1
|
Jaume J, Délia ML, Basséguy R. The Influence of Roughness on the Protective Layer Formation Induced by Marine Microorganisms on 5083 Aluminum Alloy. MATERIALS (BASEL, SWITZERLAND) 2025; 18:708. [PMID: 39942374 PMCID: PMC11820449 DOI: 10.3390/ma18030708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025]
Abstract
This study investigates the formation of a protective layer on a 5083 aluminum alloy surface induced by microorganisms from salt marsh. The influence of the initial surface roughness was examined to identify optimal conditions for maximum coverage and thickness of the protective layer. As two opposing effects are suspected, where high surface roughness enhances bacterial adhesion but reduces the resistance to abiotic corrosion, various degrees of roughness were tested. Using electrochemical experiments (OCP measurement, 1/Rp determination, and pitting sensitivity), SEM/TEM observation and EDX characterization, a compromise was found on the initial roughness to obtain a thick protective layer through good bacterial adhesion while minimizing abiotic corrosion. The optimal roughness, achieved through 240-grit grinding, facilitates a uniform distribution of microorganisms and the development of a dense, evenly thick protective layer that significantly enhances the alloy's resistance to pitting corrosion. The passivity domain doubled when comparing the electrochemical behavior of electrodes immersed in the presence of microbial activity to those immersed without it.
Collapse
Affiliation(s)
| | | | - Régine Basséguy
- Chemical Engineering Laboratory (LGC), Université de Toulouse, CNRS, INPT, UPS, 4 Allée E. Monso, 31432 Toulouse, France; (J.J.); (M.-L.D.)
| |
Collapse
|
2
|
Liu Y, Zhang J, Cheng D, Guo W, Liu X, Chen Z, Zhang Z, Ngo HH. Fate and mitigation of antibiotics and antibiotic resistance genes in microbial fuel cell and coupled systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173530. [PMID: 38815818 DOI: 10.1016/j.scitotenv.2024.173530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Microbial fuel cells (MFCs), known for their low energy consumption, high efficiency, and environmental friendliness, have been widely utilized for removing antibiotics from wastewater. Compared to conventional wastewater treatment methods, MFCs produce less sludge while exhibiting superior antibiotic removal capacity, effectively reducing the spread of antibiotic resistance genes (ARGs). This study investigates 1) the mechanisms of ARGs generation and proliferation in MFCs; 2) the influencing factors on the fate and removal of antibiotics and ARGs; and 3) the fate and mitigation of ARGs in MFC and MFC-coupled systems. It is indicated that high removal efficiency of antibiotics and minimal amount of sludge production contribute the mitigation of ARGs in MFCs. Influencing factors, such as cathode potential, electrode materials, salinity, initial antibiotic concentration, and additional additives, can lead to the selection of tolerant microbial communities, thereby affecting the abundance of ARGs carried by various microbial hosts. Integrating MFCs with other wastewater treatment systems can synergistically enhance their performance, thereby improving the overall removal efficiency of ARGs. Moreover, challenges and future directions for mitigating the spread of ARGs using MFCs are suggested.
Collapse
Affiliation(s)
- Yufei Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Xiaoqing Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Zhijie Chen
- UNSW Water Research Centre, School of Civil and Environmental Engineering, The University New South Wales, Sydney, NSW 2052, Australia
| | - Zehao Zhang
- National Engineering Laboratory of Urban Sewage Advanced Treatment and Resource Utilization Technology, The College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Huu Hao Ngo
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia.
| |
Collapse
|
3
|
Su Kim H, Lee S, Moon M, Jong Jung H, Lee J, Chu YH, Rae Kim J, Kim D, Woo Park G, Hyun Ko C, Youn Lee S. Enhancing microbial CO 2 electrocatalysis for multicarbon reduction in a wet amine-based catholyte. CHEMSUSCHEM 2024; 17:e202301342. [PMID: 38287485 DOI: 10.1002/cssc.202301342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 01/31/2024]
Abstract
Microbial CO2 electroreduction (mCO2ER) offers a promising approach for producing high-value multicarbon reductants from CO2 by combining CO2 fixing microorganisms with conducting materials (i. e., cathodes). However, the solubility and availability of CO2 in an aqueous electrolyte pose significant limitations in this system. This study demonstrates the efficient production of long-chain multicarbon reductants, specifically carotenoids (~C40), within a wet amine-based catholyte medium during mCO2ER. Optimizing the concentration of the biocompatible CO2 absorbent, monoethanolamine (MEA), led to enhanced CO2 fixation in the electroautotroph bacteria. Molecular biological analyses revealed that MEA in the catholyte medium redirected the carbon flux towards carotenoid biosynthesis during mCO2ER. The faradaic efficiency of mCO2ER with MEA for carotenoid production was 4.5-fold higher than that of the control condition. These results suggest the mass transport bottleneck in bioelectrochemical systems could be effectively addressed by MEA-assissted mCO2ER, enabling highly efficient production of valuable products from CO2.
