1
|
Deng Y, Zhang Y, Zhou M, Wu B, Zhou J. Application of Biosensors in Detecting Breast Cancer Metastasis. SENSORS (BASEL, SWITZERLAND) 2023; 23:8813. [PMID: 37960513 PMCID: PMC10649164 DOI: 10.3390/s23218813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
Breast cancer has garnered global attention due to its high incidence worldwide, and even more noteworthy is that approximately 90% deaths due to breast cancer are attributed to cancer metastasis. Therefore, the early diagnosis of breast cancer metastasis holds significant importance for reducing mortality outcomes. Biosensors play a crucial role in the early detection of metastatic breast cancer due to their advantages, such as ease of use, portability, and real-time analysis capabilities. This review primarily described various types of sensors for detecting breast cancer metastasis based on biomarkers and cell characteristics, including electrochemical, optical, and microfluidic chips. We offered detailed descriptions of the performance of these various biosensors and made comparisons between them. Furthermore, we described the pathology of breast cancer and summarized commonly used biomarkers for metastatic breast cancer. Finally, we discussed the advantages of current-stage biosensors and the challenges that need to be addressed, as well as prospects for their future development.
Collapse
Affiliation(s)
- Yu Deng
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yubi Zhang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meng Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Breast and Thyroid Surgery, People’s Hospital of Dongxihu District Wuhan City and Union Dongxihu Hospital, Huazhong University of Science and Technology, Wuhan 430040, China
| |
Collapse
|
2
|
Cauli E, Polidoro MA, Marzorati S, Bernardi C, Rasponi M, Lleo A. Cancer-on-chip: a 3D model for the study of the tumor microenvironment. J Biol Eng 2023; 17:53. [PMID: 37592292 PMCID: PMC10436436 DOI: 10.1186/s13036-023-00372-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
The approval of anticancer therapeutic strategies is still slowed down by the lack of models able to faithfully reproduce in vivo cancer physiology. On one hand, the conventional in vitro models fail to recapitulate the organ and tissue structures, the fluid flows, and the mechanical stimuli characterizing the human body compartments. On the other hand, in vivo animal models cannot reproduce the typical human tumor microenvironment, essential to study cancer behavior and progression. This study reviews the cancer-on-chips as one of the most promising tools to model and investigate the tumor microenvironment and metastasis. We also described how cancer-on-chip devices have been developed and implemented to study the most common primary cancers and their metastatic sites. Pros and cons of this technology are then discussed highlighting the future challenges to close the gap between the pre-clinical and clinical studies and accelerate the approval of new anticancer therapies in humans.
Collapse
Affiliation(s)
- Elisa Cauli
- Department of Electronics, Information and Bioengineering, Politecnico Di Milano, Milan, Italy.
- Accelera Srl, Nerviano, Milan, Italy.
| | - Michela Anna Polidoro
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Simona Marzorati
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico Di Milano, Milan, Italy
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
3
|
Nasrollahpour H, Khalilzadeh B, Hasanzadeh M, Rahbarghazi R, Estrela P, Naseri A, Tasoglu S, Sillanpää M. Nanotechnology‐based electrochemical biosensors for monitoring breast cancer biomarkers. Med Res Rev 2022; 43:464-569. [PMID: 36464910 DOI: 10.1002/med.21931] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/01/2022] [Accepted: 11/04/2022] [Indexed: 12/07/2022]
Abstract
Breast cancer is categorized as the most widespread cancer type among women globally. On-time diagnosis can decrease the mortality rate by making the right decision in the therapy procedure. These features lead to a reduction in medication time and socioeconomic burden. The current review article provides a comprehensive assessment for breast cancer diagnosis using nanomaterials and related technologies. Growing use of the nano/biotechnology domain in terms of electrochemical nanobiosensor designing was discussed in detail. In this regard, recent advances in nanomaterial applied for amplified biosensing methodologies were assessed for breast cancer diagnosis by focusing on the advantages and disadvantages of these approaches. We also monitored designing methods, advantages, and the necessity of suitable (nano) materials from a statistical standpoint. The main objective of this review is to classify the applicable biosensors based on breast cancer biomarkers. With numerous nano-sized platforms published for breast cancer diagnosis, this review tried to collect the most suitable methodologies for detecting biomarkers and certain breast cancer cell types.
