1
|
Kadaira K, Kuramitz H, Sugawara K. Designing a Peptide‐Modified Screen‐Printed Gold Electrode as a Sensor for the Human Monocytic Leukemia Cell Line. ELECTROANAL 2022. [DOI: 10.1002/elan.202200204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
2
|
EPA Modulates KLK Genes via miR-378: A Potential Therapy in Prostate Cancer. Cancers (Basel) 2022; 14:cancers14112813. [PMID: 35681793 PMCID: PMC9179265 DOI: 10.3390/cancers14112813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/09/2021] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
It is known that miRNA-378a-3p (miR-378) could be induced by eicosapentaenoic acid (EPA), an omega-3 fatty acid. Herein, we first demonstrated how miR-378 exerts anti-prostate cancer (PCa) actions by influencing multiple target genes, including KLK2, KLK4, KLK6, and KLK14, which are implicated in PCa development, cell proliferation, and cell survival. Furthermore, these genes also correlate with androgen and mTOR signaling transduction, and are considered pivotal pathways for the onset and progression of PCa. In total, four PCa cell lines and eight pairing tissues (tumor vs. normal) from clinical PCa patients were included in the current study. The results showed high significance after EPA induced tumor cells containing higher expression levels of miR-378, and led the PCa cells having low cell viabilities, and they progressed to apoptosis when compared with normal prostate cells (p < 0.001). The findings indicated that EPA might become a potential therapy for PCa, especially because it is derived from the components of natural fish oil; it may prove to be a great help for solving the problem of castration-resistant prostate cancer (CRPC).
Collapse
|
3
|
Su H, Yin S, Yang J, Wu Y, Shi C, Sun H, Wang G. In situ monitoring of circulating tumor cell adhered on three-dimensional graphene/ZnO macroporous structure by resistance change and electrochemical impedance spectroscopy. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
4
|
Electrochemical sensing technology for liquid biopsy of circulating tumor cells-a review. Bioelectrochemistry 2021; 140:107823. [PMID: 33915341 DOI: 10.1016/j.bioelechem.2021.107823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/01/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
In recent years, a lot of new detection techniques for circulating tumor cells (CTCs) have been developed. Among them, electrochemical sensing technology has gradually developed because of its advantages of good selectivity, high sensitivity, low cost and rapid detection. Especially in the latest decade, the field of electrochemical biosensing has witnessed great progress, thanks to the merging of biosensing research area with nanotechnology, immunotechnology, nucleic acid technology, and microfluidic technology. In this review, the recent progress for the detection of CTCs according to the principle of detection was summarized and how they can contribute to the enhanced performance of such biosensors was explained. The latest electrode construction strategies such as rolling circle amplification reaction, DNA walker and microfluidic technology and their advantages were also introduced emphatically. Moreover, the main reasonswhy the existing biosensors have not been widely used clinically and the next research points were clearly put forward.
Collapse
|
5
|
Bekmurzayeva A, Dukenbayev K, Azevedo HS, Marsili E, Tosi D, Kanayeva D. Optimizing Silanization to Functionalize Stainless Steel Wire: Towards Breast Cancer Stem Cell Isolation. MATERIALS 2020; 13:ma13173693. [PMID: 32825531 PMCID: PMC7504676 DOI: 10.3390/ma13173693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 12/03/2022]
Abstract
Chemically modified metal surfaces have been used to recognize and capture specific cell types and biomolecules. In this work, stainless steel wires were functionalized with aptamers against breast cancer stem cell markers. Stainless steel wires were first electropolished and silanized via electrodeposition. Aptamers were then attached to the silanized surface through a cross-linker. The functionalized wires were able to capture the target cells in an in vitro test. During surface modification steps, wires were analyzed by atomic force microscopy, cyclic voltammetry, scanning electron and fluorescence microscopy to determine their surface composition and morphology. Optimized conditions of silanization (applied potential, solution pH, heat treatment temperature) for obtaining an aptamer-functionalized wire were determined in this work together with the use of several surface characterization techniques suitable for small-sized and circular wires. These modified wires have potential applications for the in vivo capture of target cells in blood flow, since their small size allows their insertion as standard guidewires in biomedical devices.