Collapse
Affiliation(s)
- Hui Su Kim
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, 61003, Gwangju, South Korea
- Department of Chemical Engineering, Chonnam National University, 61186, Gwangju, South Korea
| | - Sangmin Lee
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, 61003, Gwangju, South Korea
- Bio-Environmental Chemistry, Chungnam National University, 34134, Daejeon, South Korea
| | - Myounghoon Moon
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, 61003, Gwangju, South Korea
| | - Hwi Jong Jung
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, 61003, Gwangju, South Korea
- Department of Chemical Engineering, Chonnam National University, 61186, Gwangju, South Korea
| | - Jiye Lee
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, 61003, Gwangju, South Korea
| | - Young-Hwan Chu
- Energy AI ⋅ Computational Science Laboratory, Korea Institute of Energy Research, 34129, Daejeon, South Korea
| | - Jung Rae Kim
- School of Chemical and Biomolecular Engineering, Pusan National University, 46241, Pusan, South Korea
| | - Danbee Kim
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, 61003, Gwangju, South Korea
| | - Gwon Woo Park
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, 61003, Gwangju, South Korea
| | - Chang Hyun Ko
- Department of Chemical Engineering, Chonnam National University, 61186, Gwangju, South Korea
| | - Soo Youn Lee
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, 61003, Gwangju, South Korea
| |
Collapse
|
4
|
Xia R, Cheng J, Chen Z, Zhang Z, Zhou X, Zhou J, Zhang M. Atomic Pyridinic Nitrogen as Highly Active Metal-Free Coordination Sites at the Biotic-Abiotic Interface for Bio-Electrochemical CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306331. [PMID: 38054812 DOI: 10.1002/smll.202306331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/21/2023] [Indexed: 12/07/2023]
Abstract
Bio-electrochemical conversion of anthropogenic CO2 into value-added products using cost-effective metal-free catalysts represents a promising strategy for sustainable fuel production. Herein, N-doped carbon nanosheets synthesized via pyrolysis of the zeolitic-imidazolate framework (ZIF) are developed for constructing efficient biohybrids to facilitate CO2-to-CH4 conversion. The microbial enrichment and bio-interfacial charge transfer are significantly affected by the proportion of the co-existed graphitic-N, pyridinic-N, and pyrrolic-N in the defective carbon nanosheets. It is unfolded that pyridinic-N and pyrrolic-N with the doped N atoms near the edge can significantly enhance the adsorption of their adjacent C atoms toward O, leading to improved microbe enrichment. Especially, pyridinic-N which can provide one p electron to the aromatic π system, greatly enhances the electron-donating capability of the carbon nanosheets to the microorganisms. Correspondingly, due to its largest amount of pyridinic-N doping, the N-doped carbon nanosheets derived from ZIF pyrolysis at 900 °C (denoted 900-NC) achieve the highest methane production of ≈215.7 mmol m-2 day-1 with a high selectivity (Faradaic efficiency = ≈94.2%) at -0.9 V versus Ag/AgCl. This work demonstrates the effectiveness of N-doped carbon catalysts for bio-electrochemical CO2 fixation and contributes to the understanding of N functionalities toward microbiome response and biotic-abiotic charge transfer in various bio-electrochemical systems.
Collapse
Affiliation(s)
- Rongxin Xia
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Zhuo Chen
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Ze Zhang
- Shanghai Institute of Space Propulsion, Shanghai, 201112, China
- Shanghai Academy of Spaceflight Technology (SAST), Shanghai, 201109, China
| | - Xinyi Zhou
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Junhu Zhou
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Meng Zhang
- State Key Laboratory for Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
5
|
Childs A, Chand D, Pereira J, Santra S, Rajaraman S. BacteSign: Building a Findable, Accessible, Interoperable, and Reusable (FAIR) Database for Universal Bacterial Identification. BIOSENSORS 2024; 14:176. [PMID: 38667169 PMCID: PMC11047924 DOI: 10.3390/bios14040176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024]
Abstract
With the increasing incidence of diverse global bacterial outbreaks, it is important to build an immutable decentralized database that can capture regional changes in bacterial resistance with time. Herein, we investigate the use of a rapid 3D printed µbiochamber with a laser-ablated interdigitated electrode developed for biofilm analysis of Pseudomonas aeruginosa, Acinetobacter baumannii and Bacillus subtilis using electrochemical biological impedance spectroscopy (EBIS) across a 48 h spectrum, along with novel ladder-based minimum inhibitory concentration (MIC) stencil tests against oxytetracycline, kanamycin, penicillin G and streptomycin. Furthermore, in this investigation, a search query database has been built demonstrating the deterministic nature of the bacterial strains with real and imaginary impedance, phase, and capacitance, showing increased bacterial specification selectivity in the 9772.37 Hz range.
Collapse
Affiliation(s)
- Andre Childs
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - David Chand
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Jorge Pereira
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| | - Swadeshmukul Santra
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32827, USA
| | - Swaminathan Rajaraman
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32827, USA
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
6
|
Jiang J, Lopez-Ruiz JA, Bian Y, Sun D, Yan Y, Chen X, Zhu J, May HD, Ren ZJ. Scale-up and techno-economic analysis of microbial electrolysis cells for hydrogen production from wastewater. WATER RESEARCH 2023; 241:120139. [PMID: 37270949 DOI: 10.1016/j.watres.2023.120139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/06/2023]
Abstract
Microbial electrolysis cells (MECs) have demonstrated high-rate H2 production while concurrently treating wastewater, but the transition in scale from laboratory research to systems that can be practically applied has encountered challenges. It has been more than a decade since the first pilot-scale MEC was reported, and in recent years, many attempts have been made to overcome the barriers and move the technology to the market. This study provided a detailed analysis of MEC scale-up efforts and summarized the key factors that should be considered to further develop the technology. We compared the major scale-up configurations and systematically evaluated their performance from both technical and economic perspectives. We characterized how system scale-up impacts the key performance metrics such as volumetric current density and H2 production rate, and we proposed methods to evaluate and optimize system design and fabrication. In addition, preliminary techno-economic analysis indicates that MECs can be profitable in many different market scenarios with or without subsidies. We also provide perspectives on future development needed to transition MEC technology to the marketplace.