Collapse
Affiliation(s)
- Hassan Nasrollahpour
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Pedro Estrela
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Electronic and Electrical Engineering University of Bath Bath UK
| | - Abdolhossein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Savas Tasoglu
- Koç University Translational Medicine Research Center (KUTTAM) Rumeli Feneri, Sarıyer Istanbul Turkey
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Environment and Labour Safety Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
4
|
A capacitive sensor for differentiation between virus-infected and uninfected cells. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
5
|
Perdigones F, Quero JM. Printed Circuit Boards: The Layers' Functions for Electronic and Biomedical Engineering. MICROMACHINES 2022; 13:460. [PMID: 35334752 PMCID: PMC8952574 DOI: 10.3390/mi13030460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 01/25/2023]
Abstract
This paper describes the fabrication opportunities that Printed Circuit Boards (PCBs) offer for electronic and biomedical engineering. Historically, PCB substrates have been used to support the components of the electronic devices, linking them using copper lines, and providing input and output pads to connect the rest of the system. In addition, this kind of substrate is an emerging material for biomedical engineering thanks to its many interesting characteristics, such as its commercial availability at a low cost with very good tolerance and versatility, due to its multilayer characteristics; that is, the possibility of using several metals and substrate layers. The alternative uses of copper, gold, Flame Retardant 4 (FR4) and silver layers, together with the use of vias, solder masks and a rigid and flexible substrate, are noted. Among other uses, these characteristics have been using to develop many sensors, biosensors and actuators, and PCB-based lab-on chips; for example, deoxyribonucleic acid (DNA) amplification devices for Polymerase Chain Reaction (PCR). In addition, several applications of these devices are going to be noted in this paper, and two tables summarizing the layers' functions are included in the discussion: the first one for metallic layers, and the second one for the vias, solder mask, flexible and rigid substrate functions.
Collapse
|
6
|
Ino K, Pai HJ, Hiramoto K, Utagawa Y, Nashimoto Y, Shiku H. Electrochemical Imaging of Endothelial Permeability Using a Large-Scale Integration-Based Device. ACS OMEGA 2021; 6:35476-35483. [PMID: 34984279 PMCID: PMC8717544 DOI: 10.1021/acsomega.1c04931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
It is important to clarify the transport of biomolecules and chemicals to tissues. Herein, we present an electrochemical imaging method for evaluating the endothelial permeability. In this method, the diffusion of electrochemical tracers, [Fe(CN)6]4-, through a monolayer of human umbilical vein endothelial cells (HUVECs) was monitored using a large-scale integration-based device containing 400 electrodes. In conventional tracer-based assays, tracers that diffuse through an HUVEC monolayer into another channel are detected. In contrast, the present method does not employ separated channels. In detail, a HUVEC monolayer is immersed in a solution containing [Fe(CN)6]4- on the device. As [Fe(CN)6]4- is oxidized and consumed at the packed electrodes, [Fe(CN)6]4- begins to diffuse through the monolayer from the bulk solution to the electrodes and the obtained currents depend on the endothelial permeability. As a proof-of-concept, the effects of histamine on the monolayer were monitored. Also, an HUVEC monolayer was cocultured with cancer spheroids, and the endothelial permeability was monitored to evaluate the metastasis of the cancer spheroids. Unlike conventional methods, the device can provide spatial information, allowing the interaction between the monolayer and the spheroids to be monitored. The developed method is a promising tool for organs-on-a-chip and drug screening in vitro.
