1
|
Afshari Babazad M, Foroozandeh A, Abdouss M, SalarAmoli H, Babazad RA, Hasanzadeh M. Recent progress and challenges in biosensing of carcinoembryonic antigen. Trends Analyt Chem 2024; 180:117964. [DOI: 10.1016/j.trac.2024.117964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Xin L, Yuxin W, Pan L, Jingming G, Guosong L. Boosting activation of molecular oxygen on the surface of fluorine doped g-C3N4 for efficient degradation of tetracycline: Synergistic effect of surface double central atom coordination and photo-Fenton oxidation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
Photoactivities regulating of inorganic semiconductors and their applications in photoelectrochemical sensors for antibiotics analysis: A systematic review. Biosens Bioelectron 2022; 216:114634. [DOI: 10.1016/j.bios.2022.114634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
|
4
|
Pourmadadi M, Rajabzadeh-Khosroshahi M, Saeidi Tabar F, Ajalli N, Samadi A, Yazdani M, Yazdian F, Rahdar A, Díez-Pascual AM. Two-Dimensional Graphitic Carbon Nitride (g-C 3N 4) Nanosheets and Their Derivatives for Diagnosis and Detection Applications. J Funct Biomater 2022; 13:204. [PMID: 36412845 PMCID: PMC9680252 DOI: 10.3390/jfb13040204] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 12/14/2022] Open
Abstract
The early diagnosis of certain fatal diseases is vital for preventing severe consequences and contributes to a more effective treatment. Despite numerous conventional methods to realize this goal, employing nanobiosensors is a novel approach that provides a fast and precise detection. Recently, nanomaterials have been widely applied as biosensors with distinctive features. Graphite phase carbon nitride (g-C3N4) is a two-dimensional (2D) carbon-based nanostructure that has received attention in biosensing. Biocompatibility, biodegradability, semiconductivity, high photoluminescence yield, low-cost synthesis, easy production process, antimicrobial activity, and high stability are prominent properties that have rendered g-C3N4 a promising candidate to be used in electrochemical, optical, and other kinds of biosensors. This review presents the g-C3N4 unique features, synthesis methods, and g-C3N4-based nanomaterials. In addition, recent relevant studies on using g-C3N4 in biosensors in regard to improving treatment pathways are reviewed.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
| | | | - Fatemeh Saeidi Tabar
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
| | - Narges Ajalli
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
| | - Amirmasoud Samadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
- Department of Chemical and Biomolecular Engineering, 6000 Interdisciplinary Science & Engineering Building (ISEB), Irvine, CA 92617, USA
| | - Mahsa Yazdani
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran 14179-35840, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of science, University of Zabol, Zabol 538-98615, Iran
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
5
|
Du M, Chen Q, Xu X. A novel and label-free electrochemical aptasensor based on exonuclease III and G-quadruplex DNAzyme for sensitive and selective detection of metronidazole. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Liang S, Wang Z, Zhou Z, Liang G, Zhang Y. Polymeric carbon nitride-based materials: Rising stars in bioimaging. Biosens Bioelectron 2022; 211:114370. [PMID: 35597145 DOI: 10.1016/j.bios.2022.114370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022]
Abstract
Polymeric carbon nitrides (CN), due to their unique physicochemical properties, versatile surface functionalization, ultra-high surface area, and good biocompatibility, have attracted considerable interest in diverse biomedical applications, such as biosensors, drug delivery, bioimaging, and theranostics. In this review, the recent advances in bioimaging of CN-based nanomaterials are summarized according to the imaging modalities, including optical (fluorescence and Raman) imaging, magnetic resonance imaging (MRI), photoacoustic imaging (PAI), computed tomography (CT), and multimodal imaging. The pros and cons of CN bioimaging are comprehensively analyzed and compared with those in previous reports. In the end, the prospects and challenges of their future bioimaging applications are outlooked.
