smartphone. Thus, machine learning was used to screen the photos that were taken, and color analysis was carried out on the screened photos by self-developed software, thus achieving a portable, convenient, and intelligent sensing mode. Finally, the sensor obtains satisfactory results in the detection of actual samples, with no significant differences from those of liquid chromatography.
Collapse
Affiliation(s)
- Yanying Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Shijie Dai
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Tao Liu
- College of Information Engineering, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, PR China
| | - Chun Wu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Jianshan Ye
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Xianxing Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Jie He
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| | - Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| |
Collapse
|
3
|
Cao J, Chen XY. Stable and reproducible MIP-ECL sensors for ultra-sensitive and accurate quantitative detection of Estrone. Front Bioeng Biotechnol 2024; 12:1329129. [PMID: 38405376 PMCID: PMC10893587 DOI: 10.3389/fbioe.2024.1329129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024] Open
Abstract
Estrone (E1), as an endogenous estrogen, has a variety of physiological functions in human body and is of great significance to human health. On the other hand, it is a widely distributed and highly disturbing environmental endocrine disruptor in water. Therefore, there is an urgent need to develop a sensitive, rapid, and inexpensive method for the on-site determination of E1, which is not only for clinical diagnosis and treatment, but also for the investigation and monitoring of endogenous estrogen pollution in environmental water. In this study, Ru(bpy)3 2+/MWCNTs/Nafion/gold electrodes were prepared by surface electrostatic adsorption and ion exchange. A molecularly imprinted membrane (MIP) with the capability to recognize E1 molecules was prepared by sol-gel method, and the electrodes were modified with MIP to form an electrochemical luminescence sensor (MIP-ECL). This method simultaneously possesses ECL's advantage of high sensitivity and MIP's advantage of high selectivity. Moreover, the addition of carboxylated multi-walled carbon nanotubes (MWCNT-COOH) improved the functionalization of the gold electrode surface and increased the binding sites of MIP. Meanwhile, the good conductivity of MWCNTs promoted electron transfer and further improved the sensitivity of the sensor. The sensor showed a wide linear interval in which the E1 concentrations can range from 0.1 μg/L to 200 μg/L, along with a high linear correlation coefficient (R 2 = 0.999). The linear regression equation of the sensor was Y = 243.64x-79.989, and the detection limit (LOD) was 0.0047 μg/L. To validate our sensor, actual samples were also measured by the reference method (LC-MS/MS), and it was found that the relative deviation of quantitative results of the two different methods was less than 4.1%. This indicates that the quantitative results obtained by this sensor are accurate and can be used for rapid in situ determination of E1 in clinical samples and environmental water.
Collapse
Affiliation(s)
- Jie Cao
- Scientific Research and Experiment Center, Fujian Police College, Fuzhou, China
- Fuzhou University Postdoctoral Research Station of Chemistry, Fuzhou University, Fuzhou, China
- Fujian ShiMing Judicial Expertise Center, Fujian Police College, Fuzhou, China
- Regional Counter-Terrorism Research Centre, Fujian Police College, Fuzhou, China
| | - Xiao-Ying Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, China
| |
Collapse
|
4
|
Ling J, Wei G, Li J. A highly sensitive and selective molecularly imprinted sensor for direct determination of ultra‐trace Cr(III) in environmental samples. ChemistrySelect 2022. [DOI: 10.1002/slct.202104521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jun Ling
- College of Environmental Science and Engineering Guilin University of Technology Guilin 541004 China
| | - Ge Wei
- GRG Metrology & Test (Nanning) Co., Ltd. Nanning 530000 China
| | - Jianping Li
- College of Environmental Science and Engineering Guilin University of Technology Guilin 541004 China
- College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| |
Collapse
|
5
|
Narimani R, Esmaeili M, Rasta SH, Khosroshahi HT, Mobed A. Trend in creatinine determining methods: Conventional methods to molecular-based methods. ANALYTICAL SCIENCE ADVANCES 2021; 2:308-325. [PMID: 38716155 PMCID: PMC10989614 DOI: 10.1002/ansa.202000074] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 10/07/2023]
Abstract
Renal failure (RF) disease is ranked as one of the most prevalent diseases with severe morbidity and mortality. Early diagnosis of RF leads to subsequent control of disease to reduce the poor prognosis. The level of sera creatinine is considered as a significant biomarker for kidney biofunction, which is routinely detected by the Jaffe reaction. The normal range for creatinine in the blood may be 0.84-1.21 mg/dL. Low accuracy, insufficient sensitivity, explosive and toxicity of picric acid, and pseudo-interaction with nonspecific elements such as ammonium ions in the Jaffe method lead to the development of various techniques for precise detection of creatinine such as spectroscopic, electrochemical, and chromatography approaches and sensors based on enzymes, molecular imprinted polymer and nanoparticles, etc. Based on previously established results, they are trying to construct sensors with high accuracy, optimum sensitivity, acceptable linear/calibration range, and limit of detection, which are small in size and applicable by the patient him/herself (point-of-care testing). By comparing the results of research, a molecularly imprinted electrochemiluminescence-based sensor with linear/calibration range of 5-1 mMconcentration of creatinine and the detection limit of 0.5 nM has the best detectable resolution with 2 million measurable points. In this paper, we will review the recently developed methods for measuring creatinine concentration and renal biofunction.