Collapse
Affiliation(s)
- Kosuke Ino
- Graduate
School of Engineering, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Hao-Jen Pai
- Graduate
School of Environmental Studies, Tohoku
University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Kaoru Hiramoto
- Graduate
School of Environmental Studies, Tohoku
University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Yoshinobu Utagawa
- Graduate
School of Environmental Studies, Tohoku
University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Yuji Nashimoto
- Graduate
School of Engineering, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
- Frontier
Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Hitoshi Shiku
- Graduate
School of Engineering, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
7
|
Urbano-Gámez JD, Valdés-Sánchez L, Aracil C, de la Cerda B, Perdigones F, Plaza Reyes Á, Díaz-Corrales FJ, Relimpio López I, Quero JM. Biocompatibility Study of a Commercial Printed Circuit Board for Biomedical Applications: Lab-on-PCB for Organotypic Retina Cultures. MICROMACHINES 2021; 12:1469. [PMID: 34945319 PMCID: PMC8707730 DOI: 10.3390/mi12121469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 12/27/2022]
Abstract
Printed circuit board (PCB) technology is well known, reliable, and low-cost, and its application to biomedicine, which implies the integration of microfluidics and electronics, has led to Lab-on-PCB. However, the biocompatibility of the involved materials has to be examined if they are in contact with biological elements. In this paper, the solder mask (PSR-2000 CD02G/CA-25 CD01, Taiyo Ink (Suzhou) Co., Ltd., Suzhou, China) of a commercial PCB has been studied for retinal cultures. For this purpose, retinal explants have been cultured over this substrate, both on open and closed systems, with successful results. Cell viability data shows that the solder mask has no cytotoxic effect on the culture allowing the application of PCB as the substrate of customized microelectrode arrays (MEAs). Finally, a comparative study of the biocompatibility of the 3D printer Uniz zSG amber resin has also been carried out.
Collapse
Affiliation(s)
- Jesús David Urbano-Gámez
- Electronic Technology Group, Department of Electronic Engineering, Higher Technical School of Engineering, University of Seville, Avda. de los Descubrimientos sn, 41092 Seville, Spain; (J.D.U.-G.); (F.P.); (J.M.Q.)
| | - Lourdes Valdés-Sánchez
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Avda. Américo Vespucio 24, 41092 Seville, Spain; (L.V.-S.); (Á.P.R.); (F.J.D.-C.)
| | - Carmen Aracil
- Electronic Technology Group, Department of Electronic Engineering, Higher Technical School of Engineering, University of Seville, Avda. de los Descubrimientos sn, 41092 Seville, Spain; (J.D.U.-G.); (F.P.); (J.M.Q.)
| | - Berta de la Cerda
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Avda. Américo Vespucio 24, 41092 Seville, Spain; (L.V.-S.); (Á.P.R.); (F.J.D.-C.)
| | - Francisco Perdigones
- Electronic Technology Group, Department of Electronic Engineering, Higher Technical School of Engineering, University of Seville, Avda. de los Descubrimientos sn, 41092 Seville, Spain; (J.D.U.-G.); (F.P.); (J.M.Q.)
| | - Álvaro Plaza Reyes
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Avda. Américo Vespucio 24, 41092 Seville, Spain; (L.V.-S.); (Á.P.R.); (F.J.D.-C.)
| | - Francisco J. Díaz-Corrales
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Avda. Américo Vespucio 24, 41092 Seville, Spain; (L.V.-S.); (Á.P.R.); (F.J.D.-C.)
| | - Isabel Relimpio López
- RETICS Oftared, Carlos III Institute of Health (Spain), Ministry of Health RD16/0008/0010, University Hospital Virgen Macarena, Avda. Dr. Fedriani, 3, 41009 Seville, Spain;
| | - José Manuel Quero
- Electronic Technology Group, Department of Electronic Engineering, Higher Technical School of Engineering, University of Seville, Avda. de los Descubrimientos sn, 41092 Seville, Spain; (J.D.U.-G.); (F.P.); (J.M.Q.)
| |
Collapse
|
8
|
Semi-Automatic Lab-on-PCB System for Agarose Gel Preparation and Electrophoresis for Biomedical Applications. MICROMACHINES 2021; 12:mi12091071. [PMID: 34577715 PMCID: PMC8467303 DOI: 10.3390/mi12091071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/19/2022]
Abstract
In this paper, a prototype of a semi-automatic lab-on-PCB for agarose gel preparation and electrophoresis is developed. The dimensions of the device are 38 × 34 mm2 and it includes a conductivity sensor for detecting the TAE buffer (Tris-acetate-EDTA buffer), a microheater for increasing the solubility of the agarose, a negative temperature coefficient (NTC) thermistor for controlling the temperature, a light dependent resistor (LDR) sensor for measuring the transparency of the mixture, and two electrodes for performing the electrophoresis. The agarose preparation functions are governed by a microcontroller. The device requires a PMMA structure to define the wells of the agarose gel, and to release the electrodes from the agarose. The maximum voltage and current that the system requires are 40 V to perform the electrophoresis, and 1 A for activating the microheater. The chosen temperature for mixing is 80 ∘C, with a mixing time of 10 min. In addition, the curing time is about 30 min. This device is intended to be integrated as a part of a larger lab-on-PCB system for DNA amplification and detection. However, it can be used to migrate DNA amplified in conventional thermocyclers. Moreover, the device can be modified for preparing larger agarose gels and performing electrophoresis.
