1
|
Li D, Xiong Q, Liang L, Duan H. Multienzyme nanoassemblies: from rational design to biomedical applications. Biomater Sci 2021; 9:7323-7342. [PMID: 34647942 DOI: 10.1039/d1bm01106e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Multienzyme nanoassemblies (MENAs) that combine the functions of several enzymes into one entity have attracted widespread research interest due to their improved enzymatic performance and great potential for multiple applications. Considerable progress has been made to design and fabricate MENAs in recent years. This review begins with an introduction of the up-to-date strategies in designing MENAs, mainly including substrate channeling, compartmentalization and control of enzyme stoichiometry. The desirable properties that endow MENAs with important applications are also discussed in detail. Then, the recent advances in utilizing MENAs in the biomedical field are reviewed, with a particular focus on biosensing, tumor therapy, antioxidant and drug delivery. Finally, the challenges and perspectives for development of versatile MENAs are summarized.
Collapse
Affiliation(s)
- Di Li
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qirong Xiong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
| | - Li Liang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
| |
Collapse
|
2
|
Han X, Zhang Y, Tian J, Wu T, Li Z, Xing F, Fu S. Polymer‐based microfluidic devices: A comprehensive review on preparation and applications. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xue Han
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo China
| | - Yonghui Zhang
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo China
| | - Jingkun Tian
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo China
| | - Tiange Wu
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo China
| | - Zongwen Li
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo China
| | - Fei Xing
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo China
| | - Shenggui Fu
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo China
| |
Collapse
|
3
|
Liu X, Song N, Qian D, Gu S, Pu J, Huang L, Liu J, Qian K. Porous Inorganic Materials for Bioanalysis and Diagnostic Applications. ACS Biomater Sci Eng 2021; 8:4092-4109. [PMID: 34494831 DOI: 10.1021/acsbiomaterials.1c00733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Porous inorganic materials play an important role in adsorbing targeted analytes and supporting efficient reactions in analytical science. The detection performance relies on the structural properties of porous materials, considering the tunable pore size, shape, connectivity, etc. Herein, we first clarify the enhancement mechanisms of porous materials for bioanalysis, concerning the detection sensitivity and selectivity. The diagnostic applications of porous material-assisted platforms by coupling with various analytical techniques, including electrochemical sensing, optical spectrometry, and mass spectrometry, etc., are then reviewed. We foresee that advanced porous materials will bring far-reaching implications in bioanalysis toward real-case applications, especially as diagnostic assays in clinical settings.
Collapse
Affiliation(s)
- Xun Liu
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Naikun Song
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Dahong Qian
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Sai Gu
- School of Engineering, University of Warwick, Coventry CV4 7AL, W Midlands, England.,Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU27XH, United Kingdom
| | - Jun Pu
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, P. R. China
| | - Lin Huang
- Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, P. R. China
| | - Jian Liu
- Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU27XH, United Kingdom.,Chinese Academy of Sciences, Dalian Institute of Chemical Physics, CAS State Key Laboratory of Catalysis, 568 Zhongshan Road, Dalian 116023, P. R. China
| | - Kun Qian
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.,Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, P. R. China
| |
Collapse
|
4
|
Liao L, Xing Y, Xiong X, Gan L, Hu L, Zhao F, Tong Y, Deng S. An electrochemical biosensor for hypoxanthine detection in vitreous humor: A potential tool for estimating the post-mortem interval in forensic cases. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Mozammal Hossain MD, Moon JM, Gurudatt NG, Park DS, Choi CS, Shim YB. Separation detection of hemoglobin and glycated hemoglobin fractions in blood using the electrochemical microfluidic channel with a conductive polymer composite sensor. Biosens Bioelectron 2019; 142:111515. [PMID: 31325673 DOI: 10.1016/j.bios.2019.111515] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/13/2019] [Indexed: 02/06/2023]
Abstract
Separation and detection of hemoglobin (Hb) and glycated hemoglobin fractions (HbA1c, HbAld1+2, HbAle, HbAld3a, HbAla+b, HbA2, and HbAld3b) was performed using an electrochemical AC field modulated separation channel (EMSC) coupled with a sensor probe. The sensor was fabricated based on immobilization of a redox mediator on the poly(2,2':5',5″-terthiophene-3'-p-benzoic acid, pTTBA) and N,S-doped porous carbon (NSPC) nanocomposite. The different types of catalytic redox mediators such as Nile Blue (NB), toluidine blue O (TBO), and Neutral Red (NR) were evaluated to achieve the efficient detection. Of these, the NB-based sensor showed the best analytical signal for Hb and HbA1c, thus it was characterized using various electrochemical and surface analysis methods. After that, the sensor was coupled with the EMSC to achieve the separation detection of the Hb family. The frequency and amplitude of the AC electrical field applied onto the EMSC walls were the main driving forces for the separation and sensitive detection of the analytes. Under optimized conditions, linear dynamic ranges for Hb and HbA1c among their fractions were obtained between 1.0 × 10-6 to 3.5 mM and 3.0 × 10-6 to 0.6 mM with the detection limit of 8.1 × 10-7 ± 3.0 × 10-8 and 9.2 × 10-7 ± 5 × 10-8 mM, respectively. Interference effects of other biomolecules were also investigated and the clinical applicability of the device was evaluated by the determination of total Hb and % HbA1c in real human blood samples.