Collapse
Affiliation(s)
- Sicheng Liang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Zhuang Wang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Zhixin Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Gaolin Liang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
7
|
An Z, Shi Z, Lv J, Li X, Liu G, Li Y, Yan Z, Lu Y, Wang D, Jiang J, Zhang F, Liu Q. Elimination of oxygen interference in the photoelectrochemical sensor with ferricyanide shield oxygen reduction for point of care testing. Anal Chim Acta 2022; 1206:339796. [DOI: 10.1016/j.aca.2022.339796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022]
|
8
|
Dang X, Wu S, Zhang H, Quan X, Zhao H. Simultaneous heteroatom doping and microstructure construction by solid thermal melting method for enhancing photoelectrochemical property of g-C3N4 electrodes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Abstract
Nowadays, the emerging photoelectrochemical (PEC) bioanalysis has drawn intensive interest due to its numerous merits. As one of its core elements, functional nanostructured materials play a crucial role during the construction of PEC biosensors, which can not only be employed as transducers but also act as signal probes. Although both chemical composition and morphology control of nanostructured materials contribute to the excellent analytical performance of PEC bioassay, surveys addressing nanostructures with different dimensionality have rarely been reported. In this review, according to classification based on dimensionality, zero-dimensional, one-dimensional, two-dimensional, and three-dimensional nanostructures used in PEC bioanalysis are evaluated, with an emphasis on the effect of morphology on the detection performances. Furthermore, using the illustration of recent works, related novel PEC biosensing patterns with promising applications are also discussed. Finally, the current challenges and some future perspectives in this field are addressed based on our opinions.
Collapse
|
10
|
Design principle in biosensing: Critical analysis based on graphitic carbon nitride (G-C3N4) photoelectrochemical biosensor. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116454] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Liu X, Song N, Qian D, Gu S, Pu J, Huang L, Liu J, Qian K. Porous Inorganic Materials for Bioanalysis and Diagnostic Applications. ACS Biomater Sci Eng 2021; 8:4092-4109. [PMID: 34494831 DOI: 10.1021/acsbiomaterials.1c00733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Porous inorganic materials play an important role in adsorbing targeted analytes and supporting efficient reactions in analytical science. The detection performance relies on the structural properties of porous materials, considering the tunable pore size, shape, connectivity, etc. Herein, we first clarify the enhancement mechanisms of porous materials for bioanalysis, concerning the detection sensitivity and selectivity. The diagnostic applications of porous material-assisted platforms by coupling with various analytical techniques, including electrochemical sensing, optical spectrometry, and mass spectrometry, etc., are then reviewed. We foresee that advanced porous materials will bring far-reaching implications in bioanalysis toward real-case applications, especially as diagnostic assays in clinical settings.
Collapse
Affiliation(s)
- Xun Liu
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Naikun Song
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Dahong Qian
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Sai Gu
- School of Engineering, University of Warwick, Coventry CV4 7AL, W Midlands, England.,Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU27XH, United Kingdom
| | - Jun Pu
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, P. R. China
| | - Lin Huang
- Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, P. R. China
| | - Jian Liu
- Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU27XH, United Kingdom.,Chinese Academy of Sciences, Dalian Institute of Chemical Physics, CAS State Key Laboratory of Catalysis, 568 Zhongshan Road, Dalian 116023, P. R. China
| | - Kun Qian
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.,Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, P. R. China
| |
Collapse
|
12
|
Modified electrodes for electrochemical determination of metronidazole in drug formulations and biological samples: An overview. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Peng J, Yang J, Chen B, Zeng S, Zheng D, Chen Y, Gao W. Design of ultrathin nanosheet subunits ZnIn 2S 4 hollow nanocages with enhanced photoelectric conversion for ultrasensitive photoelectrochemical sensing. Biosens Bioelectron 2021; 175:112873. [PMID: 33298338 DOI: 10.1016/j.bios.2020.112873] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/19/2020] [Accepted: 11/27/2020] [Indexed: 01/10/2023]
Abstract
Herein, a high-efficiency photoactive material, hollow ZnIn2S4 nanocages (ZIS-HNCs) composed of ultrathin nanosheets were creatively synthesized via a metal-organic framework (MOF) derived solvothermal method. It had been specified the underlying mechanism of the ZIS-HNCs evolution under the MOF templated surface. Subsequently, the obtained ZIS-HNCs combined with annealing TiO2 modified electrode (ZIS-HNCs@TiO2), and the ZIS-HNCs@TiO2 exhibited intense transient photocurrent. The enhanced photocurrent signal benefited from the multiple light capture effect of ZIS-HNCs, ultrathin nanosheet subunits of ZIS-HNCs, and typical type Ⅱ heterojunction, which could effectively retard the photoexcited electron-hole pairs recombination, and accelerated charge separation and transfer. Taking antibiotic lincomycin (Lin) as a model, a signal-off photoelectrochemical (PEC) aptasensor based on the ZIS-HNCs@TiO2 was established and manifested a high sensitive detection for Lin with a linear response range from 0.0001 to 0.1 nM as well as an ultralow detection limit of 0.084 pM. Additionally, the proposed PEC aptasensor showed acceptable stability and remarkable selectivity. Therefore, this study provides a promising strategy to design nanomaterials with superior photoelectric activity for PEC sensing applications.
