1
|
Guo L, Zhao Y, Huang Q, Huang J, Tao Y, Chen J, Li HY, Liu H. Electrochemical protein biosensors for disease marker detection: progress and opportunities. MICROSYSTEMS & NANOENGINEERING 2024; 10:65. [PMID: 38784375 PMCID: PMC11111687 DOI: 10.1038/s41378-024-00700-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/23/2024] [Accepted: 03/08/2024] [Indexed: 05/25/2024]
Abstract
The development of artificial intelligence-enabled medical health care has created both opportunities and challenges for next-generation biosensor technology. Proteins are extensively used as biological macromolecular markers in disease diagnosis and the analysis of therapeutic effects. Electrochemical protein biosensors have achieved desirable specificity by using the specific antibody-antigen binding principle in immunology. However, the active centers of protein biomarkers are surrounded by a peptide matrix, which hinders charge transfer and results in insufficient sensor sensitivity. Therefore, electrode-modified materials and transducer devices have been designed to increase the sensitivity and improve the practical application prospects of electrochemical protein sensors. In this review, we summarize recent reports of electrochemical biosensors for protein biomarker detection. We highlight the latest research on electrochemical protein biosensors for the detection of cancer, viral infectious diseases, inflammation, and other diseases. The corresponding sensitive materials, transducer structures, and detection principles associated with such biosensors are also addressed generally. Finally, we present an outlook on the use of electrochemical protein biosensors for disease marker detection for the next few years.
Collapse
Affiliation(s)
- Lanpeng Guo
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Yunong Zhao
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601 China
| | - Qing Huang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074 China
- School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056 China
| | - Jing Huang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Yanbing Tao
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Jianjun Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 China
| | - Hua-Yao Li
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074 China
- Wenzhou Institute of Advanced Manufacturing Technology, Huazhong University of Science and Technology, Wenzhou, 325000 China
| | - Huan Liu
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074 China
| |
Collapse
|
2
|
Yadoung S, Shimizu S, Hongsibsong S, Nakano K, Ishimatsu R. Dopamine as a polymerizable reagent for enzyme-linked immunosorbent assay using horseradish peroxidase. Heliyon 2023; 9:e21722. [PMID: 38027909 PMCID: PMC10654240 DOI: 10.1016/j.heliyon.2023.e21722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
We demonstrate that dopamine can be used as a reagent for colorimetric enzyme-linked immunosorbent assay (ELISA) using horseradish peroxidase (HRP). Dopamine was able to be polymerized in the presence of HRP and H2O2, and black polydopamine was obtained after the enzymatic reaction. Because of the black color, the absorbance was significantly changed in the whole range of the visible light region. Here, an indirect competitive ELISA based on the polymerization of dopamine was performed to detect a fluoroquinolone antibiotic, enrofloxacin. The antibiotic is commonly used in livestock farming. The anti-antibiotics antibody was produced from egg yolk from chicken hens. In the visible range, sufficient absorbance changes of ∼0.4∼0.5 and a low background level for the ELISA response were obtained, and the 50 % inhibitory concentration value at 450 nm was determined to be 26 ppb. The performance of the indirect competitive ELISA based on the polymerization of dopamine was compared to that based on the oxidation of catechol because dopamine has a catechol skeleton. By the complex of HRP and H2O2, catechol can be oxidized to o-benzoquinone having a maximum absorption wavelength of 420 nm. It was shown that the absorbance change in the case of polydopamine was about 2.5 times higher than that of catechol, where the background levels were similar. This confirms that the polymerization of dopamine significantly enhanced the photosignal.
