1
|
Qian Y, Wang C, Xu R, Wang J, Chen Q, Zhu Z, Hu Q, Shen Q, Shen JW. Copper-based metal-organic frameworks for antitumor application. J Nanobiotechnology 2025; 23:135. [PMID: 39987136 PMCID: PMC11847370 DOI: 10.1186/s12951-025-03220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/10/2025] [Indexed: 02/24/2025] Open
Abstract
It is urgent to exploit multifunctional materials and combined approaches for efficient antitumor effects. Copper-based metal-organic frameworks (Cu-MOFs) have excellent performances in catalysis, biocompatibility, photothermal conversion, and regulate metabolism, which make them attract more and more attention in antitumor application. Therefore, in this review, representative ligands, synthetic methods, antitumor mechanism, and antitumor applications of Cu-MOFs were provided. Special emphasis is placed on the recent antitumor applications of Cu-MOFs in drug carriers, antitumor therapy, tumor imaging, and theranostic, which are summarized with examples. Finally, we presented the dilemma faced by Cu-MOFs and offered a new perspective for future antitumor application. Hopefully, this review may serve as a reference for further development and application of Cu-MOFs.
Collapse
Affiliation(s)
- Yangwei Qian
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Chenxi Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Ruru Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Jin Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Qinyue Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Zirui Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Quan Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China.
| | - Qiying Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China.
| | - Jia-Wei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China.
| |
Collapse
|
2
|
Shao H, Xue X, Sun Z, Zheng X, Shi P. Detection of microRNA-21 based on smartly designed ratiometric electrochemical sensor and dual-signal amplification. Anal Chim Acta 2025; 1336:343444. [PMID: 39788648 DOI: 10.1016/j.aca.2024.343444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 01/12/2025]
Abstract
MicroRNA (miRNA) serves as an effective and viable biomarker for early diagnosis and monitoring of cancer disorders. It is highly expressed in tumor cells, including lung cancer, liver cancer and lymphoma. Herein, we propose a ratiometric electrochemical sensor for ultrasensitive detection of miRNA-21 using dual signal amplification, hybridization chain reaction and Exo III assisted-amplification. Methylene blue (MB) and Hemin are chosen as two electrochemical species. Then the ratiometric electrochemical sensor were developed, which showed favorable performance of miRNA-21 detection, and exhibited a detection concentration range from 1 fM to 10 nM. Notably, the limit of detection for this biosensor was 0.15 fM. Overall, this strategy for miRNA detection holds significant promise for early cancer screening.
Collapse
Affiliation(s)
- Honglei Shao
- School of Chemistry & Chemical Engineering, Linyi University, China
| | - Xingming Xue
- School of Chemistry & Chemical Engineering, Linyi University, China
| | - Zhaomei Sun
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Medicine, Linyi University, Linyi, China
| | - Xiangjiang Zheng
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Medicine, Linyi University, Linyi, China.
| | - Pengfei Shi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Medicine, Linyi University, Linyi, China.
| |
Collapse
|
3
|
Wang M, Liu Z, Liu C, He W, Qin D, You M. DNAzyme-based ultrasensitive immunoassay: Recent advances and emerging trends. Biosens Bioelectron 2024; 251:116122. [PMID: 38382271 DOI: 10.1016/j.bios.2024.116122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Immunoassay, as the most commonly used method for protein detection, is simple to operate and highly specific. Sensitivity improvement is always the thrust of immunoassays, especially for the detection of trace quantities. The emergence of artificial enzyme, i.e., DNAzyme, provides a novel approach to improve the detection sensitivity of immunoassay. Simultaneously, its advantages of simple synthesis and high stability enable low cost, broad applicability and long shelf life for immunoassay. In this review, we summarized the recent advances in DNAzyme-based immunoassay. First, we summarized the existing different DNAzymes based on their catalytic activities. Next, the common signal amplification strategies used for DNAzyme-based immunoassays were reviewed to cater to diverse detection requirements. Following, the wide applications in disease diagnosis, environmental monitoring and food safety were discussed. Finally, the current challenges and perspectives on the future development of DNAzyme-based immunoassays were also provided.
Collapse
Affiliation(s)
- Meng Wang
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Zhe Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China; Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Chang Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Wanghong He
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China; Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, 100050, PR China
| | - Dui Qin
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, PR China.
| | - Minli You
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|
4
|
Wang Y, Rong Y, Ma T, Li L, Li X, Zhu P, Zhou S, Yu J, Zhang Y. Photoelectrochemical sensors based on paper and their emerging applications in point-of-care testing. Biosens Bioelectron 2023; 236:115400. [PMID: 37271095 DOI: 10.1016/j.bios.2023.115400] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/01/2023] [Accepted: 05/14/2023] [Indexed: 06/06/2023]
Abstract
Point-of-care testing (POCT) technology is urgently required owing to the prevalence of the Internet of Things and portable electronics. In light of the attractive properties of low background and high sensitivity caused by the complete separation of excitation source and detection signal, the paper-based photoelectrochemical (PEC) sensors, featured with fast in analysis, disposable and environmental-friendly have become one of the most promising strategies in POCT. Therefore, in this review, the latest advances and principal issues in the design and fabrication of portable paper-based PEC sensors for POCT are systematically discussed. Primarily, the flexible electronic devices that can be constructed by paper and the reasons why they can be used in PEC sensors are expounded. Afterwards, the photosensitive materials involved in paper-based PEC sensor and the signal amplification strategies are emphatically introduced. Subsequently, the application of paper-based PEC sensors in medical diagnosis, environmental monitoring and food safety are further discussed. Finally, the main opportunities and challenges of paper-based PEC sensing platforms for POCT are briefly summarized. It provides a distinct perspective for researchers to construct paper-based PEC sensors with portable and cost-effective, hoping to enlighten the fast development of POCT soon after, as well as benefit human society.