Collapse
Affiliation(s)
- M D Mozammal Hossain
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan, 46241, Republic of Korea
| | - Jong-Min Moon
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan, 46241, Republic of Korea
| | - N G Gurudatt
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan, 46241, Republic of Korea; Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, and Internal Medicine, Gil Medical Center, Gachon University, Incheon, 21565, Republic of Korea
| | - Deog-Su Park
- Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan, 46241, Republic of Korea
| | - Cheol Soo Choi
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, and Internal Medicine, Gil Medical Center, Gachon University, Incheon, 21565, Republic of Korea.
| | - Yoon-Bo Shim
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan, 46241, Republic of Korea; Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
6
|
Zhang D, Ma J, Meng X, Xu Z, Zhang J, Fang Y, Guo Y. Electrochemical aptamer-based microsensor for real-time monitoring of adenosine in vivo. Anal Chim Acta 2019; 1076:55-63. [PMID: 31203964 DOI: 10.1016/j.aca.2019.05.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/07/2019] [Accepted: 05/14/2019] [Indexed: 11/24/2022]
Abstract
In this work, an implantable and minimally invasive micro-aptasensor for adenosine monitoring in vivo, based on flexible integrated electrodes, was developed. Firstly the sensor was made by the modification of a needle-type electrode with reduced graphene oxide and gold nanoclusters (rGO-AuNCs) using two-step electrodeposition. Secondly Sulfhydryl-terminated capture probe (ssDNA1) was immobilized on rGO-AuNCs modified electrode surface by self-assembly, and then it was hybridized with adenosine aptamer (ssDNA2). Lastly methylene blue (MB) as an electrochemical indicator was adsorbed on the aptamer through specific interaction of MB with guanine base. The peak current of MB decreased linearly with increasing adenosine concentration due to the formation of aptamer-adenosine complex and displacement of the aptamer from the modified electrode surface. The sensor showed a low detection limit of 0.1 nM with signal-to-noise ratio equal to 3 as well as a wide linear response range (0.1 nM-1 mM) in vitro. Also, a high selectivity was demonstrated for adenosine in relation to uridine, guanosine, and cytidine. Experiments in vivo demonstrated fast responses for a range of adenosine concentrations. This work demonstrates a promising path for implantable devices for the determination of biomolecules in vivo, thus allowing for health tests, detection of infectious diseases, and other medical conditions.
Collapse
Affiliation(s)
- Di Zhang
- Binhai Industrial Technology Research Institute of Zhejiang University, Tianjin, 300301, PR China
| | - Jiajia Ma
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Xiangwen Meng
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Jian Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China.
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; College of Chinese Medical, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China.
| |
Collapse
|
7
|
Simultaneous detection of ATP metabolites in human plasma and urine based on palladium nanoparticle and poly(bromocresol green) composite sensor. Biosens Bioelectron 2018; 126:758-766. [PMID: 30554097 DOI: 10.1016/j.bios.2018.11.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/14/2018] [Accepted: 11/24/2018] [Indexed: 02/07/2023]
Abstract
A sensitive voltammetric sensor based on palladium nanoparticles (PdNPs) and poly-bromocresol green (pBG) composite layer immobilized on amide functionalized single-walled carbon nanotubes (AmSWCNTs) modified pyrolytic graphite (PdNPs:pBG/AmSWCNTs/PG) has been prepared for the simultaneous determination of adenosine triphosphate (ATP) catabolites, inosine (INO), hypoxanthine (HX), xanthine (XT), and uric acid (UA). The modified PdNPs:pBG/AmSWCNTs/PG was characterized by electrochemical experiments and surface analysis, which exhibited exceptional electrocatalytic effects towards the oxidation of INO, HX, XT, and UA with a significant enhanced peak current and well resolved peaks separation for all the analytes. The linear calibration curves were obtained in the concentration range of 0.001-175 µM, 0.001-200 µM, 0.001-150 µM, and 0.001-200 µM and limits of detection were found as 0.95 nM, 1.04 nM, 1.07 nM, and 0.43 nM corresponding to INO, HX, XT, and UA, respectively. The common metabolites present in the biological fluids did not interfere in the determination. The applicability of the proposed sensor was successfully demonstrated by determining INO, HX, XT, and UA in the human plasma and urine and the obtained results were validated by using HPLC.
Collapse
|