Collapse
Affiliation(s)
- Sumed Yadoung
- Environmental Science Program, Faculty of Science, Chiang Mai University, 50200, Thailand
| | - Shinichi Shimizu
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Surat Hongsibsong
- Environmental Science Program, Faculty of Science, Chiang Mai University, 50200, Thailand
- School of Health Sciences Research, Research Institute for Health Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Environmental, Occupational Health Sciences and Non-Communicable Diseases Center of Excellence, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Koji Nakano
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ryoichi Ishimatsu
- Department of Applied Physics, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| |
Collapse
|
3
|
Zhao Y, Shao J, Jin Z, Zheng W, Yao J, Ma W. Plasmon-enhanced electroreduction activity of Au-AgPd Janus nanoparticles for ochratoxin a detection. Food Chem 2023; 412:135526. [PMID: 36731235 DOI: 10.1016/j.foodchem.2023.135526] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
Ochratoxin A (OTA) was a dangerous biological toxin, and would easily contaminate food and induced food safety problems. The development of electrochemical aptasensors by designing strong and anti-interfere electroactive labels could improve the sensitivity and accuracy of OTA detection. In this contribution, novel electroactive Au-AgPd Janus NPs were firstly synthesized and exhibited electroreduction signal at -0.4 V, owing to the reduction process of Pd2+. The electroreduction signal was amplified 1.5 times under local surface plasmon resonance (LSPR) excitation, which could improve the sensitivity of OTA detection. Plasmon-enhanced electroreduction principle of Au-AgPd Janus NPs was verified, which endowed electrochemical aptasensor with high accuracy and anti-interference ability for OTA detection. Au-AgPd Janus NPs served as electrochemical beacon achieved sensitive and accurate OTA detection with the limit of detection (LOD) of 0.98 pM. This work opens up new directions for the construction of electroactive heterostructures for the sensitive and accurate biotoxins electroanalytical applications.
Collapse
Affiliation(s)
- Yuan Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Juanjuan Shao
- College of Science and Technology, Hebei Agricultural University, Cangzhou, Hebei 061100, China
| | - Zhao Jin
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wangwang Zheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jie Yao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Ma
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
4
|
Lee T, Kim W, Park J, Lee G. Hemolysis-Inspired, Highly Sensitive, Label-Free IgM Detection Using Erythrocyte Membrane-Functionalized Nanomechanical Resonators. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7738. [PMID: 36363329 PMCID: PMC9654754 DOI: 10.3390/ma15217738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Immunoglobulin detection is important for immunoassays, such as diagnosing infectious diseases, evaluating immune status, and determining neutralizing antibody concentrations. However, since most immunoassays rely on labeling methods, there are limitations on determining the limit of detection (LOD) of biosensors. In addition, although the antigen must be immobilized via complex chemical treatment, it is difficult to precisely control the immobilization concentration. This reduces the reproducibility of the biosensor. In this study, we propose a label-free method for antibody detection using microcantilever-based nanomechanical resonators functionalized with erythrocyte membrane (EM). This label-free method focuses on the phenomenon of antibody binding to oligosaccharides (blood type antigen) on the surface of the erythrocyte. We established a method for extracting the EM from erythrocytes and fabricated an EM-functionalized microcantilever (MC), termed EMMC, by surface-coating EM layers on the MC. When the EMMC was treated with immunoglobulin M (IgM), the bioassay was successfully performed in the linear range from 2.2 pM to 22 nM, and the LOD was 2.0 pM. The EMMC also exhibited excellent selectivity compared to other biomolecules such as serum albumin, γ-globulin, and IgM with different paratopes. These results demonstrate that EMMC-based nanotechnology may be utilized in criminal investigations to identify blood types with minimal amounts of blood or to evaluate individual immunity through virus-neutralizing antibody detection.
Collapse
Affiliation(s)
- Taeha Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Korea
| | - Woong Kim
- Department of Mechanical Engineering, Hanyang University, Seoul 04763, Korea
| | - Jinsung Park
- Department of Biomechatronics Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Korea
| |
Collapse
|
5
|
Chen R, Dong Y, Hong F, Zhang X, Wang X, Wang J, Chen Y. Polydopamine nanoparticle-mediated, click chemistry triggered, microparticle-counting immunosensor for the sensitive detection of ochratoxin A. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128206. [PMID: 35033914 DOI: 10.1016/j.jhazmat.2021.128206] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
A rapid and accurate detection method is needed for the quantitation of ochratoxin A in agricultural products due to its high toxicity. A microparticle-counting immunosensor based on polydopamine nanoparticle-mediated click chemistry was established for the highly-sensitive detection of ochratoxin A. Polydopamine nanoparticles with good biocompatibility and a strong metal-chelating ability were synthesized and conjugated with the antibody. The Coupled compounds were then used as an immune carrier to change the Cu2+ concentration via an immuno-reaction. Some of the remaining Cu2+ ions were reduced to Cu+ ions, which caused azide-polystyrene microspheres and alkyne-polystyrene microspheres to aggregate via a Cu+ ion-mediated click reaction. Particle counting was used to distinguish changes in the sizes of the polystyrene microspheres from dispersed to aggregated to detect ochratoxin A. It showed a wide linear detection range of 0.5-800 ng/mL, and a detection limit of 0.2 ng/mL. This assay provides an attractive analytical tool for the accurate detection of trace targets in complex samples.