Collapse
Affiliation(s)
- Yixiang Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yumeng Rong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Tinglei Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Lin Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Peihua Zhu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Shuang Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
5
|
Zhang B, Li F, Shen L, Chen L, Xia Z, Ding J, Li M, Guo LH. A cathodic photoelectrochemical immunoassay with dual signal amplification for the ultrasensitive detection of DNA damage biomarkers. Biosens Bioelectron 2023; 224:115052. [PMID: 36603285 DOI: 10.1016/j.bios.2022.115052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
Toxicity screening and risk assessment of an overwhelmingly large and ever-increasing number of chemicals are vitally essential for ecological safety and human health. Genotoxicity is particularly important because of its association with mutagenicity, carcinogenicity and cancer. Phosphorylated histone H2AX (γH2AX) is an early sensitive genotoxic biomarker. It is therefore highly desirable to develop analytical methods for the detection of trace γH2AX to enable screening and assessment of genotoxicity. Here, we developed a novel cathodic photoelectrochemical (PEC) immunoassay with dual signal amplification for the rapid and ultrasensitive detection of γH2AX in cell lysates. A sandwich immuno-reaction targeting γH2AX was first carried out on a 96-well plate, using a secondary antibody/gold nanoparticle/glucose oxidase conjugate as the labeled detection antibody. The conjugate increased the production of H2O2 and thus provided the first mechanism of signal amplification. The immuno-reaction product containing H2O2 was then detected on a photocathode prepared from Bi2+xWO6 rich in oxygen vacancies, with H2O2 acting as electron acceptor. The oxygen vacancies acted as both adsorption and activation sites of H2O2 and thus enhanced the photocurrent, which provided another mechanism of signal amplification. As a result, an ultrasensitive immunoassay for γH2AX determination was established with a limit of detection of 6.87 pg/mL (S/N = 3) and a wide linear range from 0.01 to 500 ng/mL. The practicability of this assay was verified by detecting γH2AX in cell lysates exposed to known genotoxic chemicals. Our work offers a promising tool for the screening of genotoxic chemicals and opening a new avenue toward environmental risk assessment.
Collapse
Affiliation(s)
- Bihong Zhang
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China
| | - Fangfang Li
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China
| | - Linyu Shen
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China
| | - Lu Chen
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China; College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China
| | - Zhiqiang Xia
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China
| | - Jinjian Ding
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China
| | - Minjie Li
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China.
| | - Liang-Hong Guo
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China.
| |
Collapse
|
6
|
Tan AYS, Lo NW, Cheng F, Zhang M, Tan MTT, Manickam S, Muthoosamy K. 2D carbon materials based photoelectrochemical biosensors for detection of cancer antigens. Biosens Bioelectron 2023; 219:114811. [PMID: 36308836 DOI: 10.1016/j.bios.2022.114811] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/23/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022]
Abstract
Cancer is a leading cause of death globally and early diagnosis is of paramount importance for identifying appropriate treatment pathways to improve cancer patient survival. However, conventional methods for cancer detection such as biopsy, CT scan, magnetic resonance imaging, endoscopy, X-ray and ultrasound are limited and not efficient for early cancer detection. Advancements in molecular technology have enabled the identification of various cancer biomarkers for diagnosis and prognosis of the deadly disease. The detection of these biomarkers can be done by biosensors. Biosensors are less time consuming compared to conventional methods and has the potential to detect cancer at an earlier stage. Compared to conventional biosensors, photoelectrochemical (PEC) biosensors have improved selectivity and sensitivity and is a suitable tool for detecting cancer agents. Recently, 2D carbon materials have gained interest as a PEC sensing platform due to their high surface area and ease of surface modifications for improved electrical transfer and attachment of biorecognition elements. This review will focus on the development of 2D carbon nanomaterials as electrode platform in PEC biosensors for the detection of cancer biomarkers. The working principles, biorecognition strategies and key parameters that influence the performance of the biosensors will be critically discussed. In addition, the potential application of PEC biosensor in clinical settings will also be explored, providing insights into the future perspective and challenges of exploiting PEC biosensors for cancer diagnosis.
Collapse
Affiliation(s)
- Adriel Yan Sheng Tan
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China; Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia
| | - Newton Well Lo
- Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia
| | - Faliang Cheng
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Min Zhang
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Michelle T T Tan
- Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Kasturi Muthoosamy
- Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
7
|
Efficient “on-off” photo-electrochemical sensing platform based on titanium dioxide nanotube arrays decorated with silver doped tin oxide for ultra-sensitive quercetin detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
|
9
|
Wang F, Liu Y, Zhang L, Zhang Z, Huang C, Zang D, Wang H, Ge S, Yu J. Photoelectrochemical biosensor based on CdS quantum dots anchored h-BN nanosheets and tripodal DNA walker for sensitive detection of miRNA-141. Anal Chim Acta 2022; 1226:340265. [DOI: 10.1016/j.aca.2022.340265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022]
|
10
|
Self-assembled Nanosheets of Perylene Monoamide Derivative as Sensitive Fluorescent Biosensor for Exonuclease III Activity. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2093-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Smith DD, Girodat D, Abbott DW, Wieden HJ. Construction of a highly selective and sensitive carbohydrate-detecting biosensor utilizing Computational Identification of Non-disruptive Conjugation sites (CINC) for flexible and streamlined biosensor design. Biosens Bioelectron 2022; 200:113899. [PMID: 34974264 DOI: 10.1016/j.bios.2021.113899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/18/2021] [Accepted: 12/16/2021] [Indexed: 01/30/2023]
Abstract
Fluorescently-labeled solute-binding proteins that alter their fluorescence output in response to ligand binding have been utilized as biosensors for a variety of applications. Coupling protein ligand binding to altered fluorescence output often requires trial and error-based testing of both multiple labeling positions and fluorophores to produce a functional biosensor with the desired properties. This approach is laborious and can lead to reduced ligand binding affinity or altered ligand specificity. Here we report the Computational Identification of Non-disruptive Conjugation sites (CINC) for streamlined identification of fluorophore conjugation sites. By exploiting the structural dynamics properties of proteins, CINC identifies positions where conjugation of a fluorophore results in a fluorescence change upon ligand binding without disrupting protein function. We show that a CINC-developed maltooligosaccharide (MOS)-detecting biosensor is capable of rapid (kon = 20 μM-1s-1), sensitive (sub-μM KD) and selective MOS detection. The MOS-detecting biosensor is modular with respect to the spectroscopic properties and demonstrates portability to detecting MOS released via α-amylase-catalyzed depolymerization of starch using both a stopped-flow and a microplate reader assay. Our MOS-detecting biosensor represents a first-in-class probe whose design was guided by changes in localized dynamics of individual amino acid positions, supporting expansion of the CINC pipeline as an indispensable tool for a wide range of protein engineering applications.