Collapse
Affiliation(s)
- Ramin Narimani
- Medical Bioengineering Department, School of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
- Molecular Medicine Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mahdad Esmaeili
- Medical Bioengineering Department, School of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Seyed Hossein Rasta
- Medical Bioengineering Department, School of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
- Department of Medical Physics, School of MedicineTabriz University of Medical SciencesTabrizIran
- Department of Biomedical Physics, School of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Hamid Tayebi Khosroshahi
- Center for Chronic Kidney DiseaseTabriz University of Medical SciencesTabrizIran
- Department of Internal Medicine, Imam Reza HospitalTabriz University of Medical SciencesTabrizIran
- Biotechnology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Ahmad Mobed
- Aging Research InstituteTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
6
|
Zhao X, Wang Y, Zhang P, Lu Z, Xiao Y. Recent Advances of Molecularly Imprinted Polymers Based on Cyclodextrin. Macromol Rapid Commun 2021; 42:e2100004. [PMID: 33749077 DOI: 10.1002/marc.202100004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Molecular imprinting polymers (MIPs), generally considered as artificial mimics that are comparable to natural receptor, are polymers with tailor-made specific recognition sites complementary to the template molecules in shape and size. As a class of supramolecular compounds, cyclodextrins (CDs) are flourishing in the field of molecular imprinting with their unique structural properties. This review presents recent advances in application of MIPs based on CDs during the past five years. The discussion is grouped according to the different role of CDs in MIPs, that is, functional monomer, carrier modifier, etc. Main focus is the application of CD-based MIP on sample preparation, detection, and sensing. Additionally, drug delivery with CD-based MIP is also briefly discussed. Finally, challenges and future prospects of application of CDs in MIP are elaborated.
Collapse
Affiliation(s)
- Xiaoyue Zhao
- Tianjin Engineering Research Center of Functional Fine Chemicals, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yong Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Pan Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhemiao Lu
- Tianjin Engineering Research Center of Functional Fine Chemicals, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yin Xiao
- Tianjin Engineering Research Center of Functional Fine Chemicals, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
7
|
Anjum S, Ma X, Yuan F, Lou B, Iftikhar I, Aziz‐ur‐Rehman, Xu G. Immobilization of Tris(1,10‐phenanthroline)ruthenium on Acetylene Carbon Black for Regenerable Electrochemiluminescence Sensors Free from Ionic Exchanger. ChemElectroChem 2020. [DOI: 10.1002/celc.202000904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Saima Anjum
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun, Jilin 130022 China
- Chinese Academy of Sciences University of Chinese Academy of Sciences No.19 A Yuquanlu Beijing 100049 China
- Department of Chemistry Govt. Sadiq College Women University Bahawalpur Pakistan
| | - Xiangui Ma
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun, Jilin 130022 China
- University of Science and Technology of China Anhui 230026 China
| | - Fan Yuan
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun, Jilin 130022 China
- University of Science and Technology of China Anhui 230026 China
| | - Baohua Lou
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun, Jilin 130022 China
| | - Irum Iftikhar
- Department of Chemistry Govt. Sadiq College Women University Bahawalpur Pakistan
| | - Aziz‐ur‐Rehman
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun, Jilin 130022 China
- Chinese Academy of Sciences University of Chinese Academy of Sciences No.19 A Yuquanlu Beijing 100049 China
- Department of Chemistry, Baghdad-ul-Jadeed Campus The Islamia University of Bahawalpur Bahawalpur Pakistan
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun, Jilin 130022 China
- University of Science and Technology of China Anhui 230026 China
| |
Collapse
|
8
|
Li S, Ma X, Pang C, Li H, Liu C, Xu Z, Luo J, Yang Y. Novel molecularly imprinted amoxicillin sensor based on a dual recognition and dual detection strategy. Anal Chim Acta 2020; 1127:69-78. [DOI: 10.1016/j.aca.2020.06.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 01/10/2023]
|
9
|
Li S, Ma X, Pang C, Tian H, Xu Z, Yang Y, Lv D, Ge H. Fluorometric aptasensor for cadmium(II) by using an aptamer-imprinted polymer as the recognition element. Mikrochim Acta 2019; 186:823. [PMID: 31754804 DOI: 10.1007/s00604-019-3886-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/30/2019] [Indexed: 11/29/2022]