Collapse
Affiliation(s)
- Rui Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yongzhen Dong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Feng Hong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiya Zhang
- College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, Henan 450002, China
| | - Xiaohong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jia Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
6
|
Li Y, Han R, Chen M, Yang X, Zhan Y, Wang L, Luo X. Electrochemical Biosensor with Enhanced Antifouling Capability Based on Amyloid-like Bovine Serum Albumin and a Conducting Polymer for Ultrasensitive Detection of Proteins in Human Serum. Anal Chem 2021; 93:14351-14357. [PMID: 34648255 DOI: 10.1021/acs.analchem.1c04153] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biofouling has been a substantial burden on biomarker analysis in complex biological media, leading to poor sensitivity and selectivity or even malfunction of the sensing devices. In this work, an electrochemical biosensor with excellent antifouling ability and high stability was fabricated based on amyloid-like bovine serum albumin (AL-BSA) crosslinked with the conducting polymer polyaniline (PANI). Compared with the crosslinked conventional bovine serum albumin (BSA), the crosslinked AL-BSA exhibited enhanced antifouling capability, and it was able to form an effective antifouling film within a significantly short reaction time. With further immobilization of immunoglobulin M (IgM) antibodies onto the prepared AL-BSA surface via the formation of amide bonds, an electrochemical biosensor capable of assaying IgM in human serum samples with superior selectivity and sensitivity was constructed. The biosensor exhibited excellent antifouling performance even in 100% human serum, a low limit of detection down to 2.32 pg mL-1, and acceptable accuracy for real sample analysis compared with the standard enzyme-linked immunosorbent assay for IgM detection. This strategy of using AL-BSA to construct antifouling sensing interfaces provided a reliable diagnostic method for the detection of a series of protein biomarkers in complex biological media.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Rui Han
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Min Chen
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiqin Yang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yinan Zhan
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lei Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
7
|
Zheng W, Yao J, Zhao Y. RuCu Cage/Alloy Nanoparticles with Controllable Electroactivity for Specific Electroanalysis Applications. Anal Chem 2021; 93:13080-13088. [PMID: 34523913 DOI: 10.1021/acs.analchem.1c03182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Electrochemical nanotags with controllable and multiresponse electroactivity have a great capacity for overcoming the drawbacks of limited target monitoring and inaccurate detection results for electrochemical sensors. In this contribution, double electro-oxidative Ru and Cu metals were integrated into RuCu nanostructures for the generation of dual electro-oxidative signals. A facial approach was proposed for the controllable fabrication of RuCu cage nanoparticles (NPs) and RuCu alloy NPs by simply adjusting the pH value of the reaction system. RuCu cage NPs and RuCu alloy NPs demonstrated inherent different electro-oxidative responses owing to the remarkable distinction of structures with different metal valences. RuCu cage NPs showed a single electro-oxidization peak at 0.84 V, assigned to the exposure of more Ru0 electroactive sites on the hollow cage structures. RuCu alloy NPs illustrated dual electro-oxidization peak at 0.84 and -0.16 V, attributing to the presence of Ru0 and Cu+ electroactive sites on the alloy structures, respectively. RuCu cage NPs and RuCu alloy NPs served as specific electroactive tags, achieving the selective monitoring of Na2S and ratiometric electrochemical detection of xanthine in monosodium glutamate, respectively. The limits of detection were as low as 27 pM for Na2S and 70 nM for xanthine. The rational design of multimetal nanostructures holds enormous potential for the generation of multiresponse electroactivity with the impetus for exploring the capacity of specific electrochemical sensing.
Collapse
Affiliation(s)
- Wangwang Zheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jie Yao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuan Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
8
|
Bereli N, Bakhshpour M, Topçu AA, Denizli A. Surface Plasmon Resonance-Based Immunosensor for Igm Detection with Gold Nanoparticles. MICROMACHINES 2021; 12:mi12091092. [PMID: 34577735 PMCID: PMC8468630 DOI: 10.3390/mi12091092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 01/02/2023]
Abstract
In this work, a surface plasmon resonance (SPR) based immunosensor was prepared by the immobilization of the amine-functionalized gold nanoparticles (N-AuNPs) on the sensing surface to sense immunoglobulin M (IgM) antibodies in the aqueous solution and artificial plasma. The characterization studies of SPR based immunosensor for IgM detection were performed with scanning electron microscope (SEM), contact angle measurements, and ellipsometry. Kinetic studies for the IgM immunosensor were carried out in the range of 1.0 to 200 ng/mL IgM concentrations in an aqueous solution. The total IgM analysis time including adsorption, desorption, and regeneration cycles was nearly 10 min for the prepared immunosensor. The limit of detection (LOD) and limit of quantification (LOQ) were found as 0.08 and 0.26 ng/mL, respectively. The reusability of the proposed immunosensor was tested with 6 consecutive adsorption-desorption, and regeneration cycles. Also, enzyme-linked immunosorbent assay (ELISA) method was utilized in the validation of the immunosensor.