Collapse
Affiliation(s)
- Dustin D Smith
- Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, Lethbridge, AB, Canada; Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Dylan Girodat
- Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, Lethbridge, AB, Canada; Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - D Wade Abbott
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada; Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Hans-Joachim Wieden
- Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, Lethbridge, AB, Canada; Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada; Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
12
|
Yan B, Zheng X, Shi P. Electrochemical sensor propelled by exonuclease III for highly efficient microRNA-155 detection. Analyst 2022; 147:4824-4828. [DOI: 10.1039/d2an01274j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We constructed an electrochemical sensor, propelled by exonuclease III, for highly efficient microRNA-155 detection. The detection performance of the sensor was excellent, with a detection limit as low as 0.035 fM.
Collapse
Affiliation(s)
- Bingyin Yan
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, Shandong, China
| | - Xiangjiang Zheng
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Medical College, Linyi University, Linyi 276005, China
| | - Pengfei Shi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Medical College, Linyi University, Linyi 276005, China
| |
Collapse
|
13
|
Bialy RM, Mainguy A, Li Y, Brennan JD. Functional nucleic acid biosensors utilizing rolling circle amplification. Chem Soc Rev 2022; 51:9009-9067. [DOI: 10.1039/d2cs00613h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional nucleic acids regulate rolling circle amplification to produce multiple detection outputs suitable for the development of point-of-care diagnostic devices.
Collapse
Affiliation(s)
- Roger M. Bialy
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| | - Alexa Mainguy
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| | - Yingfu Li
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - John D. Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| |
Collapse
|
14
|
Zhu Q, Tian D, Guo W, He J. Determination of Hydrogen Peroxide and Silver Ions Using G-Quadruplex/Hemin Catalyzed Luminol Chemiluminescence. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1991365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Qiyong Zhu
- Huainan Engineering Research Center for Fuel Cells, Anhui Province Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan, China
| | - Dong Tian
- Huainan Engineering Research Center for Fuel Cells, Anhui Province Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan, China
| | - Wei Guo
- Huainan Engineering Research Center for Fuel Cells, Anhui Province Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan, China
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, China
| | - Jiahao He
- Huainan Engineering Research Center for Fuel Cells, Anhui Province Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan, China
| |
Collapse
|
15
|
Rolling Circle Amplification as an Efficient Analytical Tool for Rapid Detection of Contaminants in Aqueous Environments. BIOSENSORS-BASEL 2021; 11:bios11100352. [PMID: 34677308 PMCID: PMC8533700 DOI: 10.3390/bios11100352] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022]
Abstract
Environmental contaminants are a global concern, and an effective strategy for remediation is to develop a rapid, on-site, and affordable monitoring method. However, this remains challenging, especially with regard to the detection of various contaminants in complex water environments. The application of molecular methods has recently attracted increasing attention; for example, rolling circle amplification (RCA) is an isothermal enzymatic process in which a short nucleic acid primer is amplified to form a long single-stranded nucleic acid using a circular template and special nucleic acid polymerases. Furthermore, this approach can be further engineered into a device for point-of-need monitoring of environmental pollutants. In this paper, we describe the fundamental principles of RCA and the advantages and disadvantages of RCA assays. Then, we discuss the recently developed RCA-based tools for environmental analysis to determine various targets, including heavy metals, organic small molecules, nucleic acids, peptides, proteins, and even microorganisms in aqueous environments. Finally, we summarize the challenges and outline strategies for the advancement of this technique for application in contaminant monitoring.
Collapse
|
16
|
Pattiya Arachchillage KGG, Chandra S, Piso A, Qattan T, Artes Vivancos JM. RNA BioMolecular Electronics: towards new tools for biophysics and biomedicine. J Mater Chem B 2021; 9:6994-7006. [PMID: 34494636 DOI: 10.1039/d1tb01141c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The last half-century has witnessed the birth and development of a new multidisciplinary field at the edge between materials science, nanoscience, engineering, and chemistry known as Molecular Electronics. This field deals with the electronic properties of individual molecules and their integration as active components in electronic circuits and has also been applied to biomolecules, leading to BioMolecular Electronics and opening new perspectives for single-molecule biophysics and biomedicine. Herein, we provide a brief introduction and overview of the BioMolecular electronics field, focusing on nucleic acids and potential applications for these measurements. In particular, we review the recent demonstration of the first single-molecule electrical detection of a biologically-relevant nucleic acid. We also show how this could be used to study biomolecular interactions and applications in liquid biopsy for early cancer detection, among others. Finally, we discuss future perspectives and challenges in the applications of this fascinating research field.