Collapse
Affiliation(s)
- Jinyue Jiang
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA; The Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA
| | - Juan A Lopez-Ruiz
- Pacific Northwest National Laboratory, Institute for Integrated Catalysis, Energy and Environment Directorate, 902 Battelle Blvd., Richland, WA 99352, USA
| | - Yanhong Bian
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA; The Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA
| | - Dongya Sun
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA; The Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA
| | - Yuqing Yan
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA; The Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA
| | - Xi Chen
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA; The Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA
| | - Junjie Zhu
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA; The Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA
| | - Harold D May
- The Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA; The Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
7
|
Arik N, Elcin E, Tezcaner A, Oktem HA. Optimization of whole-cell bacterial bioreporter immobilization on electrospun cellulose acetate (CA) and polycaprolactone (PCL) fibers for arsenic detection. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:666. [PMID: 37178337 DOI: 10.1007/s10661-023-11227-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/06/2023] [Indexed: 05/15/2023]
Abstract
Arsenic contamination is a critical global problem, and its widespread environmental detection is becoming a prominent issue. Herein, electrospun fibers of cellulose acetate (CA) and polycaprolactone (PCL) were successfully fabricated and used as the support material for immobilization of arsenic-sensing bacterial bioreporter for the first time. To date, no attempt has been made to immobilize fluorescent whole-cell bioreporter cells on electrospun fibers for arsenic detection. CA and PCL electrospun fibers were fabricated via traditional electrospinning technique and characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and contact angle meter. Following immobilization of the bacterial bioreporter cells, the immobilized bacteria were also characterized by viability assay using AlamarBlue. The effects of growth phase and cell concentration on the fluorescence response of fiber-immobilized arsenic bioreporters to arsenic were also investigated. After immobilization of arsenic bioreporters on 10 wt% PCL fiber, 91% of bacterial cells remained viable, while this value was 55.4% for cells immobilized on 12.5 wt% CA fiber. Bioreporter cells in the exponential growth phase were shown to be more sensitive to arsenic compared to aged cells. While both the electropsun PCL- and CA-immobilized bioreporters successfully detected 50 and 100 µg/L of arsenite (As (III)) concentrations, the PCL-immobilized bioreporter showed better fluorescence performance which should be investigated in future studies. This study helps to fill some gaps in the literature and demonstrates the potential for using electrospun fiber-immobilized arsenic whole-cell bioreporter for arsenic detection in water.
Collapse
Affiliation(s)
- Nehir Arik
- Department of Molecular Biology and Genetics, Middle East Technical University, 06800, Ankara, Turkey
| | - Evrim Elcin
- Department of Agricultural Biotechnology, Aydın Adnan Menderes University, 09970, Aydın, Turkey
| | - Aysen Tezcaner
- Department of Engineering Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | - Hüseyin Avni Oktem
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey.
| |
Collapse
|
8
|
Gao Y, Huang J, Zhang L, Zhu Y, Yang P, Xue L, Wang N, He W. A three-dimensional phenolic-based carbon anode for microbial electrochemical system with customized macroscopic pore structure to promote interior bacteria colonization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160131. [PMID: 36372162 DOI: 10.1016/j.scitotenv.2022.160131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Microbial electrochemical system (MES) is an emerging wastewater treatment technology that compensates the energy demands of containments removal by in situ converting the chemical energy of organic pollutants. As the structure for exoelectrogens and the reaction site of extracellular electron transfer (EET), the anode is essential for MES. The future commercial application of MES requires efficiency and large-scale fabrication available anode. In this study, a 3D anode with millimeter-scale pores (3D-MPA) was successfully constructed by sacrificial template method, with low-cost phenolic resin as carbon precursor and polymethyl methacrylate (PMMA) pellets as template. With customized and ordered pore of 1 mm, the 3D-MPAs allowed the microorganisms to colonize inside, improving anodic space utilization efficiency. Different carbonization temperature in tested range from 700 °C to 1000 °C regulated the micrometer-scale convex structures and surface roughness of 3D-MPAs, causing electrochemical performance changes. The 3D-MPA-900 obtained the largest electroactive surface area (102 ± 4.1 cm2) and smallest ohmic resistance (1.8 ± 0.09 Ω). Equipped with MES, 3D-MPA-900 reached the highest power density and current density (2590 ± 25 mW m-2 and 5.20 ± 0.07 A m-2). Among tested 3D-MPA, the excellent performance of 3D-MPA-900 might be attributed by its convex structures with suitable size and surface coverage. The surface roughness of 3D-MPA-900 enhanced the microorganism adherence, which then promoted EET on anode surface. Generally, phenolic-based 3D-MPA made of sacrificial-template method had controllable porous structure, large-scale fabrication availability, high chemical stability and excellent mechanical property, which could be promising for the commercial application of MES.
Collapse
Affiliation(s)
- Yaqian Gao
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jianjun Huang
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Lijuan Zhang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yujie Zhu
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Pinpin Yang
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Lefei Xue
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Naiyu Wang
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Weihua He
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
9
|
Bijimol BI, Sreelekshmy BR, Satheesh Kumar KN, Ratheesh A, Geethanjali CV, Aboobakar Shibli SM. Microbial-Inspired Surface Patterning for Selective Bacterial Actions for Enhanced Performance in Microbial Fuel Cells. ACS APPLIED BIO MATERIALS 2022; 5:5394-5409. [PMID: 36300364 DOI: 10.1021/acsabm.2c00760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The performance of any bio-electrochemical system is dependent on the efficiency of electrode-microbial interactions. Surface properties play a focal role in bacterial attachment and biofilm formation on the electrodes. In addition to electrode surface properties, selective bacterial adhesion onto the electrode surface is mandatory to mitigate energy loss due to undesired bacterial interactions on the electrode surface. In the present study, microbial-patterned graphite scaffolds are developed for selective bacterial-electrode interactions. A power density as high as 1105 mW/m2 is achieved with mG-E (a graphite electrode patterned with Escherichia coli), which is about 3 times higher than that of the pristine graphite electrode (370 mW/m2). Initial mechanical pre-treatment of the graphite electrode, followed by bacterial patterning, results in the formation of a unique cobblestone topography with a tuned surface area of 127.12 m2/g. This provides suitable morphology with enhanced active sites for selective bacterial intercalation in graphite layers. This cannot be otherwise achieved by any mechanical or other means. A unique methodology of symbolic regression is adopted to validate a genetic algorithm suitable for predicting a perfect correlation between surface characteristics and electrochemical characteristics with a minimum root-mean-square error of 0.08. The bacterial intercalation onto the graphite electrode causes protuberance of the graphite layers that reduces the surface potential and resistance, leading to high electron transfer. The study presents a unique bacterial-inspired surface patterning on the anode, which is critical for the performance of a microbial fuel cell.
