1
|
Alawneh A, Wettasinghe AP, McMullen R, Seifi MO, Breton I, Slinker JD, Kuchta RD. A Redox-Reversible Switch of DNA Hydrogen Bonding and Structure. ACS APPLIED BIO MATERIALS 2024; 7:5308-5317. [PMID: 38978451 DOI: 10.1021/acsabm.4c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Modulating molecular structure and function at the nanoscale drives innovation across wide-ranging technologies. Electrical control of the bonding of individual DNA base pairs endows DNA with precise nanoscale structural reconfigurability, benefiting efforts in DNA origami and actuation. Here, alloxazine DNA base surrogates were synthesized and incorporated into DNA duplexes to function as a redox-active switch of hydrogen bonding. Circular dichroism (CD) revealed that 24-mer DNA duplexes containing one or two alloxazines exhibited CD spectra and melting transitions similar to DNA with only canonical bases, indicating that the constructs adopt a B-form conformation. However, duplexes were not formed when four or more alloxazines were incorporated into a 24-mer strand. Thiolated duplexes incorporating alloxazines were self-assembled onto multiplexed gold electrodes and probed electrochemically. Square-wave voltammetry (SWV) revealed a substantial reduction peak centered at -0.272 V vs Ag/AgCl reference. Alternating between alloxazine oxidizing and reducing conditions modulated the SWV peak in a manner consistent with the formation and loss of hydrogen bonding, which disrupts the base pair stacking and redox efficiency of the DNA construct. These alternating signals support the assertion that alloxazine can function as a redox-active switch of hydrogen bonding, useful in controlling DNA and bioinspired assemblies.
Collapse
Affiliation(s)
- Ayman Alawneh
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Ashan P Wettasinghe
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, SCI 10, Richardson, Texas 75080, United States
| | - Reema McMullen
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, SCI 10, Richardson, Texas 75080, United States
| | - Melodee O Seifi
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, SCI 10, Richardson, Texas 75080, United States
| | - Ivan Breton
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Jason D Slinker
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, SCI 10, Richardson, Texas 75080, United States
- Department of Chemistry, The University of Texas at Dallas, 800 West Campbell Road, SCI 10, Richardson, Texas 75080 United States
- Department of Materials Science and Engineering, The University of Texas at Dallas, 800 West Campbell Road, SCI 10, Richardson, Texas 75080, United States
| | - Robert D Kuchta
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| |
Collapse
|
2
|
Yang L, Sun X, Xu L, Cheng X, Liu X, Deng Y, Hu X, Liang G. β-Glucuronidase-Activated Bioluminescence Probe for In Vivo Tumor Imaging. Anal Chem 2023; 95:14165-14168. [PMID: 37702743 DOI: 10.1021/acs.analchem.3c03162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
β-Glucuronidase (GLU) is a hallmark enzyme for many malignant tumors, but bioluminescence (BL) probes that enable GLU imaging in vivo have not been reported. Herein, we rationally designed the BL probe Glc-Luc to address this issue. In vitro results demonstrated the specific responsiveness of Glc-Luc toward GLU with a calculated catalytic efficiency (kcat/Km) of 0.0109 μM-1 min-1 and a limit of detection (LOD) of 1.39 U/mL. Moreover, Glc-Luc rendered 3.1-fold and 15.9-fold higher BL intensities over the control groups in cell lysates and tumor-bearing mice, respectively. We anticipate that Glc-Luc could be further applied for the sensitive diagnosis of GLU-related diseases.
Collapse
Affiliation(s)
- Liang Yang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xianbao Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lingling Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaotong Cheng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaoyang Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yu Deng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xinyi Hu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
3
|
Gong Q, Wang P, Li T, Yu Z, Yang L, Wu C, Hu J, Yang F, Zhang X, Li X. Novel NQO1 substrates bearing two nitrogen redox centers: Design, synthesis, molecular dynamics simulations, and antitumor evaluation. Bioorg Chem 2023; 134:106480. [PMID: 36958178 DOI: 10.1016/j.bioorg.2023.106480] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/20/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023]
Abstract
By analyzing the crystal structure of NQO1, an additional binding region for the ligand was discovered. In this study, a series of derivatives with a novel skeleton bearing two nitrogen redox centers were designed by introducing amines or hydrazines to fit with the novel binding region of NQO1. Compound 24 with a (4-fluorophenyl)hydrazine substituent was identified as the most efficient substrate for NQO1 with the reduction rate and catalytic efficiency of 1972 ± 82 μmol NADPH/min/μmol NQO1 and 6.4 ± 0.4 × 106 M-1s-1, respectively. Molecular dynamics (MD) simulation revealed that the distances between the nitrogen atom of the redox centers and the key Tyr128 and Tyr126 residues were 3.5 Å (N1-Tyr128) and 3.4 Å (N2-Tyr126), respectively. Compound 24 (IC50/A549 = 0.69 ± 0.09 μM) showed potent antitumor activity against A549 cells both in vitro and in vivo through ROS generation via NQO1-mediated redox cycling, leading to a promising NQO1-targeting antitumor candidate.