Collapse
|
9
|
Attari F, Hazim H, Zandi A, Mazarei Z, Rafati H. Circumventing paclitaxel resistance in breast cancer cells using a nanoemulsion system and determining its efficacy via an impedance biosensor. Analyst 2021; 146:3225-3233. [PMID: 33999068 DOI: 10.1039/d0an02013c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
One of the best strategies to circumvent drug resistance is the employment of nanocarriers. For the current study, we have employed a nanoemulsion formulation of paclitaxel (PTX) to bypass drug resistance in the MDA-MB-231 cell line and impedance sensing biosensors to determine the exact time that PTX-NE induced apoptosis. Our MTT results demonstrated that PTX treatment could not reduce MDA-MB-231 cell viability to IC50 even after three days. However, the employment of the reagent TPGS (inhibitor of drug resistance) combined with paclitaxel could partially obviate PTX resistance. Next, the nanoemulsion form of PTX (PTX-NE) was fabricated employing the essential oil of the Satureja khuzestanica plant and was characterized using DLS and TEM methods. Our data showed that after 72 hours, PTX-NE at 250 nM concentration could induce a 50% reduction in cell viability. Moreover, annexin/PI and cell cycle analysis confirmed the apoptotic effect of PTX-NE on cancer cells. Lastly, we measured the impedance of MDA-MB-231 cells treated with the free and nanoemulsion forms of PTX. A significant decrease in the mean impedance of PTX-NE treated cells could be observed after 40 hours. To conclude, we have demonstrated here that PTX-NE could circumvent resistance and induce apoptosis in PTX-resistant breast cancer cells, which could be inferred from their impedance measurement.
Collapse
Affiliation(s)
- Farnoosh Attari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | | | | | | | | |
Collapse
|
10
|
Khalid MAU, Kim YS, Ali M, Lee BG, Cho YJ, Choi KH. A lung cancer-on-chip platform with integrated biosensors for physiological monitoring and toxicity assessment. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107469] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Zhao W, Tian S, Huang L, Liu K, Dong L. The review of Lab-on-PCB for biomedical application. Electrophoresis 2020; 41:1433-1445. [PMID: 31945803 DOI: 10.1002/elps.201900444] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/29/2022]
Abstract
Prevention of infectious diseases, diagnosis of diseases, and determination of treatment options all rely on biosensors to detect and analyze biomarkers, which are usually divided into four parts: cell analysis, biochemical analysis, immunoassay, and molecular diagnosis. However, traditional biosensing devices are expensive, bulky, and require a lot of time to detect, which also limited its application in resource-limited areas. In recent years, Lab-on-PCB, which combines biosensing technology and PCB technology, has been widely used in biomedical applications due to its high integration, personalized design, and easy mass production. Among these Lab-on-PCB sensing devices, the PCB circuit plays an important role. It can be directly used as a resistance sensor to count cells, and also used as a control device to automatically control the detection device. Flexible PCBs can be used to make wearable medical biosensors. In addition, due to the high degree of integration of the PCB circuit, Lab-on-PCB can perform multiple inspections on the same platform, which reduces the inspection time equivalently. Therefore, in this review paper, we discuss the application of Lab-on-PCB in four analysis methods of cell analysis, biochemical analysis, immunoassay, and molecular diagnosis, and give some suggestions for improvement and future development trends at the end.
Collapse
Affiliation(s)
- Wenhao Zhao
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Shulin Tian
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Lei Huang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Ke Liu
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Lijuan Dong
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, P.R. China
| |
Collapse
|
12
|
Jahangiri M, Ranjbar-Torkamani M, Abadijoo H, Ghaderinia M, Ghafari H, Mamdouh A, Abdolahad M. Low frequency stimulation induces polarization-based capturing of normal, cancerous and white blood cells: a new separation method for circulating tumor cell enrichment or phenotypic cell sorting. Analyst 2020; 145:7636-7645. [DOI: 10.1039/d0an01033b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Separation of cancerous cells from normal cells is of broad importance in a large number of cancer diagnosis and treatment methods.