Collapse
Affiliation(s)
- Babu Indira Bijimol
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala695 581, India
| | | | - Krishnan Nair Satheesh Kumar
- Department of Futures Studies, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala695 581, India
| | - Anjana Ratheesh
- Department of Biotechnology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala695 581, India
| | | | - Sheik Muhammadhu Aboobakar Shibli
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala695 581, India.,Centre for Renewable Energy and Materials, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala695 581, India
| |
Collapse
|
10
|
Bataillou G, Lee C, Monnier V, Gerges T, Sabac A, Vollaire C, Haddour N. Cedar Wood-Based Biochar: Properties, Characterization, and Applications as Anodes in Microbial Fuel Cell. Appl Biochem Biotechnol 2022; 194:4169-4186. [PMID: 35666383 DOI: 10.1007/s12010-022-03997-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 02/06/2023]
Abstract
In this study, the relationship between pyrolysis temperature of woody biomass and physicochemical properties of derived biochar was investigated for microbial fuel cell (MFC) application. Physical and chemical properties of biochar were characterized for different pyrolysis temperatures. Results showed that biochar obtained at 400 °C was not conductor, while biochars prepared at 600 °C, 700 °C, and 900 °C exhibited decreased electrical resistivity of (7 ± 6) × 103 Ω.m, (1.8 ± 0.2) Ω.m, and (16 ± 3) × 10-3 Ω.m, respectively. Rising pyrolysis temperature from 400 to 700 °C exhibited honeycomb-like macroporous structures of biochar with an increase in the specific surface area from 310 to 484 m2.g-1. However, the production of biochar at 900 °C reduced its specific surface area to 136 m2.g-1 and caused the loss of the ordered honeycomb structure. MFCs using anodes based on biochar prepared at 900 °C produced maximum power densities ((9.9 ± 0.6) mW.m-2) higher than that obtained with biochar pyrolyzed at 700 °C ((5.8 ± 0.1) mW.m-2) and with conventional carbon felt anodes ((1.9 ± 0.2) mW.m-2). SEM images of biochar-based anodes indicated the clogging of macropores in honeycomb structure of biochar prepared at 700 °C by growth of electroactive biofilms, which might impede the supply of substrate and the removal of metabolites from the inside of the electrode. These findings highlight that electrical conductivity of biochar is the major parameter for ensuring efficient anodes in microbial fuel cell application. Schematic representation of cedar wood-based biochar and its application as anode in MFC.
Collapse
Affiliation(s)
- Gregory Bataillou
- UMR5005, Univ Lyon, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, Ampère, 69130, Ecully, France
| | - Carine Lee
- UMR5005, Univ Lyon, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, Ampère, 69130, Ecully, France
| | - Virginie Monnier
- UMR5270, Univ Lyon, ECL, INSA Lyon, CNRS, UCBL, CPE Lyon, INL, 69130, Ecully, France
| | - Tony Gerges
- UMR5005, Univ Lyon, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, Ampère, 69130, Ecully, France
| | - Andrei Sabac
- UMR5005, Univ Lyon, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, Ampère, 69130, Ecully, France
| | - Christian Vollaire
- UMR5005, Univ Lyon, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, Ampère, 69130, Ecully, France
| | - Naoufel Haddour
- UMR5005, Univ Lyon, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, Ampère, 69130, Ecully, France.
| |
Collapse
|
11
|
Dessie Y, Tadesse S. Advancements in Bioelectricity Generation Through Nanomaterial-Modified Anode Electrodes in Microbial Fuel Cells. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.876014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The use of nanotechnology in bioelectrochemical systems to recover bioelectricity and metals from waste appears to be a potentially appealing alternative to existing established procedures. This trend exactly characterizes the current renewable energy production technology. Hence, this review focuses on the improvement of the anode electrode by using different functional metal oxide-conducting polymer nanocomposites to enhance microbial fuel cell (MFC) performance. Enhancement of interfacial bioelectrocatalysis between electroactive microorganisms and hierarchical porous nanocomposite materials could enhance cost-effective bioanode materials with superior bioelectrocatalytic activity for MFCs. In this review, improvement in efficiency of MFCs by using iron oxide- and manganese oxide-based polypyrrole hybrid composites as model anode modifiers was discussed. The review also extended to discussing and covering the principles, components, power density, current density, and removal efficiencies of biofuel cell systems. In addition, this research review demonstrates the application of MFCs for renewable energy generation, wastewater treatment, and metal recovery. This is due to having their own unique working principle under mild conditions and using renewable biodegradable organic matter as a direct fuel source.
