1
|
Liao J, Li C, Liu J, Cheng H, Li L, Tang G, Huang R, Lu Y, Chen S, Zhang Q, Chen H, Chen Q, Chen H, Sun D. Automatic and integrated detection of nucleic acid by using a dual-mode thermal controlled digital microfluidic chip. Anal Chim Acta 2025; 1334:343415. [PMID: 39638464 DOI: 10.1016/j.aca.2024.343415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/02/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
The detection of nucleic acids, which typically consists of nucleic acid extraction, reverse transcription and amplification, is a crucial component of molecular diagnostics. However, traditional methods have several limitations, including high reliance on skilled personnel, low degree of automation and lengthy assay times. Additionally, these methods also require separate areas for the different steps to avoid contamination. Though a number of digital microfluidic (DMF) chips have been reported to detect the nucleic acids, but there is a noticeable absence of fully integrated DMF platforms capable of concurrently performing nucleic acid extraction, amplification, and signal detection. Here, a DMF chip combined with a dual-mode thermal control module was developed to realize the automatic and integrated detection of nucleic acids. The dual-mode thermal control module provided the required temperatures (with a range from 4 °C to 95 °C) for all the steps of nucleic acid detection. Pseudoviruses of SARS-CoV-2 and monkeypox were chosen to demonstrate the feasibility of the DMF chip, and all assays were completed within 40 min. The results confirmed that the products extracted under 4 °C exhibited high concentration and integrity, which were comparable to those by traditional methods. And the analytical performance of amplify was comparable to that of traditional methods with a more compact design, shorter time, smaller size and more automatic operation. With the ability of dual-mode thermo control and full automatic operation, nucleic acid detection with the characteristics of sample-in-result-out was realized on the DMF chip, which holds great promise in fields such as in vitro diagnostics and point-of-care testing.
Collapse
Affiliation(s)
- Jiaqi Liao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chonghao Li
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jiajia Liu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
| | - Hao Cheng
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
| | - Linmin Li
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
| | - Guixi Tang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ru Huang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yating Lu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Siyue Chen
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Qian Zhang
- College of the Environment & Ecology, Xiamen University, Xiamen, Fujian, 361005, China
| | - Hao Chen
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Qinyuan Chen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
| | - Hong Chen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Daoheng Sun
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
2
|
Kalyani N, Pastor MC, Pezzarossa L, Moller-Hansen I, Tanev G, Dimaki M, Borodina I, Madsen J, Svendsen WE. Antifouling slippery liquid infused porous surface for surfactant-free PCR on digital microfluidics platform. Talanta 2025; 282:127001. [PMID: 39406097 DOI: 10.1016/j.talanta.2024.127001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 11/20/2024]
Abstract
Digital microfluidics technology has immense potential for multiplexing biological processes, reducing reagents, and minimizing process time. However, biofouling of surfaces causes cross-contamination, slow droplet movement, and prolonged experiment time, hindering its full potential. Traditionally surfactants are used to combat this issue but can interfere with biological reactions leading to low efficiency. An alternative is the use of slippery liquid-infused porous surfaces (SLIPS), which do not interfere with the reactions and offer a solution to the biofouling problem. In this study, we compare Teflon surfaces with SLIPS to address the challenge of biofouling in Digital MicroFluidic (DMF) devices. More specifically, we demonstrate that SLIPS in an Electrowetting-on-Dielectric (EWOD)-based DMF device not only prevents biofouling but also enhances PCR efficiency, reducing reaction times and reagent consumption. These advancements eliminate the need for surfactants, which can interfere with biological reactions, thereby ensuring higher fidelity in PCR amplification. Our findings reveal that SLIPS facilitate faster droplet movement and maintain reaction integrity, showcasing their potential for high-throughput biological assays.
Collapse
Affiliation(s)
- Neeti Kalyani
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Luca Pezzarossa
- DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Iben Moller-Hansen
- DTU Biosustain, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Georgi Tanev
- DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Maria Dimaki
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Irina Borodina
- DTU Biosustain, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Jan Madsen
- DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark.