Collapse
Affiliation(s)
| | - Subrata Chandra
- Department of Chemistry, University of Massachusetts Lowell, One University Ave, 01854 Lowell, MA, USA.
| | - Angela Piso
- Department of Chemistry, University of Massachusetts Lowell, One University Ave, 01854 Lowell, MA, USA.
| | - Tiba Qattan
- Department of Chemistry, University of Massachusetts Lowell, One University Ave, 01854 Lowell, MA, USA.
| | - Juan M Artes Vivancos
- Department of Chemistry, University of Massachusetts Lowell, One University Ave, 01854 Lowell, MA, USA.
| |
Collapse
|
17
|
Li Y, Wang W, Gong H, Xu J, Yu Z, Wei Q, Tang D. Graphene-coated copper-doped ZnO quantum dots for sensitive photoelectrochemical bioanalysis of thrombin triggered by DNA nanoflowers. J Mater Chem B 2021; 9:6818-6824. [PMID: 34612332 DOI: 10.1039/d1tb01465j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This work reports a photoelectrochemical (PEC) biosensing platform for the sensitive and specific screening of thrombin by using graphene oxide-coated copper-doped zinc oxide quantum dots (Cu0.3Zn0.7O-GO QDs) as the photoactive materials and glucose oxidase-encapsulated DNA nanoflowers (GOx-DFs) for signal amplification. Interestingly, the coated graphene oxide nanosheets on the surface of the Cu0.3Zn0.7O QDs could cause the charge to transfer rapidly and ameliorate the photocorrosion. The doped copper into the quantum dots could enhance the absorption of visible light by tuning the band gap of ZnO QDs, therefore increasing the photocurrent under visible irradiation. Upon addition of target thrombin, a sandwiched reaction was carried out between thrombin aptamer and GOx-DFs, accompanying the formation of nanocomposites with the magnetic microparticles (MMPs)/thrombin/GOx-DFs. Followed by magnetic separation, the carried GOx oxidized glucose to H2O2, thus resulting in the increasing photocurrent of the Cu0.3Zn0.7O-GO QD-modified electrode. Under optimum conditions, the developed PEC biosensing platform exhibited good analytical performance with a linear range of 50-10 000 fM thrombin and a limit of detection of 29 fM. Impressively, our strategy offers a new horizon in developing bridge-connected graphene-coated nanomaterials and novel signal amplification strategy for the development of PEC biosensors.
Collapse
Affiliation(s)
- Yuxuan Li
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Zhu Q, Li C, Chang H, Jiang M, Sun X, Jing W, Huang H, Huang D, Kong L, Chen Z, Sang F, Zhang X. A label-free photoelectrochemical immunosensor for prostate specific antigen detection based on Ag 2S sensitized Ag/AgBr/BiOBr heterojunction by in-situ growth method. Bioelectrochemistry 2021; 142:107928. [PMID: 34428614 DOI: 10.1016/j.bioelechem.2021.107928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022]
Abstract
Prostate cancer is one of the most common cancers in the world, and its early detection is vital to saving the lives of patients. In this research, a novel label-free photoelectrochemical immunosensor was designed for sensitive detection of prostate specific antigen (PSA). Ag2S sensitized on Ag/AgBr/BiOBr heterojunction could effectively inhibit photogenic holes recombination and improve photocurrent response and sensitivity. Ascorbic acid was an effective electron donor, which can effectively eliminate photo-generated holes. The photocurrent reduced linearly with the logarithm of PSA concentration ranged from 0.001 to 50 ng·mL-1 and the limit of detection was 0.25 pg·mL-1. The designed sensor had the advantages of wide linear range, good stability, high reproducibility, and good selectivity. This study not only provided a method for efficient and sensitive detection of PSA, but also provided valuable reference ideas for the detection of other tumor markers.
Collapse
Affiliation(s)
- Qiying Zhu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China
| | - Canguo Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China
| | - Huiqin Chang
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, PR China
| | - Meng Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China
| | - Xiaokai Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China
| | - Wei Jing
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China
| | - Haowei Huang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China
| | - Di Huang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China
| | - Ling Kong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China.
| | - Zhiwei Chen
- Institute of Food and Nutrition Science, Shandong University of Technology, Zibo 255049, PR China.
| | - Feng Sang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China
| | - Xiuzhen Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China
| |
Collapse
|
19
|
Chithra Lekha P, Ram Babu Y, Fidal Kumar V, Chandra T, Roy SC. Investigation of Photo-induced enhancement of sensitivity and electrochemical surface phenomenon of multileg TiO2 nanotubes sensor device towards H2O2. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Cao JT, Lv JL, Liao XJ, Ma SH, Liu YM. Photogenerated Hole-Induced Chemical-Chemical Redox Cycling Strategy on a Direct Z-Scheme Bi 2S 3/Bi 2MoO 6 Heterostructure Photoelectrode: Toward an Ultrasensitive Photoelectrochemical Immunoassay. Anal Chem 2021; 93:9920-9926. [PMID: 34213883 DOI: 10.1021/acs.analchem.1c02175] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To achieve high sensitivity for biomolecule detection in photoelectrochemical (PEC) bioanalysis, the ideal photoelectrode and ingenious signaling mechanism play crucial roles. Herein, the feasibility of the photogenerated hole-induced chemical-chemical redox cycling amplification strategy on a Z-scheme heterostructure photoelectrode was validated, and the strategy toward enhanced multiple signal amplification for advanced PEC immunoassay application was developed. Specifically, a direct Z-scheme Bi2S3/Bi2MoO6 heterostructure was synthesized via a classic hydrothermal method and served as a photoelectrode for the signal response. Under the illumination, the PEC chemical-chemical redox cycling (PECCC) among 4-aminophenol generated by the enzymatic catalysis from a sandwich immunoassay, ferrocene as a mediator, and tris (2-carboxyethyl) phosphine as a reducing agent was run on the Z-scheme Bi2S3/Bi2MoO6 heterostructure photoelectrode. Exemplified by interleukin-6 (IL-6) as the target, the applicability of the strategy was studied in a PEC immunoassay. Thanks to the multiple signal amplification originating from the high efficiency of the PECCC redox cycling system, the enzymatic amplification, and the fine performance of the Z-scheme Bi2S3/Bi2MoO6 heterostructure photoelectrode, the assay for IL-6 exhibits a very low detection limit of 2.0 × 10-14 g/mL with a linear range from 5.0 × 10-14 to 1.0 × 10-8 g/mL. This work first validates the feasibility of the PECCC redox cycling on the Z-scheme heterostructure photoelectrode and the good performance of the strategy in PEC bioanalysis. We envision that it would provide a new prospective for highly sensitive PEC bioanalysis on the basis of a Z-scheme heterostructure.