Collapse
|
12
|
Chen X, Li Y, Wu J, Li N, He W, Feng Y, Liu J. Heterogeneous Structure Regulated by Selection Pressure on Bacterial Adhesion Optimized the Viability Stratification Structure of Electroactive Biofilms. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2754-2767. [PMID: 34982530 DOI: 10.1021/acsami.1c19767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As the core of microbial fuel cells (MFCs), the components and structure of electroactive biofilms (EABs) are essential for MFC performance. Bacterial adhesion plays a vital role in shaping the structure of EABs, but the effect of bacterial adhesion under selection pressure on EABs has not been systematically studied. Here, the response of the composition, structure, and electrochemical performance of EABs to the selective adhesion pressure due to the selective coordination of Fe(III) and Co(II) with thiol and the different affinities for bacteria on hybrid electrodes (Fe1Co, Fe4Co, and Fe10Co) were comprehensively investigated. Compared with carbon cloth (CC), the appropriate selective adhesion pressure of Fe4Co activated the dead inner core of EABs and optimized their viability stratification structure. Both the total viability and the viability of the inner core layer in the Fe4Co EAB (0.67, 0.70 ± 0.01) were higher than those of the CC (0.46, 0.54 ± 0.01), Fe1Co (0.50, 0.48 ± 0.03), and Fe10Co (0.51, 0.51 ± 0.03). Moreover, a higher proportion of proteins was detected in the Fe4Co EAB, enhancing the redox activity of extracellular polymeric substances. Fe4Co enriched Geobacter and stimulated microbial metabolism. Electrochemical analysis revealed that the Fe4Co EAB was the most electroactive EAB, with a maximum power density of 2032.4 mW m-2, which was 1.7, 1.3, and 1.1 times that of the CC (1202.6 mW m-2), Fe1Co (1610.3 mW m-2), and Fe10Co (1824.4 mW m-2) EABs, respectively. Our findings confirmed that highly active EABs could be formed by imposing selection pressure on bacterial adhesion.
Collapse
Affiliation(s)
- Xuepeng Chen
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yunfei Li
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jingxuan Wu
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Nan Li
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Weihua He
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Jia Liu
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
13
|
Beneficial biofilms: A mini-review of strategies to enhance biofilm formation for biotechnological applications. Appl Environ Microbiol 2021; 88:e0199421. [PMID: 34851721 DOI: 10.1128/aem.01994-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The capacity of bacteria to form biofilms is an important trait for their survival and persistence. Biofilms occur naturally in soil and aquatic environments, are associated with animals ranging from insects to humans and are also found in built environments. They are typically encountered as a challenge in healthcare, food industry, and water supply ecosystems. In contrast, they are known to play a key role in the industrial production of commercially valuable products, environmental remediation processes, and in microbe-catalysed electrochemical systems for energy and resource recovery from wastewater. While there are many recent articles on biofilm control and removal, review articles on promoting biofilm growth for biotechnological applications are unavailable. Biofilm formation is a tightly regulated response to perturbations in the external environment. The multi-stage process, mediated by an assortment of proteins and signaling systems, involves the attachment of bacterial cells to a surface followed by their aggregation in a matrix of extracellular polymeric substances. Biofilms can be promoted by altering the external environment in a controlled manner, supplying molecules that trigger the aggregation of cells and engineering genes associated with biofilm development. This mini-review synthesizes findings from studies that have described such strategies and highlights areas needing research attention.
Collapse
|
14
|
Massazza D, Robledo AJ, Rodriguez Simón CN, Busalmen JP, Bonanni S. Energetics, electron uptake mechanisms and limitations of electroautotrophs growing on biocathodes - A review. BIORESOURCE TECHNOLOGY 2021; 342:125893. [PMID: 34537530 DOI: 10.1016/j.biortech.2021.125893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Electroautotrophs are microorganisms that can take the electrons needed for energy generation, CO2 fixation and other metabolic reactions from a polarized electrode. They have been the focus of intense research for its application in wastewater treatment, bioelectrosynthetic processes and hydrogen generation. As a general trend, current densities produced by the electron uptake of these microorganisms are low, limiting their applicability at large scale. In this work, the electron uptake mechanisms that may operate in electroautotrophs are reviewed, aiming at finding possible causes for this low performance. Biomass yields, growth rates and electron uptake rates observed when these microorganisms use chemical electron donors are compared with those typically obtained with electrodes, to explore limitations and advantages inherent to the electroautotrophic metabolism. Also, the factors affecting biofilm development are analysed to show how interfacial interactions condition bacterial adhesion, biofilm growth and electrons uptake. Finally, possible strategies to overcome these limitations are described.
Collapse
Affiliation(s)
- Diego Massazza
- División Ingeniería de Interfases y Bioprocesos, INTEMA (Conicet, Universidad Nacional de Mar del Plata), Av. Colón 10850, Mar del Plata 7600, Argentina
| | - Alejandro Javier Robledo
- División Ingeniería de Interfases y Bioprocesos, INTEMA (Conicet, Universidad Nacional de Mar del Plata), Av. Colón 10850, Mar del Plata 7600, Argentina
| | - Carlos Norberto Rodriguez Simón
- División Ingeniería de Interfases y Bioprocesos, INTEMA (Conicet, Universidad Nacional de Mar del Plata), Av. Colón 10850, Mar del Plata 7600, Argentina
| | - Juan Pablo Busalmen
- División Ingeniería de Interfases y Bioprocesos, INTEMA (Conicet, Universidad Nacional de Mar del Plata), Av. Colón 10850, Mar del Plata 7600, Argentina
| | - Sebastián Bonanni
- División Ingeniería de Interfases y Bioprocesos, INTEMA (Conicet, Universidad Nacional de Mar del Plata), Av. Colón 10850, Mar del Plata 7600, Argentina.
| |
Collapse
|
15
|
Ratheesh A, Elias L, Aboobakar Shibli SM. Tuning of Electrode Surface for Enhanced Bacterial Adhesion and Reactions: A Review on Recent Approaches. ACS APPLIED BIO MATERIALS 2021; 4:5809-5838. [PMID: 35006924 DOI: 10.1021/acsabm.1c00362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The study of bacterial adhesion and its consequences has great significance in different fields such as marine science, renewable energy sectors, soil and plant ecology, food industry, and the biomedical field. Generally, the adverse effects of microbial surface interactions have attained wide visibility. However, herein, we present distinct approaches to highlight the beneficial aspects of microbial surface interactions for various applications rather than deal with the conventional negative aspects or prevention strategies. The surface microbial reactions can be tuned for useful biochemical or bio-electrochemical applications, which are otherwise unattainable through conventional routes. In this context, the present review is a comprehensive approach to highlight the basic principles and signature parameters that are responsible for the useful microbial-electrode interactions. It also proposes various surface tuning strategies, which are useful for tuning the electrode characteristics particularly suitable for the enhanced bacterial adhesion and reactions. The tuning of surface characteristics of electrodes is discussed with a special reference to the Microbial Fuel Cell as an example.