Collapse
Affiliation(s)
- Mojtaba Jahangiri
- Nano Bio Electronics Laboratory
- Cancer Electronics research group
- School of Electrical and Computer Engineering
- College of Engineering
- University of Tehran
| | - Mina Ranjbar-Torkamani
- Nano Bio Electronics Laboratory
- Cancer Electronics research group
- School of Electrical and Computer Engineering
- College of Engineering
- University of Tehran
| | - Hamed Abadijoo
- Nano Bio Electronics Laboratory
- Cancer Electronics research group
- School of Electrical and Computer Engineering
- College of Engineering
- University of Tehran
| | - Mohammadreza Ghaderinia
- Nano Bio Electronics Laboratory
- Cancer Electronics research group
- School of Electrical and Computer Engineering
- College of Engineering
- University of Tehran
| | - Hadi Ghafari
- Nano Bio Electronics Laboratory
- Cancer Electronics research group
- School of Electrical and Computer Engineering
- College of Engineering
- University of Tehran
| | - Amir Mamdouh
- Nano Bio Electronics Laboratory
- Cancer Electronics research group
- School of Electrical and Computer Engineering
- College of Engineering
- University of Tehran
| | - Mohammad Abdolahad
- Nano Bio Electronics Laboratory
- Cancer Electronics research group
- School of Electrical and Computer Engineering
- College of Engineering
- University of Tehran
| |
Collapse
|
13
|
Khan FA, Akhtar S, Almohazey D, Alomari M, Almofty SA, Badr I, Elaissari A. Targeted delivery of poly (methyl methacrylate) particles in colon cancer cells selectively attenuates cancer cell proliferation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1533-1542. [PMID: 31007071 DOI: 10.1080/21691401.2019.1577886] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Poly (methyl methacrylate) (PMMA) is basically biocompatible polyester with high resistance to chemical hydrolysis, and high drug permeability and the most important characteristics of PMMA is that it does not produce any toxicity. There is not much information about PMMA action on the colon cancer cells. In the present study, we have synthesized PMMA nanoparticles. The distribution pattern of PMMA particles was analysed by Zeta sizer and the size of the particles was calculated by using quasi elastic light scattering (QELS). The surface structure and the morphology of PMMA were characterized by transmission electron microscope (TEM) and scanning electron microscope (SEM), respectively. We have also analysed their effects on cancerous cells (human colorectal carcinoma cells, HCT-116) and normal, healthy cells (human embryonic kidney cells, HEK-293) by using morphometric, MTT, DAPI and wound healing methods. We report that PMMA particles inhibited the cancer cell viability in a dose-dependent manner. The lower dose (1.0 μg/ml) showed a moderate decrease in cancer cell viability, whereas higher dosages (2.5 μg/ml, 5.0 μg/mL and 7.5 μg/mL) showed steadily decrease in the cancer cell viability. We also report that PMMA is highly selective to cancerous cells (HCT-116), as we did not find any action on the normal healthy cells (HEK-293). In conclusion, our results suggest PMMA particles are potential biomaterials to be used in the treatment of colon cancer.
Collapse
Affiliation(s)
- Firdos Alam Khan
- a Department of Stem Cell Biology, Institute for Research and Medical Consultations , Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Sultan Akhtar
- b Department of Biophysics, Institute for Research and Medical Consultations , Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Dana Almohazey
- a Department of Stem Cell Biology, Institute for Research and Medical Consultations , Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Munther Alomari
- a Department of Stem Cell Biology, Institute for Research and Medical Consultations , Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Sarah Ameen Almofty
- a Department of Stem Cell Biology, Institute for Research and Medical Consultations , Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Ibrahim Badr
- c Centre national de la recherche scientifique, LAGEP-UMR 5007, University Claude Bernard Lyon-1 , University of Lyon , Lyon , France
| | - Abdelhamid Elaissari
- c Centre national de la recherche scientifique, LAGEP-UMR 5007, University Claude Bernard Lyon-1 , University of Lyon , Lyon , France
| |
Collapse
|