Collapse
Affiliation(s)
- Nilay Bereli
- Chemistry Department, Hacettepe University, Beytepe, 06800 Ankara, Turkey; (N.B.); (M.B.)
| | - Monireh Bakhshpour
- Chemistry Department, Hacettepe University, Beytepe, 06800 Ankara, Turkey; (N.B.); (M.B.)
| | - Aykut Arif Topçu
- Medical Laboratory Program, Vocational School of Health Services, Aksaray University, 68100 Aksaray, Turkey;
| | - Adil Denizli
- Chemistry Department, Hacettepe University, Beytepe, 06800 Ankara, Turkey; (N.B.); (M.B.)
- Correspondence: ; Tel.: +90-31-297-7983; Fax: +90-312-299-2163
| |
Collapse
|
9
|
Wang B, Liu B, Yan Y. Facile Preparation of ZIF-8 MOF Coated Mesoporous Magnetic Nanoarticles to Provide a Magnetic Solid Phase Extraction Platform. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821040110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Li L, Xing Z, Tang Q, Yang L, Dai L, Wang H, Yan T, Xu W, Ma H, Wei Q. Enzyme-Free Colorimetric Immunoassay for Protein Biomarker Enabled by Loading and Disassembly Behaviors of Polydopamine Nanoparticles. ACS APPLIED BIO MATERIALS 2020; 3:8841-8848. [DOI: 10.1021/acsabm.0c01167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Zhenyuan Xing
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Qiaorong Tang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Lei Yang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Li Dai
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Huan Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Tao Yan
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Weiying Xu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
11
|
Ida J, Kuzuya A, Choong YS, Lim TS. An intermolecular-split G-quadruplex DNAzyme sensor for dengue virus detection. RSC Adv 2020; 10:33040-33051. [PMID: 35515051 PMCID: PMC9056686 DOI: 10.1039/d0ra05439a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/23/2020] [Indexed: 01/12/2023] Open
Abstract
Nucleic acids have special ability to organize themselves into various non-canonical structures, including a four-stranded DNA structure termed G-quadruplex (G4) that has been utilized for diagnostic and therapeutic applications. Herein, we report the ability of G4 to distinguish dengue virus (DENV) based on its serotypes (DENV-1, DENV-2, DENV-3 and DENV-4) using a split G4-hemin DNAzyme configuration. In this system, two separate G-rich oligonucleotides are brought together upon target DNA strand hybridization to form a three-way junction architecture, allowing the formation of a G4 structure. The G4 formation in complexation with hemin can thus provide a signal readout by generating a DNAzyme that is able to catalyze H2O2-mediated oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS). This results in a change of color providing a sensing platform for the colorimetric detection of DENV. In our approach, betaine and dimethyl sulfoxide were utilized for better G4 generation by enhancing the target-probe hybridization. In addition to this serotype-specific assay, a multi-probe cocktail assay, which is an all-in-one assay was also examined for DENV detection. The system highlights the potential of split G-quadruplex configurations for the development of DNA-based detection and serotyping systems in the future.