Collapse
Affiliation(s)
- Anjana Ratheesh
- Department of Biotechnology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| | - Liju Elias
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| | - Sheik Muhammadhu Aboobakar Shibli
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India.,Centre for Renewable Energy and Materials, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| |
Collapse
|
16
|
Zakaria BS, Dhar BR. Characterization and significance of extracellular polymeric substances, reactive oxygen species, and extracellular electron transfer in methanogenic biocathode. Sci Rep 2021; 11:7933. [PMID: 33846480 PMCID: PMC8041852 DOI: 10.1038/s41598-021-87118-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/24/2021] [Indexed: 02/01/2023] Open
Abstract
The microbial electrolysis cell assisted anaerobic digestion holds great promises over conventional anaerobic digestion. This article reports an experimental investigation of extracellular polymeric substances (EPS), reactive oxygen species (ROS), and the expression of genes associated with extracellular electron transfer (EET) in methanogenic biocathodes. The MEC-AD systems were examined using two cathode materials: carbon fibers and stainless-steel mesh. A higher abundance of hydrogenotrophic Methanobacterium sp. and homoacetogenic Acetobacterium sp. appeared to play a major role in superior methanogenesis from stainless steel biocathode than carbon fibers. Moreover, the higher secretion of EPS accompanied by the lower ROS level in stainless steel biocathode indicated that higher EPS perhaps protected cells from harsh metabolic conditions (possibly unfavorable local pH) induced by faster catalysis of hydrogen evolution reaction. In contrast, EET-associated gene expression patterns were comparable in both biocathodes. Thus, these results indicated hydrogenotrophic methanogenesis is the key mechanism, while cathodic EET has a trivial role in distinguishing performances between two cathode electrodes. These results provide new insights into the efficient methanogenic biocathode development.
Collapse
Affiliation(s)
- Basem S. Zakaria
- grid.17089.37Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9 Canada
| | - Bipro Ranjan Dhar
- grid.17089.37Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9 Canada
| |
Collapse
|
17
|
Li H, Zhang T, Zhou H, Zhang Z, Liu M, Wang C. Enhanced Electrochemiluminescence in a Microwell Bipolar Electrode Array Prepared with an Optical Fiber Bundle. ChemElectroChem 2021. [DOI: 10.1002/celc.202100158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Haidong Li
- School of Chemistry and Chemical Engineering Yangzhou University No.180 Siwangting Road Yangzhou 225002 China
| | - Tian Zhang
- School of Chemistry and Chemical Engineering Yangzhou University No.180 Siwangting Road Yangzhou 225002 China
| | - Han Zhou
- School of Chemistry and Chemical Engineering Yangzhou University No.180 Siwangting Road Yangzhou 225002 China
| | - Zhicheng Zhang
- School of Chemistry and Chemical Engineering Yangzhou University No.180 Siwangting Road Yangzhou 225002 China
| | - Miaoxia Liu
- School of Chemistry and Chemical Engineering Yangzhou University No.180 Siwangting Road Yangzhou 225002 China
| | - Chengyin Wang
- School of Chemistry and Chemical Engineering Yangzhou University No.180 Siwangting Road Yangzhou 225002 China
| |
Collapse
|
18
|
Roubaud E, Lacroix R, Da Silva S, Esvan J, Etcheverry L, Bergel A, Basséguy R, Erable B. Industrially scalable surface treatments to enhance the current density output from graphite bioanodes fueled by real domestic wastewater. iScience 2021; 24:102162. [PMID: 33665578 PMCID: PMC7907815 DOI: 10.1016/j.isci.2021.102162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/03/2020] [Accepted: 02/04/2021] [Indexed: 11/21/2022] Open
Abstract
Acid and electrochemical surface treatments of graphite electrode, used individually or in combination, significantly improved the microbial anode current production, by +17% to +56%, in well-regulated and duplicated electroanalytical experimental systems. Of all the consequences induced by surface treatments, the modifications of the surface nano-topography preferentially justify an improvement in the fixation of bacteria, and an increase of the specific surface area and the electrochemically accessible surface of graphite electrodes, which are at the origin of the higher performances of the bioanodes supplied with domestic wastewater. The evolution of the chemical composition and the appearance of C-O, C=O, and O=C-O groups on the graphite surface created by combining acid and electrochemical treatments was prejudicial to the formation of efficient domestic-wastewater-oxidizing bioanodes. The comparative discussion, focused on the positioning of the performances, shows the industrial interest of applying the surface treatment method to the world of bioelectrochemical systems.
Collapse
Affiliation(s)
- Emma Roubaud
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Rémy Lacroix
- 6T-MIC Ingénieries, 9 rue du développement – ZI de Vic, 31320 Castanet-Tolosan, France
| | - Serge Da Silva
- 6T-MIC Ingénieries, 9 rue du développement – ZI de Vic, 31320 Castanet-Tolosan, France
| | - Jérôme Esvan
- Cirimat, Université de Toulouse, CNRS-INP-UPS, 4 allée Emile MONSO, BP 44362, 31030 Toulouse, France
| | - Luc Etcheverry
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Alain Bergel
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Régine Basséguy
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Benjamin Erable
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
19
|
Impact of Surface Properties of Porous SiOC‐Based Materials on the Performance of
Geobacter
Biofilm Anodes. ChemElectroChem 2021. [DOI: 10.1002/celc.202001568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Status Update on Bioelectrochemical Systems: Prospects for Carbon Electrode Design and Scale-Up. Catalysts 2021. [DOI: 10.3390/catal11020278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Bioelectrochemical systems (BES) employ enzymes, subcellular structures or whole electroactive microorganisms as biocatalysts for energy conversion purposes, such as the electrosynthesis of value-added chemicals and power generation in biofuel cells. From a bioelectrode engineering viewpoint, customizable nanostructured carbonaceous matrices have recently received considerable scientific attention as promising electrode supports due to their unique properties attractive to bioelectronics devices. This review demonstrates the latest advances in the application of nano- and micro-structured carbon electrode assemblies in BES. Specifically, in view of the gradual increase in the commercial applicability of these systems, we aim to address the stability and scalability of different BES designs and to highlight their potential roles in a circular bioeconomy.