Collapse
Affiliation(s)
- Aliya Bekmurzayeva
- Science, Engineering and Technology Program, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| | - Kanat Dukenbayev
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.D.); (E.M.)
| | - Helena S. Azevedo
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK;
| | - Enrico Marsili
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.D.); (E.M.)
| | - Daniele Tosi
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.D.); (E.M.)
| | - Damira Kanayeva
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
- Correspondence:
| |
Collapse
|
6
|
Peng Y, Peng Y, Tang S, Shen H, Sheng S, Wang Y, Wang T, Cai J, Xie G, Feng W. PdIrBP mesoporous nanospheres combined with superconductive carbon black for the electrochemical determination and collection of circulating tumor cells. Mikrochim Acta 2020; 187:216. [PMID: 32162013 DOI: 10.1007/s00604-020-4213-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/03/2020] [Indexed: 12/17/2022]
Abstract
An integrated electrochemical immunoassay is described for the determination of circulating tumor cells (CTCs). For the first time, Ketjen black (KB), which is a superconductive carbon material, was incorporated with Au nanoparticles (AuNPs) and used to modify the surface of gold electrodes. A cocktail of anti-epithelial cell adhesion molecules (EpCAM) and anti-vimentin antibodies was chosen to capture the CTCs. Palladium-iridium-boron-phosphorus alloy-modified mesoporous nanospheres (PdIrBPMNS) served as a catalytic tag to amplify the current signal. Glycine-HCl (Gly-HCl) was used as an antibody eluent to release and collect the captured CTCs from the electrodes for further clinical research without compromising cell viability. The response of the method increased linearly from 10 to 1 × 106 cells mL-1 CTCs, while the detection limit was calculated to be as low as 2 cells mL-1. This method was successfully used to determine CTCs in spiked blood samples and demonstrated good recovery. Graphical abstractKetjen black/AuNPs was incorporated in the electrochemical platform to enhance the electron transfer ability of the electrode surface. PdIrBP mesoporous nanospheres were used to amplify DPV signal in this assay. The introduction of Gly-HCl realized nondestructive recovery of circulating tumor cells.
Collapse
Affiliation(s)
- Yang Peng
- Department of Laboratory Medicine, Key Laboratory of Medical Diagnostics of Ministry of Education, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China
| | - Yuhang Peng
- Department of Laboratory Medicine, Key Laboratory of Medical Diagnostics of Ministry of Education, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China
| | - Sitian Tang
- Department of Laboratory Medicine, Key Laboratory of Medical Diagnostics of Ministry of Education, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China
| | - Huawei Shen
- Traditional Chinese Medicine Hospital of Chongqing, Chongqing, 400021, People's Republic of China
| | - Shangchun Sheng
- Clinical Laboratory of Hospital Affiliated to Chengdu University, Chengdu, 610081, People's Republic of China
| | - Yonghong Wang
- Department of Laboratory Medicine, Key Laboratory of Medical Diagnostics of Ministry of Education, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China
| | - Teng Wang
- Department of Laboratory Medicine, Key Laboratory of Medical Diagnostics of Ministry of Education, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China
| | - Juan Cai
- Department of Laboratory Medicine, Key Laboratory of Medical Diagnostics of Ministry of Education, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China
| | - Guoming Xie
- Department of Laboratory Medicine, Key Laboratory of Medical Diagnostics of Ministry of Education, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China.
| | - Wenli Feng
- Department of Laboratory Medicine, Key Laboratory of Medical Diagnostics of Ministry of Education, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
7
|
The Prognostic Value of Circulating Tumor Cells in Asian Neuroendocrine Tumors. Sci Rep 2019; 9:19917. [PMID: 31882775 PMCID: PMC6934482 DOI: 10.1038/s41598-019-56539-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/08/2019] [Indexed: 01/14/2023] Open
Abstract
Circulating tumor cells (CTC) play important roles in various cancers; however, few studies have assessed their clinical utility in neuroendocrine tumors. This study aimed to prospectively evaluate the prognostic value of CTC counts in Asian patients with neuroendocrine tumors before and during anti-cancer therapy. Patients who were diagnosed with unresectable histological neuroendocrine tumors between September 2011 and September 2017 were enrolled. CTC testing was performed before and during anti-cancer therapy using a negative selection protocol. Chromogranin A levels were also assessed. Univariate and multivariate Cox’s proportional hazard model with forward LR model was performed to investigate the impact of independent factors on overall survival and progression-free survival. Kaplan–Meier method with log-rank tests were used to determine the difference among different clinicopathological signatures and CTC cutoff. The baseline CTC detection rate was 94.3% (33/35). CTC counts were associated with cancer stages (I-III vs. IV, P = 0.015), liver metastasis (P = 0.026), and neuroendocrine tumor grading (P = 0.03). The median progression-free survival and overall survivals were 12.3 and 30.4 months, respectively. In multivariate Cox regression model, neuroendocrine tumors grading and baseline CTC counts were both independent prognostic factors for progression-free survival (PFS, P = 0.005 and 0.015, respectively) and overall survival (OS, P = 0.018 and 0.023, respectively). In Kaplan-Meier analysis, lower baseline chromogranin A levels were associated with longer PFS (P = 0.024). Baseline CTC counts are associated with the clinicopathologic features of neuroendocrine tumors and are an independent prognostic factor for this malignancy.