Collapse
Affiliation(s)
- Jingjun Peng
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, PR China
| | - Jianying Yang
- National Detergents and Cosmetics Products Quality Supervision and Inspection Center (Guangdong), Shantou, Guangdong, 515041, PR China
| | - Bei Chen
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, 515063, PR China
| | - Shanshan Zeng
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, PR China
| | - Delun Zheng
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, PR China
| | - Yaowen Chen
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, PR China
| | - Wenhua Gao
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, PR China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong, 515041, PR China.
| |
Collapse
|
14
|
Yao X, Wang Z, Zhao M, Liu S, Su L, Dou L, Li T, Wang J, Zhang D. Graphite-like carbon nitride-laden gold nanoparticles as signal amplification label for highly sensitive lateral flow immunoassay of 17β-estradiol. Food Chem 2021; 347:129001. [PMID: 33503575 DOI: 10.1016/j.foodchem.2021.129001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 12/16/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022]
Abstract
Conventional gold nanoparticles-based lateral flow immunoassays (AuNPs-LFIA) lack sensitivity. In this work, we developed a graphite-like carbon nitride-laden AuNPs (g-C3N4@Au) assisted LFIA to improve sensitivity for 17β-estradiol (E2) in foods. g-C3N4 nanosheets were applied as carriers, because of their excellent chemical stability, large surface areas and low-cost, loading large numbers of AuNPs to amplify signals and improve the overall response of g-C3N4@Au-based LFIA (g-C3N4@Au-LFIA). The lowest visual limit of detection (vLOD) of E2 is 0.5 ng mL-1 for g-C3N4@Au-LFIA, which exhibit a significantly three-fold improved analytical performance compared with that of AuNPs-LFIA. Additionally, this method was successfully used to the detection of E2 in four spiked food samples, offering a great potential of the g-C3N4@Au based LFIA for its application in food products.