Collapse
Affiliation(s)
- Jeunice Ida
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia 11800 Penang Malaysia +60-4-653-4803 +60-4-653-4852
| | - Akinori Kuzuya
- Department of Chemistry and Materials Engineering, Kansai University 3-3-35 Yamate, Suita Osaka 564-8680 Japan
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia 11800 Penang Malaysia +60-4-653-4803 +60-4-653-4852
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia 11800 Penang Malaysia +60-4-653-4803 +60-4-653-4852
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia 11800 Penang Malaysia
| |
Collapse
|
12
|
Zuaznabar-Gardona JC, Fragoso A. Development of highly sensitive IgA immunosensors based on co-electropolymerized L-DOPA/dopamine carbon nano-onion modified electrodes. Biosens Bioelectron 2019; 141:111357. [DOI: 10.1016/j.bios.2019.111357] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/09/2019] [Accepted: 05/26/2019] [Indexed: 12/20/2022]
|
13
|
Abstract
It is well-known that electrochemical immunosensors have many advantages, including but not limited to high sensitivity, simplicity in application, low-cost production, automated control and potential miniaturization. Due to specific antigen–antibody recognition, electrochemical immunosensors also have provided exceptional possibilities for real-time trace detection of analytical biotargets, which consists of small molecules (such as natural toxins and haptens), macromolecules, cells, bacteria, pathogens or viruses. Recently, the advances in the development of electrochemical immunosensors can be classified into the following directions: the first is using electrochemical detection techniques (voltammetric, amperometric, impedance spectroscopic, potentiometric, piezoelectric, conductometric and alternating current voltammetric) to achieve high sensitivity regarding the electrochemical change of electrochemical signal transduction; the second direction is developing sensor configurations (microfluidic and paper-based platforms, microelectrodes and electrode arrays) for simultaneous multiplex high-throughput analyses; and the last is designing nanostructured materials serving as sensing interfaces to improve sensor sensitivity and selectivity. This chapter introduces the working principle and summarizes the state-of-the-art of electrochemical immunosensors during the past few years with practically relevant details for: (a) metal nanoparticle- and quantum dot-labeled immunosensors; (b) enzyme-labeled immunosensors; and (c) magnetoimmunosensors. The importance of various types of nanomaterials is also thoroughly reviewed to obtain an insight into understanding the theoretical basis and practical orientation for the next generation of diagnostic devices.
Collapse
Affiliation(s)
- Hoang Vinh Tran
- School of Chemical Engineering, Hanoi University of Science and Technology (HUST) 1 Dai Co Viet Road Hanoi 100000 Vietnam
| | - Tran Dai Lam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi 100000 Vietnam
- Institute for Tropical Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi 100000 Vietnam
| |
Collapse
|
14
|
Austin Suthanthiraraj PP, Sen AK. Localized surface plasmon resonance (LSPR) biosensor based on thermally annealed silver nanostructures with on-chip blood-plasma separation for the detection of dengue non-structural protein NS1 antigen. Biosens Bioelectron 2019; 132:38-46. [PMID: 30851494 DOI: 10.1016/j.bios.2019.02.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/05/2019] [Accepted: 02/15/2019] [Indexed: 12/29/2022]
Abstract
Early diagnosis of dengue biomarkers by employing a technology that is less labor- and time-intensive and offers higher sensitivity and lower limits of detection would find great significance in the developing world. Here, we report the development of a biosensor that exploits the localized surface plasmon resonance (LSPR) effect of silver nanostructures, created via thermal annealing of thin metal film, to detect dengue NS1 antigen, which appears as early as the onset of infection. The biosensor integrates membrane-based blood-plasma separation to develop lab-on-chip device that facilitates rapid diagnosis (within 30 min) of dengue NS1 antigen from a small volume (10 µL) of whole blood. The refractive index (RI) sensitivity of the LSPR biosensor was verified by using aqueous glycerol (0-100 wt%) which showed that it is sufficiently sensitive to detect 10-3 change in RI, which is comparable to that observed with protein-protein interaction. The RI sensitivity was utilized to demonstrate protein binding by using bovine serum albumin and detection of antibody-antigen immune reaction by binding human chorionic gonadotropin antigen to immunoglobulin antibody immobilized in our LSPR biosensor. Next, we demonstrated the detection of NS1 in plasma obtained via centrifugation and in plasma separated on-chip. From 10 µL of whole blood spiked with NS1 antigen, our biosensor reliably detects 0.06 µg/mL of NS1, which lies within the clinical limit observed during the first seven days of infection, with a sensitivity of 9 nm/(µg/mL). These results confirm that the proposed LSPR biosensor can potentially be used in point-of-care dengue diagnostics.
Collapse
Affiliation(s)
| | - Ashis Kumar Sen
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
15
|
Han X, Zhang H, Zheng J. Ultrasensitive Electrochemical Immunoassay Based on Cargo Release from Nanosized PbS Colloidosomes. Anal Chem 2019; 91:2224-2230. [DOI: 10.1021/acs.analchem.8b04807] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiujuan Han
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
| | - Hongfang Zhang
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
| | - Jianbin Zheng
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
| |
Collapse
|