Collapse
|
8
|
Miao P, Tang Y. Gold Nanoparticles-Based Multipedal DNA Walker for Ratiometric Detection of Circulating Tumor Cell. Anal Chem 2019; 91:15187-15192. [PMID: 31674765 DOI: 10.1021/acs.analchem.9b04000] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sensitive and accurate quantification of circulating tumor cell (CTC) can provide new insights for early diagnosis and prognosis of cancers. Herein, we have developed a multipedal DNA walker for ultrasensitive detection of CTC for the first time. Generally, a number of walker strands are simply modified on gold nanoparticle (AuNPs). The integrated aptamer sequence can specially interact with the transmembrane receptor protein of CTC and facilitate the enrichment of AuNPs on the surface of cells. After a low speed centrifugation, the complex of CTC and AuNPs could be precipitated and the supernate represents decreased UV-vis absorbance response of AuNPs. On the other hand, since multiple walker strands are modified on a single AuNP, hybridization with several tracks on the electrode occurs simultaneously for the following nicking endonuclease-catalyzed cleaving. Experimental results verify that the rate of multipedal walking is much faster. In addition, TCEP-mediated electrochemical amplification is employed to further enhance the electrochemical signal. By comparing the variations of electrochemical and UV-vis absorbance responses, ultrahigh sensitivity for CTC assay is achieved. The limit of detection is down to 1 cell/mL. The results of selectivity confirmation and blood sample test are also satisfactory. This AuNPs-based multipedal DNA walker offers a speedy analysis of CTC and shows great potential use for early clinical diagnosis and treatment of cancers.
Collapse
Affiliation(s)
- Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences , Suzhou 215163 , P. R. China.,Department of Chemistry , New York University , New York 10003 , United States
| | - Yuguo Tang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences , Suzhou 215163 , P. R. China
| |
Collapse
|
9
|
Yang J, Huang X, Gan C, Yuan R, Xiang Y. Highly specific and sensitive point-of-care detection of rare circulating tumor cells in whole blood via a dual recognition strategy. Biosens Bioelectron 2019; 143:111604. [PMID: 31466047 DOI: 10.1016/j.bios.2019.111604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/06/2019] [Accepted: 08/15/2019] [Indexed: 01/06/2023]
Abstract
Despite the fact that the identification and detection of circulating tumor cells (CTCs) plays a critical role in cancer monitoring and diagnosis, it remains a major challenge to isolate and detect these cells, due to their extreme scarcity in peripheral blood. In this work, by coupling a dual recognition strategy and the commercial personal glucose meter, we established a point-of-care approach for detecting rare CTCs in whole blood with high sensitivity and selectivity. The antibody-conjugated magnetic beads lead to the capture and isolation of the CTCs while the enzyme- and second antibody-modified microspheres yield the signal for detection. Because of the dual recognition format, the developed method is highly selective, and a low detection limit of 7 cells can be realized as well, owing to the great signal amplification through the enzyme-loaded microbead labels. More importantly, the detection of CTCs in whole blood can be achieved in a point-of-care fashion with the using of the glucose meter transducer, offering our method a convenient and attractive alternative to traditional biopsy for the diagnosis of various cancers.
Collapse
Affiliation(s)
- Jianmei Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Xiaotong Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, PR China
| | - Chunfang Gan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, PR China.