Collapse
Affiliation(s)
- Xiaolin Yao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zonghan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Man Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lihong Su
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Leina Dou
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tao Li
- Shaanxi Institute for Food and Drug Control, Xi'an 710065, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
15
|
Hierarchical dense Ni−Co layered double hydroxide supported carbon nanofibers for the electrochemical determination of metronidazole in biological samples. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136723] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Li X, Pan X, Lu J, Zhou Y, Gong J. Dual-modal visual/photoelectrochemical all-in-one bioassay for rapid detection of AFP using 3D printed microreactor device. Biosens Bioelectron 2020; 158:112158. [DOI: 10.1016/j.bios.2020.112158] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 12/13/2022]
|
17
|
|
18
|
Liu H, Ding J, Zhang K, Ding L. Fabrication of carbon dots@restricted access molecularly imprinted polymers for selective detection of metronidazole in serum. Talanta 2019; 209:120508. [PMID: 31892057 DOI: 10.1016/j.talanta.2019.120508] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/12/2019] [Accepted: 10/26/2019] [Indexed: 02/08/2023]
Abstract
A custom-tailored design was proposed for the fabrication of carbon dots coupled with restricted access materials and molecularly imprinted polymers (CDs@RAM-MIPs) to detect metronidazole (MNZ). Biomass carbon dots (CDs) were derived from longan peels assisted with high pressure microwave, and had the merits of eco-friendly, excellent photostability and low toxicity. In this work, glycidyl methacrylate was used as a co-polymeric monomer to increase hydroxyl groups on the surface of synthetic materials, which eliminated the interference of biological macromolecules. The specific binding cavities of CDs@RAM-MIPs were formed after removing the template molecule (MNZ). The obtained CDs@RAM-MIPs can selectively capture MNZ through the specific interaction between recognition sites and MNZ, and obey photoinduced electron transfer fluorescence quenching mechanism. The highly sensitive and selective fluorescent sensor based CDs@RAM-MIPs had a wide linear range (50-1200 ng mL-1) and a low detection limit (17.4 ng mL-1) for MNZ. It has been utilized to detect MNZ in serum with recoveries of 93.5%-102.7%, and the relative standards (RSDs) were 1.9%-3.6%, respectively. This work provides a thoughtful strategy for preparation and application of CDs@RAM-MIPs, which presages its great potential for detecting trace compounds in real samples.
Collapse
Affiliation(s)
- Haochi Liu
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Kun Zhang
- Shandong Institute of Non-metallic Materials, Jinan, 250031, China
| | - Lan Ding
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
| |
Collapse
|
19
|
In-situ growth of NiWO4 saw-blade-like nanostructures and their application in photo-electrochemical (PEC) immunosensor system designed for the detection of neuron-specific enolase. Biosens Bioelectron 2019; 141:111331. [DOI: 10.1016/j.bios.2019.111331] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 11/21/2022]
|
20
|
Zhao CQ, Ding SN. Perspective on signal amplification strategies and sensing protocols in photoelectrochemical immunoassay. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Ge L, Liu Q, Hao N, Kun W. Recent developments of photoelectrochemical biosensors for food analysis. J Mater Chem B 2019; 7:7283-7300. [DOI: 10.1039/c9tb01644a] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent developments of photoelectrochemical biosensors for food analysis are summarized and the future prospects in this field are discussed.
Collapse
Affiliation(s)
- Lan Ge
- Key Laboratory of Modern Agriculture Equipment and Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Qian Liu
- Key Laboratory of Modern Agriculture Equipment and Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Nan Hao
- Key Laboratory of Modern Agriculture Equipment and Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Wang Kun
- Key Laboratory of Modern Agriculture Equipment and Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| |
Collapse
|
22
|
Tang J, Liu X, Yang C, Zhang Z, Sun R, Li H, Li C, Wang F. A carbon-rich nanofiber framework based on a conjugated arylacetylene polymer for photocathodic enzymatic bioanalysis. RSC Adv 2019; 9:42533-42542. [PMID: 35542846 PMCID: PMC9076658 DOI: 10.1039/c9ra09157b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/06/2019] [Indexed: 01/11/2023] Open
Abstract
The metal-free photocathode fabricated by porous carbon-rich nanofiber framework of PTEB film realized “signal-off” photocathodic bioanalysis of glucose.
Collapse
Affiliation(s)
- Junyan Tang
- Key Laboratory of Biomedical Functional Materials
- School of Science
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Xiaoya Liu
- Key Laboratory of Biomedical Functional Materials
- School of Science
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Chengwei Yang
- Key Laboratory of Biomedical Functional Materials
- School of Science
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Zhening Zhang
- Key Laboratory of Biomedical Functional Materials
- School of Science
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Rui Sun
- Key Laboratory of Biomedical Functional Materials
- School of Science
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Hongmei Li
- Key Laboratory of Biomedical Functional Materials
- School of Science
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Caolong Li
- Key Laboratory of Biomedical Functional Materials
- School of Science
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Fei Wang
- Key Laboratory of Biomedical Functional Materials
- School of Science
- China Pharmaceutical University
- Nanjing
- P. R. China
| |
Collapse
|