Collapse
|
21
|
Li Z, Xiong W, Tremolet de Villers BJ, Wu C, Hao J, Blackburn JL, Svedruzic D. Extracellular electron transfer across bio-nano interfaces for CO 2 electroreduction. NANOSCALE 2021; 13:1093-1102. [PMID: 33393959 DOI: 10.1039/d0nr07611b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Acetogenic bacteria represent a class of organisms capable of converting reducing equivalents and carbon dioxide into products with carbon-carbon bonds. Materials-based bio-electrochemical approaches are attractive for supplying biological organisms directly with grid-supplied electrons to convert carbon dioxide to value-added chemicals. Carbon nanotube-modified biocathodes have emerged as promising candidates for microbial electrosynthesis with high yields of carbon product formation, but a fundamental understanding of extracellular charge transfer at this electrode-biofilm interface is still lacking. Here, we utilize solid-state interfaces between semiconducting single-walled carbon nanotubes (s-SWCNT) and a model acetogenic bacterium for mechanistic studies of electro-catalytic CO2 conversion to acetate. Studies of bacteria/s-SWCNT interactions in a transistor-based device suggest direct extracellular electron transfer (EET) at the bio-nano interface. Deuterium isotope labeling experiments confirmed that the availability of electrochemically produced H2 as a redox mediator does not limit the efficiency of EET and CO2 electro-reduction for C. ljungdahlii biofilms, suggesting the primary reducing equivalents are the electrons delivered across the electrode/bacterium interface or involvement of biological redox mediators. Additional isotope labeling studies demonstrate high Faradaic efficiency for CO2 electro-reduction at the SWCNT/bacterium interface. These results provide important information about EET across the bacterium/material interface in a model biocathode.
Collapse
Affiliation(s)
- Zhaodong Li
- Materials Physics Center - National Renewable Energy Laboratory, 15013 Cole Boulevard, Golden, Colorado 80401, USA
| | - Wei Xiong
- Biosciences Center - National Renewable Energy Laboratory, 15013 Cole Boulevard, Golden, Colorado 80401, USA.
| | - Bertrand J Tremolet de Villers
- Chemistry and Nanoscience Center - National Renewable Energy Laboratory, 15013 Cole Boulevard, Golden, Colorado 80401, USA
| | - Chao Wu
- Biosciences Center - National Renewable Energy Laboratory, 15013 Cole Boulevard, Golden, Colorado 80401, USA.
| | - Ji Hao
- Chemistry and Nanoscience Center - National Renewable Energy Laboratory, 15013 Cole Boulevard, Golden, Colorado 80401, USA
| | - Jeffrey L Blackburn
- Materials Physics Center - National Renewable Energy Laboratory, 15013 Cole Boulevard, Golden, Colorado 80401, USA
| | - Drazenka Svedruzic
- Biosciences Center - National Renewable Energy Laboratory, 15013 Cole Boulevard, Golden, Colorado 80401, USA.
| |
Collapse
|
22
|
Katuri KP, Kamireddy S, Kavanagh P, Muhammad A, Conghaile PÓ, Kumar A, Saikaly PE, Leech D. Electroactive biofilms on surface functionalized anodes: The anode respiring behavior of a novel electroactive bacterium, Desulfuromonas acetexigens. WATER RESEARCH 2020; 185:116284. [PMID: 32818731 DOI: 10.1016/j.watres.2020.116284] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Surface chemistry is known to influence the formation, composition, and electroactivity of electron-conducting biofilms. However, understanding of the evolution of microbial composition during biofilm development and its impact on the electrochemical response is limited. Here we present voltammetric, microscopic and microbial community analysis of biofilms formed under fixed applied potential for modified graphite electrodes during early (90 h) and mature (340 h) growth phases. Electrodes modified to introduce hydrophilic groups (-NH2, -COOH and -OH) enhance early-stage biofilm formation compared to unmodified or electrodes modified with hydrophobic groups (-C2H5). In addition, early-stage films formed on hydrophilic electrodes are dominated by the gram-negative sulfur-reducing bacterium Desulfuromonas acetexigens while Geobacter sp. dominates on -C2H5 and unmodified electrodes. As biofilms mature, current generation becomes similar, and D. acetexigens dominates in all biofilms irrespective of surface chemistry. Electrochemistry of pure culture D. acetexigens biofilms reveal that this microbe is capable of forming electroactive biofilms producing considerable current density of > 9 A/m2 in a short period of potential-induced growth (~19 h following inoculation) using acetate as an electron donor. The inability of D. acetexigens biofilms to use H2 as a sole source electron donor for current generation shows promise for maximizing H2 recovery in single-chambered microbial electrolysis cell systems treating wastewaters.