Collapse
Affiliation(s)
- Jun-Tao Cao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Jing-Lu Lv
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Xiao-Jing Liao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Shu-Hui Ma
- Xinyang Central Hospital, Xinyang 464000, China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
21
|
Zhu L, Yin Z, Lv Z, Li M, Tang D. Ultrasensitive photoelectrochemical immunoassay for prostate-specific antigen based on silver nanoparticle-triggered ion-exchange reaction with ZnO/CdS nanorods. Analyst 2021; 146:4487-4494. [PMID: 34180924 DOI: 10.1039/d1an00822f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Prostate-specific antigen (PSA), a glycoprotein that is most likely to cause prostate cancer, has attracted widespread attention in recent years due to its increasing threat to people's lives and health. Herein, we developed a new signal-amplified photoelectrochemical (PEC) immunosensing method for quantitative monitoring of the target PSA based on the ion-exchange reaction for the in situ formation of ZnO/CdS/Ag2S nanohybrids triggered by the as-released silver ions (Ag+) from silver nanolabels. Initially, the introduction of a target PSA caused the formation of a sandwich immunocomplex in an anti-PSA capture antibody (cAb)-coated microplate with the help of a silver nanoparticle-labeled detection antibody (AgNPs-dAb). Thereafter, the introduced AgNPs were dissolved with acid to release numerous silver ions. In this regard, an ion-exchange reaction occurred between the silver ions and ZnO/CdS nanorods on the photosensitive electrode, thus producing ZnO/CdS/Ag2S nanohybrids to generate a relatively strong photocurrent. Under optimal conditions, the ion-exchange reaction-based PEC immunoassay exhibited a good linear range of 0.05-50 ng mL-1 and allowed the detection of the target PSA at a concentration as low as 0.018 ng mL-1. In addition, the PEC immunoassay displayed satisfactory repeatability, high specificity, and acceptable method accuracy. Importantly, the ion-exchange reaction-based PEC immunoassay provides a new perspective for the detection of other disease-related biomarkers by controlling the corresponding antibodies.
Collapse
Affiliation(s)
- Ling Zhu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China.
| | - Zipeng Yin
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China.
| | - Zijian Lv
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China.
| | - Meijin Li
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China.
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China.
| |
Collapse
|
22
|
Xu J, Jiang R, He H, Ma C, Tang Z. Recent advances on G-quadruplex for biosensing, bioimaging and cancer therapy. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116257] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Xu M, Tang D. Recent advances in DNA walker machines and their applications coupled with signal amplification strategies: A critical review. Anal Chim Acta 2021; 1171:338523. [PMID: 34112433 DOI: 10.1016/j.aca.2021.338523] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 02/08/2023]
Abstract
DNA walkers, a type of dynamic nanomachines, have become the subject of burgeoning research in the field of biology. These walkers are powered by driving forces based on strand displacement reactions, protein enzyme/DNAzyme reactions and conformational transitions. With the unique properties of high directionality, flexibility and efficiency, DNA walkers move progressively and autonomously along multiple dimensional tracks, offering abundant and promising applications in biosensing, material assembly and synthesis, and early cancer diagnosis. Notably, DNA walkers identified as signal amplifiers can be combined with various amplification approaches to enhance signal transduction and amplify biosensor sensing signals. Herein, we systematically and comprehensively review the walking principles of various DNA walkers and the recent progress on multiple dimensional tracks by presenting representative examples and an insightful discussion. We also summarized and categorized the diverse signal amplification strategies with which DNA walkers have coupled. Finally, we outline the challenges and future trends of DNA walker machines in emerging analytical fields.
Collapse
Affiliation(s)
- Mingdi Xu
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350108, People's Republic of China; Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China.
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China.
| |
Collapse
|
24
|
Rolling Circle Replication for Biosensing, Bioimaging, and Biomedicine. Trends Biotechnol 2021; 39:1160-1172. [PMID: 33715868 DOI: 10.1016/j.tibtech.2021.02.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Abstract
Rolling circle replication (RCR), including rolling circle amplification (RCA) and rolling circle transcription (RCT), is an isothermal enzymatic reaction. Because of its high amplification efficiency, RCR is a powerful biosensing tool for detecting biomolecules. In recent years, RCR has also been extended to the field of bioimaging to better understand biological pathways. Furthermore, RCR provides a simple technique to design and generate DNA/RNA structures with unique advantages in delivering drugs and enhanced targeting ability. In this review, we introduce the fundamentals of RCR and describe the most recent advances in RCR-based detection methods and delivery vehicles for biosensing, bioimaging, and biomedicine. Finally, some challenges and further opportunities of RCR-based biotechnology are discussed.