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
10
|
Zhang P, Zhou H, Lu K, Wang Y, Feng T. Circulating tumor cells in the clinical cancer diagnosis. Clin Transl Oncol 2019; 22:279-282. [DOI: 10.1007/s12094-019-02139-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 05/21/2019] [Indexed: 12/24/2022]
|
11
|
Bahnassy AA, Salem SE, Mohanad M, Abulezz NZ, Abdellateif MS, Hussein M, Zekri CAN, Zekri ARN, Allahloubi NMA. Prognostic significance of circulating tumor cells (CTCs) in Egyptian non-metastatic colorectal cancer patients: A comparative study for four different techniques of detection (Flowcytometry, CellSearch, Quantitative Real-time PCR and Cytomorphology). Exp Mol Pathol 2018; 106:90-101. [PMID: 30578762 DOI: 10.1016/j.yexmp.2018.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/16/2018] [Accepted: 12/17/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE We assessed CTCs counts in NMCRC patients using four different techniques. METHODS CTCs were detected in 63 NMCRC patients, 40 benign bowel diseases (BBD) and 40 normal controls (NC) using, flow-cytometry (FCM), CellSearch (CS), cytomorphology and quantitative real time (qPCR) for CK19, MUC1, CD44, CD133, ALDH1 expression. Results were correlated to progression free (PFS) and overall (OS). RESULTS Positive CTCs (≥4 cells /7.5 mL blood) were detected in 50.8% (32/63) NMCRC by FCM and 7.5% (3/40) BBD (p < .001). CTCs were detected in 34/63 (54%) NMCRC, 4/40 (10%) BBD (p < .001) by CS. CK19, MUC1, CD44, CD133 and ALDH1 were expressed in 35 (55.6%), 29 (46.0%), 28 (44.4%), 26 (41.3%) and 25 (41.3%) cases of NMCRC. In BBD 4/40 (10%) cases expressed CK19, MUC1 and CD44, while 2/40 (5%) expressed CD133. Cytomorphology showed the lowest sensitivity (47.6%) and specificity (90%) for CTCs detection. The combined use of FCM or CS with CTCs-mRNA markers improved the sensitivity and specificity to 68.3%, and 95.0%; respectively. Positive CTCs and mRNA markers expression were significantly associated with shorter 5-yr PFS and OS. In multivariate analysis, CTCs mRNA markers were independent prognostic factors for PFS and OS. CONCLUSIONS Enumeration of CTCs by FCM and RNA expression for specific colon cancer markers are comparable to CS regarding sensitivity and specificity. CTCs also represent novel therapeutic targets for NMCRC cases.
Collapse
Affiliation(s)
- Abeer A Bahnassy
- Tissue culture and Cytogenetics Unit, Pathology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt.
| | - Salem E Salem
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Marwa Mohanad
- Biochemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6(th) of October 12945, Egypt
| | - Nermeen Z Abulezz
- Biochemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6(th) of October 12945, Egypt
| | - Mona S Abdellateif
- Medical Biochemistry and Molecular Biology, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Marwa Hussein
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Chahd A N Zekri
- Faculty of Medicine, 6(th) of October University, 6(th) of October, Egypt
| | - Abdel-Rahman N Zekri
- Virology and Immunology unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Nasr M A Allahloubi
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| |
Collapse
|
12
|
Combination of serum lipids and cancer antigens as a novel marker for colon cancer diagnosis. Lipids Health Dis 2018; 17:261. [PMID: 30458796 PMCID: PMC6247608 DOI: 10.1186/s12944-018-0911-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/13/2018] [Indexed: 12/29/2022] Open
Abstract
Background Colon cancer is a malignancy of the large intestine with high mortality and economic burden. Recent studies reveal a new relationship between blood lipids and the risk of cancer. The presents study aims to investigate the combination of serum lipids with cancer antigens as a novel diagnostic marker for colon cancer. Methods Two hundred of colon cancer patients or healthy subjects were recruited. Serum lipids and cancer antigens such as total cholesterol (TC), high-density lipoprotein (HDL), carcinoembryonic antigen (CEA) and carbohydrate antigen 19–9 (CA19–9) were measured. Results There were significantly lower level of serum TC or HDL, and significantly higher level of serum CEA or CA19–9 in patients than in healthy subjects. Serum TC or HDL in patients with advanced colon cancer was significantly lower than the ones with early stage disease. The level of serum TC or HDL in patients after surgical removal of colon cancer was significantly higher compared to the ones before surgery, but serum CEA or CA19–9 after surgery was significantly reduced in comparison with the ones before surgery. Combined TC, HDL, CEA and CA19–9 as a diagnostic marker for colon cancer had the highest positive predictive rate in comparison with individual, two or three of the parameters. Conclusions The combination of serum TC, HDL, CEA and CA19–9 can be used as an effective marker for colon cancer, and offers a novel strategy for clinical diagnosis and monitoring the disease.
Collapse
|