Collapse
Affiliation(s)
- Krishna P Katuri
- School of Chemistry & Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland; Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Sirisha Kamireddy
- School of Chemistry & Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland; Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Paul Kavanagh
- School of Chemistry & Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Ali Muhammad
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Peter Ó Conghaile
- School of Chemistry & Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Amit Kumar
- School of Chemistry & Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Pascal E Saikaly
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Dónal Leech
- School of Chemistry & Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| |
Collapse
|
23
|
Satzer P, Burgstaller D, Krepper W, Jungbauer A. Fractal dimension of antibody-PEG precipitate: Light microscopy for the reconstruction of 3D precipitate structures. Eng Life Sci 2020; 20:67-78. [PMID: 32874171 PMCID: PMC7447892 DOI: 10.1002/elsc.201900110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 12/22/2022] Open
Abstract
Protein and in particular antibody precipitation by PEG is a cost-effective alternative for the first capture step. The 3D structure of precipitates has a large impact on the process parameters for the recovery and dissolution, but current technologies for determination of precipitate structures are either very time consuming (cryo-TEM) or only generate an average fractal dimension (light scattering). We developed a light microscopy based reconstruction of 3D structures of individual particles with a resolution of 0.1-0.2 µm and used this method to characterize particle populations generated by batch as well as continuous precipitation in different shear stress environments. The resulting precipitate structures show a broad distribution in terms of fractal dimension. While the average fractal dimension is significantly different for batch and continuous precipitation, the distribution is broad and samples overlap significantly. The precipitate flocs were monofractal from micro- to nanoscale showing a random but consistent nature of precipitate formation. We showed that the fractal dimension and 3D reconstruction is a valuable tool for characterization of protein precipitate processes. The current switch from batch to continuous manufacturing has to take the 3D structure and population of different protein precipitates into account in their design, engineering, and scale up.
Collapse
Affiliation(s)
- Peter Satzer
- Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Daniel Burgstaller
- Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Walpurga Krepper
- Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Alois Jungbauer
- Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
24
|
Chong P, Erable B, Bergel A. Effect of pore size on the current produced by 3-dimensional porous microbial anodes: A critical review. BIORESOURCE TECHNOLOGY 2019; 289:121641. [PMID: 31300306 DOI: 10.1016/j.biortech.2019.121641] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 06/10/2023]
Abstract
Microbial anodes are the cornerstone of most electro-microbial processes. Designing 3-dimensional porous electrodes to increase the surface area of the electroactive biofilm they support is a key challenge in order to boost their performance. In this context, the critical review presented here aims to assess whether an optimal range of pore size may exist for the design of microbial anodes. Pore sizes of a few micrometres can enable microbial cells to penetrate but in conditions that do not favour efficient development of electroactive biofilms. Pores of a few tens of micrometres are subject to clogging. Sizes of a few hundreds of micrometres allow penetration of the biofilm inside the structure, but its development is limited by internal acidification. Consequently, pore sizes of a millimetre or so appear to be the most suitable. In addition, a simple theoretical approach is described to establish basis for porous microbial anode design.
Collapse
Affiliation(s)
- Poehere Chong
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Benjamin Erable
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Alain Bergel
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France.
| |
Collapse
|
25
|
Astorga SE, Hu LX, Marsili E, Huang Y. Electrochemical Signature of
Escherichia coli
on Nickel Micropillar Array Electrode for Early Biofilm Characterization. ChemElectroChem 2019. [DOI: 10.1002/celc.201901063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Solange E. Astorga
- School of Material Science and Engineering Nanyang Technological University 639977 Singapore
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE) Nanyang Technological University 637551 Singapore
| | - Liang Xing Hu
- School of Mechanical and Aerospace Engineering Nanyang Technological University 639798 Singapore
| | - Enrico Marsili
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE) Nanyang Technological University 637551 Singapore
- Department of Chemical and Materials Engineering Nazarbayev University 010000 Nur-Sultan Kazakhstan
- Environment & Resource Efficiency Cluster (EREC) Nazarbayev University 010000 Nur-Sultan Kazakhstan
| | - Yizhong Huang
- School of Material Science and Engineering Nanyang Technological University 639977 Singapore
| |
Collapse
|
26
|
Taşkan E, Bulak S, Taşkan B, Şaşmaz M, El Abed S, El Abed A. Nitinol as a suitable anode material for electricity generation in microbial fuel cells. Bioelectrochemistry 2019; 128:118-125. [DOI: 10.1016/j.bioelechem.2019.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/22/2019] [Accepted: 03/24/2019] [Indexed: 01/26/2023]
|
27
|
Champigneux P, Renault-Sentenac C, Bourrier D, Rossi C, Delia ML, Bergel A. Effect of surface roughness, porosity and roughened micro-pillar structures on the early formation of microbial anodes. Bioelectrochemistry 2019; 128:17-29. [DOI: 10.1016/j.bioelechem.2019.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
|
28
|
Zhang S, Qu Z, Hsueh CC, Chang CT, Chen BY. Deciphering electron-shuttling characteristics of Scutellaria baicalensis Georgi and ingredients for bioelectricity generation in microbial fuel cells. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Jiang Y, Zeng RJ. Bidirectional extracellular electron transfers of electrode-biofilm: Mechanism and application. BIORESOURCE TECHNOLOGY 2019; 271:439-448. [PMID: 30292689 DOI: 10.1016/j.biortech.2018.09.133] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
The extracellular electron transfer (EET) between microorganisms and electrodes forms the basis for microbial electrochemical technology (MET), which recently have advanced as a flexible platform for applications in energy and environmental science. This review, for the first time, focuses on the electrode-biofilm capable of bidirectional EET, where the electrochemically active bacteria (EAB) can conduct both the outward EET (from EAB to electrodes) and the inward EET (from electrodes to EAB). Only few microorganisms are tested in pure culture with the capability of bidirectional EET, however, the mixed culture based bidirectional EET offers great prospects for biocathode enrichment, pollutant complete mineralization, biotemplated material development, pH stabilization, and bioelectronic device design. Future efforts are necessary to identify more EAB capable of the bidirectional EET, to balance the current density, to evaluate the effectiveness of polarity reversal for biocathode enrichment, and to boost the future research endeavors of such a novel function.
Collapse
Affiliation(s)
- Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|