Collapse
Affiliation(s)
- Qijie Gong
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Pengfei Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China; Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Tian Li
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China; Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Zhan Yu
- The Affiliated Jiangning Hospital of NJMU, Nanjing Medical University (NJMU), Nanjing 211199, China; Jiangning Clinical Medical College of Jiangsu University, Nanjing 211100, China.
| | - Le Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Chenyang Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jiabao Hu
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Fulai Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Xiaojin Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Xiang Li
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
4
|
Gong Q, Li X, Li T, Wu X, Hu J, Yang F, Zhang X. A Carbon‐Carbon Bond Cleavage‐Based Prodrug Activation Strategy Applied to β‐Lapachone for Cancer‐Specific Targeting. Angew Chem Int Ed Engl 2022; 61:e202210001. [DOI: 10.1002/anie.202210001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Indexed: 12/07/2022]
Affiliation(s)
- Qijie Gong
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry China Pharmaceutical University Nanjing 211198 China
| | - Xiang Li
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry China Pharmaceutical University Nanjing 211198 China
| | - Tian Li
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry China Pharmaceutical University Nanjing 211198 China
| | - Xingsen Wu
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry China Pharmaceutical University Nanjing 211198 China
| | - Jiabao Hu
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry China Pharmaceutical University Nanjing 211198 China
| | - Fulai Yang
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry China Pharmaceutical University Nanjing 211198 China
| | - Xiaojin Zhang
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry China Pharmaceutical University Nanjing 211198 China
| |
Collapse
|
5
|
Gong Q, Li X, Li T, Wu X, Hu J, Yang F, Zhang X. A Carbon‐Carbon Bond Cleavage–Based Prodrug Activation Strategy Applied to β‐Lapachone for Cancer‐Specific Targeting. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Qijie Gong
- China Pharmaceutical University Department of Chemistry CHINA
| | - Xiang Li
- China Pharmaceutical University Department of Chemistry CHINA
| | - Tian Li
- China Pharmaceutical University Department of Chemistry CHINA
| | - Xingsen Wu
- China Pharmaceutical University Department of Chemistry CHINA
| | - Jiabao Hu
- China Pharmaceutical University Department of Chemistry CHINA
| | - Fulai Yang
- China Pharmaceutical University Department of Chemistry CHINA
| | - Xiaojin Zhang
- China Pharmaceutical University Department of Chemsitry No.639 Longmian Avenue 211198 Nanjing CHINA
| |
Collapse
|
6
|
Kashapova NE, Kashapov RR, Ziganshina AY, Amerhanova SK, Lyubina AP, Voloshina AD, Salnikov VV, Zakharova LY. Self-assembling nanoparticles based on acetate derivatives of calix[4]resorcinol and octenidine dihydrochloride for tuning selectivity in cancer cells. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Shang J, Qiao Y, Mao G, Qian L, Liu G, Wang H. Bleomycin-Fe(II) agent with potentiality for treating drug-resistant H1N1 influenza virus: A study using electrochemical RNA beacons. Anal Chim Acta 2021; 1180:338862. [PMID: 34538316 DOI: 10.1016/j.aca.2021.338862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/27/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
Rapid emergence of new strains of drug-resistant H1N1 influenza viruses calls for effective drugs for the controls prior to their outbreaks. In the present work, electrochemical H1N1 RNA beacons have been newly designed for exploring the potentiality of an anticancer agent of Bleomycin (BLM) with Fe (ΙΙ) ions (BLM-Fe(ΙΙ)) alternatively the treatment of drug-resistant H1N1 strains with H274Y gene mutation. Herein, biotinylated (-) ssRNA of H1N1 virus and its complementary (+) ssRNA were labeled with electrochemical signal probes of ferrocene and anthraquinone, respectively. The resultants were hybridized and conjugated with avidin-modified magnetic beads to create electrochemical RNA beacons. The electrochemical signal variation of the H1N1 RNA beacon treated with the RNA degradation agent of BLM-Fe(ΙΙ) were monitored. Results indicate that the BLM-Fe(ΙΙ) agent could effectively cleave both H1N1 dsRNAs and ssRNAs at selective cutting sites, as evidenced by the mass spectrometry analysis. This indicates that the BLM-Fe(II) agent could be utilized to block the viral-host infection process by curbing the host-cell viral RNA-mRNA transcription or inactivate the viruses through the cleavage of viral genomes. The efficiency of the BLM-Fe(ΙΙ) agent was verified with clinical seasonal H1N1 samples using real-time polymerase chain reaction. The therapeutic gene drug of BLM-Fe(ΙΙ) holds great potential for controlling new strains of H1N1 virus resistant to clinical antiviral drugs. More importantly, the so designed RNA beacons may provide a rapid, sensitive and cost-effective platform of drug screening by monitoring the drug-DNA/RNA interactions.