Abstract
A fluorometric assay is described for the determination of Cd(II) in environmental and agricultural samples. It is making use of a molecularly imprinted polymer (MIP) and aptamer as dual recognition units, while carbon quantum dots (co-doped with sulphur and nitrogen) and gold nanoparticles (SN-CQD/Au) act as the fluorophores. The aptamer-modified MIP was placed on an SN-CQD/Au-modified indium tin oxide glass electrode. Cd(II) was detected with high selectivity by the recognition sites of the aptamer in the MIP. Fluorescence, with excitation/emission peaks at 370/430 nm, is quenched by Cd(II). Response is linear in the 20 pM to 12 nM concentration range. The detection limit is 1.2 pM. The sensor is selective for Cd(II), and recoveries from spiked waters, soils and vegetables real-world samples range between 82.1 and 113.9%. Graphical abstractA fluorescence sensor composed of a molecularly imprinted polymer and an aptamer as a dual identification system for Cd2+ coupled with and carbon quantum dots (co-doped with sulphur and nitrogen) and gold nanoparticles (SN-CQDs/Au) as fluorescent element that can detect Cd2+ with high selectivity by a dual-recognition mechanism.
Collapse
Affiliation(s)
- Shuhuai Li
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China. .,Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, China.
| | - Xionghui Ma
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.,Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, China
| | - Chaohai Pang
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.,Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, China
| | - Hai Tian
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.,Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, China
| | - Zhi Xu
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China. .,College of Food Science and Technology of Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yan Yang
- Tropical Crops Genetic Resources Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Daizhu Lv
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.,Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, China
| | - Huilin Ge
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.,Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, China
| |
Collapse
|
10
|
Li S, Li J, Ma X, Pang C, Yin G, Luo J. Molecularly imprinted electroluminescence switch sensor with a dual recognition effect for determination of ultra-trace levels of cobalt (II). Biosens Bioelectron 2019; 139:111321. [DOI: 10.1016/j.bios.2019.111321] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/06/2019] [Accepted: 05/12/2019] [Indexed: 10/26/2022]
|
11
|
Rico-Yuste A, Carrasco S. Molecularly Imprinted Polymer-Based Hybrid Materials for the Development of Optical Sensors. Polymers (Basel) 2019; 11:E1173. [PMID: 31336762 PMCID: PMC6681127 DOI: 10.3390/polym11071173] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022] Open
Abstract
We report on the development of new optical sensors using molecularly imprinted polymers (MIPs) combined with different materials and explore the novel strategies followed in order to overcome some of the limitations found during the last decade in terms of performance. This review pretends to offer a general overview, mainly focused on the last 3 years, on how the new fabrication procedures enable the synthesis of hybrid materials enhancing not only the recognition ability of the polymer but the optical signal. Introduction describes MIPs as biomimetic recognition elements, their properties and applications, emphasizing on each step of the fabrication/recognition procedure. The state of the art is presented and the change in the publication trend between electrochemical and optical sensor devices is thoroughly discussed according to the new fabrication and micro/nano-structuring techniques paving the way for a new generation of MIP-based optical sensors. We want to offer the reader a different perspective based on the materials science in contrast to other overviews. Different substrates for anchoring MIPs are considered and distributed in different sections according to the dimensionality and the nature of the composite, highlighting the synergetic effect obtained as a result of merging both materials to achieve the final goal.
Collapse
Affiliation(s)
| | - Sergio Carrasco
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
12
|
Core-shell quantum dots coated with molecularly imprinted polymer for selective photoluminescence sensing of perfluorooctanoic acid. Talanta 2019; 194:1-6. [DOI: 10.1016/j.talanta.2018.09.106] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 01/01/2023]
|