Collapse
|
25
|
Yin M, Wang Y, Gao X, Du S, Cheng Y, Yu S, Zou G, Xue F. Electrochemiluminescence ultrasensitive immunoassay for carbohydrate antigen 125 based on AgInS 2/ZnS nanocrystals. Anal Bioanal Chem 2021; 413:2207-2215. [PMID: 33515074 DOI: 10.1007/s00216-021-03191-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 01/03/2023]
Abstract
We developed a near-infrared (NIR) electrochemiluminescence (ECL) immunosensor for sensitively and selectively determining carbohydrate antigen 125 (CA125) with toxic-element-free and environmental-friendly AgInS2/ZnS nanocrystals (NCs) as tags. The core/shell-structured AgInS2/ZnS NCs not only can be conveniently prepared via an aqueous synthetic procedure, but also has high photoluminescence quantum yield (PLQY) of up to 61.7%, highly monodispersed, water-soluble, and desired biological compatibility. As AgInS2/ZnS NCs can be oxidized via electrochemically injecting holes into their valence band at + 0.84 V, both the monodispersed AgInS2/ZnS NCs in solution and the surface-confined AgInS2/ZnS NCs immobilized in sandwich-typed immuno-complexes with CA125 as analyte can exhibit efficient oxidative-reduction ECL around 695 nm under physiological conditions with the presence of tri-n-propylamine (TPrA). The ECL intensity from the AgInS2/ZnS NCs immobilized in sandwich-typed immuno-complexes increases linearly and selectively with an increased concentration of CA125 from 5 × 10-6 to 5 × 10-3 U/mL, and limit of detection (LOD) was 1 × 10-6 U/mL (S/N = 3). This reliable platform can provide an effective detection method in the early diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Min Yin
- School of Pharmaceutical Sciences, Shandong Analysis and Testing Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Yan Wang
- School of Pharmaceutical Sciences, Shandong Analysis and Testing Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Xuwen Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, Shandong, China
| | - Shichao Du
- School of Pharmaceutical Sciences, Shandong Analysis and Testing Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Yan Cheng
- School of Pharmaceutical Sciences, Shandong Analysis and Testing Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Shuai Yu
- School of Pharmaceutical Sciences, Shandong Analysis and Testing Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Guizheng Zou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, Shandong, China
| | - Fumin Xue
- School of Pharmaceutical Sciences, Shandong Analysis and Testing Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China.
| |
Collapse
|
26
|
Determination of plasma β-amyloids by rolling circle amplification chemiluminescent immunoassay for noninvasive diagnosis of Alzheimer's disease. Mikrochim Acta 2021; 188:24. [PMID: 33404755 DOI: 10.1007/s00604-020-04650-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/15/2020] [Indexed: 02/06/2023]
Abstract
A rolling circle amplification chemiluminescence immunoassay (RCA-CLIA) was developed for precise quantitation of Aβ in plasma. Capture antibodies conjugated with magnetic beads and detection antibodies with collateral single-stranded DNA (ssDNA) were bound to Aβ42/Aβ40 antigens to form a typical double-antibody sandwich structure. The RCA reaction was triggered by the addition of ssDNA, which generated products with a large number of sites for the binding of acridinium ester (AE)-labeled detection probes, thereby realizing the purpose of the amplification. The RCA-CLIA method had higher sensitivity than conventional CLIA without loss of specificity. Under optimum conditions, the linear range of Aβ42 and Aβ40 detection was 3.9-140 pg/mL and 3.9-180 pg/mL, respectively, with corresponding low detection limits of 1.99 pg/mL and 3.14 pg/mL, respectively. Plasma Aβ42 and Aβ40 were detected in the blood of 21 AD patients and 22 healthy people, wherein this ratio could significantly distinguish AD patients from healthy individuals with a sensitivity of 90.48% and specificity of 63.64% for a cutoff value of 154. The Aβ42/Aβ40 ratio of plasma acts as an accurate indicator for AD diagnosis; therefore, detection of plasma Aβ using the RCA-CLIA exhibits great potential in noninvasive diagnosis and progressive assessment of AD.
Collapse
|
27
|
Zhou Y, Yin H, Zhao WW, Ai S. Electrochemical, electrochemiluminescent and photoelectrochemical bioanalysis of epigenetic modifiers: A comprehensive review. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213519] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Li F, Zhou Y, Yin H, Ai S. Recent advances on signal amplification strategies in photoelectrochemical sensing of microRNAs. Biosens Bioelectron 2020; 166:112476. [DOI: 10.1016/j.bios.2020.112476] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 01/23/2023]
|
29
|
Debiais M, Lelievre A, Smietana M, Müller S. Splitting aptamers and nucleic acid enzymes for the development of advanced biosensors. Nucleic Acids Res 2020; 48:3400-3422. [PMID: 32112111 PMCID: PMC7144939 DOI: 10.1093/nar/gkaa132] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
In analogy to split-protein systems, which rely on the appropriate fragmentation of protein domains, split aptamers made of two or more short nucleic acid strands have emerged as novel tools in biosensor set-ups. The concept relies on dissecting an aptamer into a series of two or more independent fragments, able to assemble in the presence of a specific target. The stability of the assembled structure can further be enhanced by functionalities that upon folding would lead to covalent end-joining of the fragments. To date, only a few aptamers have been split successfully, and application of split aptamers in biosensing approaches remains as promising as it is challenging. Further improving the stability of split aptamer target complexes and with that the sensitivity as well as efficient working modes are important tasks. Here we review functional nucleic acid assemblies that are derived from aptamers and ribozymes/DNAzymes. We focus on the thrombin, the adenosine/ATP and the cocaine split aptamers as the three most studied DNA split systems and on split DNAzyme assemblies. Furthermore, we extend the subject into split light up RNA aptamers used as mimics of the green fluorescent protein (GFP), and split ribozymes.
Collapse
Affiliation(s)
- Mégane Debiais
- Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENCSM, Montpellier, France
| | - Amandine Lelievre
- University Greifswald, Institute for Biochemistry, Greifswald, Germany
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENCSM, Montpellier, France
| | - Sabine Müller
- University Greifswald, Institute for Biochemistry, Greifswald, Germany
| |
Collapse
|
30
|
Electrocatalytic activity of Co3O4 quantum dots supported on aminated carbon nanotubes and their application for sensitive electrochemical immunosensing of prostate-specific antigen. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Yu Z, Huang L, Chen J, Tang Y, Xia B, Tang D. Full-spectrum responsive photoelectrochemical immunoassay based on β-In2S3@carbon dot nanoflowers. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135473] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Yang L, Zhang S, Liu X, Tang Y, Zhou Y, Wong DKY. Detection signal amplification strategies at nanomaterial-based photoelectrochemical biosensors. J Mater Chem B 2020; 8:7880-7893. [DOI: 10.1039/d0tb01191f] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review focusses on unique material modification and signal amplification strategies reported in developing photoelectrochemical biosensors with utmost sensitivity and selectivity.