Collapse
Affiliation(s)
- Jizhen Shang
- School of Life Sciences, Huzhou University, Huzhou, Zhejiang Province, 313000, PR China; College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, PR China; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuchun Qiao
- School of Life Sciences, Huzhou University, Huzhou, Zhejiang Province, 313000, PR China; College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Guojiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, School of Chemistry and Chemical Engineering, Ministry of Education, Henan Normal University, Xinxiang, 453007, PR China
| | - Lisheng Qian
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, PR China.
| | - Guodong Liu
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, PR China.
| | - Hua Wang
- School of Life Sciences, Huzhou University, Huzhou, Zhejiang Province, 313000, PR China; College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, PR China.
| |
Collapse
|
8
|
Nano A, Furst AL, Hill MG, Barton JK. DNA Electrochemistry: Charge-Transport Pathways through DNA Films on Gold. J Am Chem Soc 2021; 143:11631-11640. [PMID: 34309382 PMCID: PMC9285625 DOI: 10.1021/jacs.1c04713] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
Over the past 25
years, collective evidence has demonstrated that
the DNA base-pair stack serves as a medium for charge transport chemistry
in solution and on DNA-modified gold surfaces. Since this charge transport
depends sensitively upon the integrity of the DNA base pair stack,
perturbations in base stacking, as may occur with DNA base mismatches,
lesions, and protein binding, interrupt DNA charge transport (DNA
CT). This sensitivity has led to the development of powerful DNA electrochemical
sensors. Given the utility of DNA electrochemistry for sensing and
in response to recent literature, we describe critical protocols and
characterizations necessary for performing DNA-mediated electrochemistry.
We demonstrate DNA electrochemistry with a fully AT DNA sequence using
a thiolated preformed DNA duplex and distinguish this DNA-mediated
chemistry from that of electrochemistry of largely single-stranded
DNA adsorbed to the surface. We also demonstrate the dependence of
DNA CT on a fully stacked duplex. An increase in the percentage of
mismatches within the DNA monolayer leads to a linear decrease in
current flow for a DNA-bound intercalator, where the reaction is DNA-mediated;
in contrast, for ruthenium hexammine, which binds electrostatically
to DNA and the redox chemistry is not DNA-mediated, there is no effect
on current flow with mismatches. We find that, with DNA as a well
hybridized duplex, upon assembly, a DNA-mediated pathway facilitates
the electron transfer between a well coupled redox probe and the gold
surface. Overall, this report highlights critical points to be emphasized
when utilizing DNA electrochemistry and offers explanations and controls
for analyzing confounding results.
Collapse
Affiliation(s)
- Adela Nano
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Ariel L Furst
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael G Hill
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Jacqueline K Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
9
|
Wettasinghe AP, Singh N, Starcher CL, DiTusa CC, Ishak-Boushaki Z, Kahanda D, McMullen R, Motea EA, Slinker JD. Detecting Attomolar DNA-Damaging Anticancer Drug Activity in Cell Lysates with Electrochemical DNA Devices. ACS Sens 2021; 6:2622-2629. [PMID: 34156840 DOI: 10.1021/acssensors.1c00365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Here, we utilize electrochemical DNA devices to quantify and understand the cancer-specific DNA-damaging activity of an emerging drug in cellular lysates at femtomolar and attomolar concentrations. Isobutyl-deoxynyboquinone (IB-DNQ), a potent and tumor-selective NAD(P)H quinone oxidoreductase 1 (NQO1) bioactivatable drug, was prepared and biochemically verified in cancer cells highly expressing NQO1 (NQO1+) and knockdowns with low NQO1 expression (NQO1-) by Western blot, NQO1 activity analysis, survival assays, oxygen consumption rate, extracellular acidification rate, and peroxide production. Lysates from these cells and the IB-DNQ drug were then introduced to a chip system bearing an array of DNA-modified electrodes, and their DNA-damaging activity was quantified by changes in DNA-mediated electrochemistry arising from base-excision repair. Device-level controls of NQO1 activity and kinetic analysis were used to verify and further understand the IB-DNQ activity. A 380 aM IB-DNQ limit of detection and a 1.3 fM midpoint of damage were observed in NQO1+ lysates, both metrics 2 orders of magnitude lower than NQO1- lysates, indicating the high IB-DNQ potency and selectivity for NQO1+ cancers. The device-level damage midpoint concentration in NQO1+ lysates was over 8 orders of magnitude lower than cell survival benchmarks, likely due to poor IB-DNQ cellular uptake, demonstrating that these devices can identify promising drugs requiring improved cell permeability. Ultimately, these results indicate the noteworthy potency and selectivity of IB-DNQ and the high sensitivity and precision of electrochemical DNA devices to analyze agents/drugs involved in DNA-damaging chemotherapies.