Collapse
Affiliation(s)
- Liwei Yang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- P. R. China
| | - Si Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- P. R. China
| | - Xiaoqiang Liu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- P. R. China
| | - Yunfei Tang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- P. R. China
| | - Yanmei Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- P. R. China
| | - Danny K. Y. Wong
- Department of Molecular Sciences
- Macquarie University
- Sydney
- Australia
| |
Collapse
|
33
|
Gao X, Niu S, Ge J, Luan Q, Jie G. 3D DNA nanosphere-based photoelectrochemical biosensor combined with multiple enzyme-free amplification for ultrasensitive detection of cancer biomarkers. Biosens Bioelectron 2020; 147:111778. [DOI: 10.1016/j.bios.2019.111778] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 11/16/2022]
|
34
|
Zhang L, Xue J, Gao C, Xu M, Zhao P, Ge S, Yu J. Ultrasensitive photoelectrochemical sensor enabled by a target-induced signal quencher release strategy. NEW J CHEM 2020. [DOI: 10.1039/d0nj01435d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this work, a target-induced signal quencher release strategy was proposed to construct a sensitive photoelectrochemical (PEC) sensor.
Collapse
Affiliation(s)
- Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials
- University of Jinan
- Jinan
- P. R. China
| | - Jie Xue
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- P. R. China
| | - Chaomin Gao
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- P. R. China
| | - Meiling Xu
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials
- University of Jinan
- Jinan
- P. R. China
| | - Peini Zhao
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- P. R. China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research
- University of Jinan
- Jinan 250022
- China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- P. R. China
| |
Collapse
|
35
|
Zhang R, Wang Y, Qu X, Li S, Zhao Y, Zhang F, Liu S, Huang J, Yu J. A label-free electrochemical platform for the detection of antibiotics based on cascade enzymatic amplification coupled with a split G-quadruplex DNAzyme. Analyst 2019; 144:4995-5002. [PMID: 31328736 DOI: 10.1039/c9an00857h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, a split G-quadruplex DNAzyme as a signal reporter was integrated into an electrochemical sensing platform for the detection of antibiotics with specificity and sensitivity. To improve the signal-to-noise ratio, two G-rich oligonucleotide sequences (G1 and G2) were blocked into two different hairpin probes, preventing the two segments from assembling into a spilt G-quadruplex structure. Moreover, we designed a double-arch probe, consisting of an aptamer as the recognition element and two-step enzymatic signal amplification. Concretely, the first is the Nt.BbvCI-assisted nicking cyclic reaction activated by target-aptamer binding, and the second is exonuclease III-aided cyclic amplification for generating abundant G1 and G2. The modified capture probe on the electrode was used to combine G1 and G2 to form the spilt G-quadruplex/hemin when K+ and hemin were present. This complex plays the role of DNAzyme with superior horseradish peroxidase activity in catalyzing the decomposition of H2O2. Under optimal conditions, this biosensor showed an excellent performance for sensing kanamycin with a detection limit of 83 fM for kanamycin concentrations ranging from 100 fM to 1 nM. Hence, the proposed strategy has potential as an efficient and actual platform for small molecule analysis.
Collapse
Affiliation(s)
- Rufeng Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Shi W, Liu B. Target‐stimulated DNAzyme Concatamers Released from Aptasensor for Highly Sensitive and Specific Detection of Progesterone. ELECTROANAL 2019. [DOI: 10.1002/elan.201900440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Weiping Shi
- Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province), College of PharmacyGuizhou University Guiyang, Guizhou 550025 PR China
| | - Bingqian Liu
- Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province), College of PharmacyGuizhou University Guiyang, Guizhou 550025 PR China
| |
Collapse
|
37
|
Hou T, Xu N, Wang W, Ge L, Li F. Label-free and immobilization-free photoelectrochemical biosensing strategy using methylene blue in homogeneous solution as signal probe for facile DNA methyltransferase activity assay. Biosens Bioelectron 2019; 141:111395. [DOI: 10.1016/j.bios.2019.111395] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/12/2019] [Accepted: 05/30/2019] [Indexed: 10/26/2022]
|
38
|
Wang H, Zhang B, Xi J, Zhao F, Zeng B. Z-scheme I-BiOCl/CdS with abundant oxygen vacancies as highly effective cathodic material for photocathodic immunoassay. Biosens Bioelectron 2019; 141:111443. [DOI: 10.1016/j.bios.2019.111443] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/08/2019] [Accepted: 06/14/2019] [Indexed: 11/25/2022]
|
39
|
Cysteine-assisted photoelectrochemical immunoassay for the carcinoembryonic antigen by using an ITO electrode modified with C3N4-BiOCl semiconductor and CuO nanoparticles as antibody labels. Mikrochim Acta 2019; 186:633. [DOI: 10.1007/s00604-019-3706-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/21/2019] [Indexed: 01/10/2023]
|
40
|
Fan J, Zang Y, Jiang J, Lei J, Xue H. Beta-cyclodextrin-functionalized CdS nanorods as building modules for ultrasensitive photoelectrochemical bioassay of HIV DNA. Biosens Bioelectron 2019; 142:111557. [PMID: 31400727 DOI: 10.1016/j.bios.2019.111557] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/13/2019] [Accepted: 07/30/2019] [Indexed: 11/19/2022]
Abstract
Nowadays, acquired immunodeficiency syndrome has become a formidable danger to human health, and its early diagnosis is urgent need with the increasing quantity of patients around the world. Herein, we first synthesized beta-cyclodextrin-functionalized CdS nanorods (β-CD@CdS NRs) with high stability and desirable photo-electricity activity, and served as easy-to-assemble building modules to design a novel photoelectrochemical biosensor for human immune deficiency virus (HIV) DNA detection by coupling with catalytic hairpin assembly (CHA)-mediated biocatalytic precipitation and the host-guest interaction between adamantine (ADA) and β-CD. In the presence of HIV DNA, CHA process was triggered with the aid of hairpin DNA1 and ADA-labelled hairpin DNA2, and then generated large amounts of G-quadruplex, which could be formed hemin/G-quadruplex DNAzyme to catalyze 4-chloro-1-naphthol to generate insoluble precipitation on photoelectrode surface, followed by the decreased photocurrent response due to the corresponding stereo-hindrance effect. Under optimized conditions, this biosensor exhibited wide linear dynamic range (10 fM - 1 nM) and low detection limit of 1.16 fM, as well as high sensitivity, excellent stability, and satisfactory feasibility in human-serum samples. Moreover, the prepared β-CD@CdS NRs could be applied to the construction of other advanced sensing platform, showing great prospect in clinical diagnostics.
Collapse
Affiliation(s)
- Jing Fan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
| | - Yang Zang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China.
| | - Jingjing Jiang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, PR China.
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
| |
Collapse
|
41
|
Ghorbani F, Abbaszadeh H, Dolatabadi JEN, Aghebati-Maleki L, Yousefi M. Application of various optical and electrochemical aptasensors for detection of human prostate specific antigen: A review. Biosens Bioelectron 2019; 142:111484. [PMID: 31284103 DOI: 10.1016/j.bios.2019.111484] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
Early stage detection of prostate cancer, one of the main causes of mortality among men, is of great importance for better treatment of the patients. Prostate specific antigen (PSA) is a glycoprotein which has been considered as the most potential serological biomarker for the detection of prostate cancer. Among the various techniques employed for PSA detection, aptamer-based biosensors (aptasensors) have achieved notable attention because of their unique features and great potentials as diagnostic tools. A variety of strategies such as integration of nanomaterials (NMs) into the structure of aptasensors have also been applied for enhancing the sensitivity of PSA detection. This article reviews recent advances in various optical and electrochemical aptasensors used for PSA detection.
Collapse
Affiliation(s)
- Farzaneh Ghorbani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Abbaszadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
42
|
Zhao CQ, Ding SN. Perspective on signal amplification strategies and sensing protocols in photoelectrochemical immunoassay. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
43
|
Cascade catalysis-initiated radical polymerization amplified impedimetric immunosensor for ultrasensitive detection of carbohydrate antigen 15-3. Biosens Bioelectron 2019; 137:1-7. [DOI: 10.1016/j.bios.2019.04.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/13/2019] [Accepted: 04/24/2019] [Indexed: 12/30/2022]
|
44
|
Lee SH, Park SM, Kim BN, Kwon OS, Rho WY, Jun BH. Emerging ultrafast nucleic acid amplification technologies for next-generation molecular diagnostics. Biosens Bioelectron 2019; 141:111448. [PMID: 31252258 DOI: 10.1016/j.bios.2019.111448] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/31/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
Over the last decade, nucleic acid amplification tests (NAATs) including polymerase chain reaction (PCR) were an indispensable methodology for diagnosing cancers, viral and bacterial infections owing to their high sensitivity and specificity. Because the NAATs can recognize and discriminate even a few copies of nucleic acid (NA) and species-specific NA sequences, NAATs have become the gold standard in a wide range of applications. However, limitations of NAAT approaches have recently become more apparent by reason of their lengthy run time, large reaction volume, and complex protocol. To meet the current demands of clinicians and biomedical researchers, new NAATs have developed to achieve ultrafast sample-to-answer protocols for the point-of-care testing (POCT). In this review, ultrafast NA-POCT platforms are discussed, outlining their NA amplification principles as well as delineating recent advances in ultrafast NAAT applications. The main focus is to provide an overview of NA-POCT platforms in regard to sample preparation of NA, NA amplification, NA detection process, interpretation of the analysis, and evaluation of the platform design. Increasing importance will be given to innovative, ultrafast amplification methods and tools which incorporate artificial intelligence (AI)-associated data analysis processes and mobile-healthcare networks. The future prospects of NA POCT platforms are promising as they allow absolute quantitation of NA in individuals which is essential to precision medicine.
Collapse
Affiliation(s)
- Sang Hun Lee
- Department of Bioengineering, University of California Berkeley, CA, USA
| | | | - Brian N Kim
- Department of Electrical and Computer Engineering, University of Central Florida, FL, USA
| | - Oh Seok Kwon
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, South Korea
| | - Won-Yep Rho
- School of International Engineering and Science, Chonbuk National University, Jeonju, South Korea
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, South Korea.
| |
Collapse
|
45
|
Xu YT, Yu SY, Zhu YC, Fan GC, Han DM, Qu P, Zhao WW. Cathodic photoelectrochemical bioanalysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.03.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Ge L, Li B, Xu H, Pu W, Kwok HF. Backfilling rolling cycle amplification with enzyme-DNA conjugates on antibody for portable electrochemical immunoassay with glucometer readout. Biosens Bioelectron 2019; 132:210-216. [DOI: 10.1016/j.bios.2019.02.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/17/2019] [Accepted: 02/21/2019] [Indexed: 01/24/2023]
|
47
|
Mittal S, Thakur S, Mantha AK, Kaur H. Bio-analytical applications of nicking endonucleases assisted signal-amplification strategies for detection of cancer biomarkers -DNA methyl transferase and microRNA. Biosens Bioelectron 2019; 124-125:233-243. [DOI: 10.1016/j.bios.2018.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 12/31/2022]
|
48
|
Wang S, Ji Y, Fu H, Ju H, Lei J. A rolling circle amplification-assisted DNA walker triggered by multiple DNAzyme cores for highly sensitive electrochemical biosensing. Analyst 2019; 144:691-697. [DOI: 10.1039/c8an01892h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A DNA walker triggered by multiple DNAzyme cores was constructed with the assistance of rolling circle amplification for electrochemical biosensing.
Collapse
Affiliation(s)
- Sina Wang
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Yuhang Ji
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Haomin Fu
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| |
Collapse
|