Collapse
Affiliation(s)
- Ashan P. Wettasinghe
- Department of Physics, The University of Texas at Dallas, 800 W. Campbell Road, SCI 10, Richardson, Texas 75080, United States
| | - Naveen Singh
- Department of Biochemistry and Molecular Biology, Simon Comprehensive Cancer Center, Indiana University School of Medicine, 980 W. Walnut Street, Walther Hall R3 C551, Indianapolis, Indiana 46202, United States
| | - Colton L. Starcher
- Department of Biochemistry and Molecular Biology, Simon Comprehensive Cancer Center, Indiana University School of Medicine, 980 W. Walnut Street, Walther Hall R3 C551, Indianapolis, Indiana 46202, United States
| | - Chloe C. DiTusa
- Department of Physics, The University of Texas at Dallas, 800 W. Campbell Road, SCI 10, Richardson, Texas 75080, United States
| | - Zakari Ishak-Boushaki
- Department of Physics, The University of Texas at Dallas, 800 W. Campbell Road, SCI 10, Richardson, Texas 75080, United States
| | - Dimithree Kahanda
- Department of Physics, The University of Texas at Dallas, 800 W. Campbell Road, SCI 10, Richardson, Texas 75080, United States
- Department of Physics, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Reema McMullen
- Department of Physics, The University of Texas at Dallas, 800 W. Campbell Road, SCI 10, Richardson, Texas 75080, United States
| | - Edward A. Motea
- Department of Biochemistry and Molecular Biology, Simon Comprehensive Cancer Center, Indiana University School of Medicine, 980 W. Walnut Street, Walther Hall R3 C551, Indianapolis, Indiana 46202, United States
| | - Jason D. Slinker
- Department of Physics, The University of Texas at Dallas, 800 W. Campbell Road, SCI 10, Richardson, Texas 75080, United States
- Department of Materials Science and Engineering, The University of Texas at Dallas, 800 W. Campbell Road, SCI 10, Richardson, Texas 75080, United States
| |
Collapse
|
10
|
Sun C, Zhao W, Wang X, Sun Y, Chen X. A pharmacological review of dicoumarol: An old natural anticoagulant agent. Pharmacol Res 2020; 160:105193. [PMID: 32911072 DOI: 10.1016/j.phrs.2020.105193] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/18/2022]
Abstract
Dicoumarol is an oral anticoagulant agent prescribed in clinical for decades. It is a natural hydroxycoumarin discovered from the spoilage of Melilotus officinalis (L.) Pall and is originally discovered as a rodenticide. Due to its structural similarity to that of vitamin K, it significantly inhibits vitamin K epoxide reductase and acts as a vitamin K antagonist. Dicoumarol is mainly used as an anticoagulant to prevent thrombogenesis and to cure vascular thrombosis. Other biological activities besides anticoagulants such as anticancer, antimicrobial, antiviral, etc., have also been documented. The side effects of dicoumarol raise safety concerns for clinical application. In this review, the physicochemical property, the pharmacological activities, the side effects, and the pharmacokinetics of dicoumarol were summarized, aiming to provide a whole picture of the "old" anticoagulant.
Collapse
Affiliation(s)
- Chong Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Wenwen Zhao
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xumei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Yinxiang Sun
- Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China.
| | - Xiuping Chen
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau.
| |
Collapse
|
11
|
All-electrochemical nanocomposite two-electrode setup for quantification of drugs and study of their electrocatalytical conversion by cytochromes P450. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135579] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Shen S, Zhang X, Zhang F, Wang D, Long D, Niu Y. Three-gradient constructions in a flow-rate insensitive microfluidic system for drug screening towards personalized treatment. Talanta 2020; 208:120477. [DOI: 10.1016/j.talanta.2019.120477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
|