| | | |
Collapse
|
3
|
Piao Y, Fang Y, Li B, Man T, Chen J, Zhu F, Wang W, Wan Y, Deng S. Bead-Based DNA Synthesis and Sequencing for Integrated Data Storage Using Digital Microfluidics. Angew Chem Int Ed Engl 2024:e202416004. [PMID: 39606901 DOI: 10.1002/anie.202416004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/24/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
DNA is considered as a prospective candidate for the next-generation data storage medium, due to its high coding density, long cold-storage lifespan, and low energy consumption. Despite these advantages, challenges remain in achieving high-fidelity, fully integrated, and cost-efficient DNA storage system. In this study, a homemade digital microfluidic (DMF)-based compact DNA data storing pipeline is orchestrated to complete the entire process from the synthesis to the sequencing. The synthetic half employs phosphoramidite chemistry on 200 nm magnetic beads (MBs), where the dimethyltrityl protecting group is removed by droplet manipulation of trichloroacetic acid. The sequencing counterpart relies on pyrophosphate releasing originated from polymerase-catalyzed primer extension, which leads to photon-countable chemiluminescence (CL) signal in 2.5-μL drops of trienzyme cascading reactions. Further by DNA denaturation, repeated pyrosequencing plus plurality voting can improve the nucleobase accuracy beyond 95 %. As a proof-of-concept trial, semantic information is saved in DNA via the Huffman coding algorithm plus the Reed-Solomon error-correction, and then robustly retrieved from this streamlined platform. As a result, it took a net total of approximately 6.5 h to writing and reading 8 bytes of data, that equal to a storaging speed of 49 min/byte, much quicker than the previously reported 2.8-4.2 h/byte. This bead-based miniaturized device promises an unattended protocol for achieving high-throughput, full-packaged, and above all, neatly precision DNA storage.
Collapse
Affiliation(s)
- Yuhao Piao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yitong Fang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Bin Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Tiantian Man
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jie Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Fulin Zhu
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Weiqiang Wang
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ying Wan
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Shengyuan Deng
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
4
|
Li K, Lu X, Liao J, Chen H, Lin W, Zhao Y, Tang D, Li C, Tian Z, Zhu Z, Jiang H, Sun J, Zhang H, Yang C. DNA-DISK: Automated end-to-end data storage via enzymatic single-nucleotide DNA synthesis and sequencing on digital microfluidics. Proc Natl Acad Sci U S A 2024; 121:e2410164121. [PMID: 39145927 PMCID: PMC11348301 DOI: 10.1073/pnas.2410164121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/21/2024] [Indexed: 08/16/2024] Open
Abstract
In the age of information explosion, the exponential growth of digital data far exceeds the capacity of current mainstream storage media. DNA is emerging as a promising alternative due to its higher storage density, longer retention time, and lower power consumption. To date, commercially mature DNA synthesis and sequencing technologies allow for writing and reading of information on DNA with customization and convenience at the research level. However, under the disconnected and nonspecialized mode, DNA data storage encounters practical challenges, including susceptibility to errors, long storage latency, resource-intensive requirements, and elevated information security risks. Herein, we introduce a platform named DNA-DISK that seamlessly streamlined DNA synthesis, storage, and sequencing on digital microfluidics coupled with a tabletop device for automated end-to-end information storage. The single-nucleotide enzymatic DNA synthesis with biocapping strategy is utilized, offering an ecofriendly and cost-effective approach for data writing. A DNA encapsulation using thermo-responsive agarose is developed for on-chip solidification, not only eliminating data clutter but also preventing DNA degradation. Pyrosequencing is employed for in situ and accurate data reading. As a proof of concept, DNA-DISK successfully stored and retrieved a musical sheet file (228 bits) with lower write-to-read latency (4.4 min of latency per bit) as well as superior automation compared to other platforms, demonstrating its potential to evolve into a DNA Hard Disk Drive in the future.
Collapse
Affiliation(s)
- Kunjie Li
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Discipline Intelligent Instrument & Equipment, Xiamen University, Xiamen361005, China
| | - Xiaoyun Lu
- Zhonghe Gene Technology Co., Ltd., Tianjin300308, China
| | - Jiaqi Liao
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Discipline Intelligent Instrument & Equipment, Xiamen University, Xiamen361005, China
| | - Heng Chen
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Discipline Intelligent Instrument & Equipment, Xiamen University, Xiamen361005, China
| | - Wei Lin
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen361005, China
| | - Yuhan Zhao
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen361005, China
| | - Dongbao Tang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen361005, China
| | - Congyu Li
- Zhonghe Gene Technology Co., Ltd., Tianjin300308, China
| | - Zhenyang Tian
- Zhonghe Gene Technology Co., Ltd., Tianjin300308, China
| | - Zhi Zhu
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Discipline Intelligent Instrument & Equipment, Xiamen University, Xiamen361005, China
| | - Huifeng Jiang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin300308, China
| | - Jun Sun
- Zhonghe Gene Technology Co., Ltd., Tianjin300308, China
| | - Huimin Zhang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen361005, China
| | - Chaoyong Yang
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Discipline Intelligent Instrument & Equipment, Xiamen University, Xiamen361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen361005, China
| |
Collapse
|
5
|
Yang C, Gan X, Zeng Y, Xu Z, Xu L, Hu C, Ma H, Chai B, Hu S, Chai Y. Advanced design and applications of digital microfluidics in biomedical fields: An update of recent progress. Biosens Bioelectron 2023; 242:115723. [PMID: 37832347 DOI: 10.1016/j.bios.2023.115723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
Significant breakthroughs have been made in digital microfluidic (DMF)-based technologies over the past decades. DMF technology has attracted great interest in bioassays depending on automatic microscale liquid manipulations and complicated multi-step processing. In this review, the recent advances of DMF platforms in the biomedical field were summarized, focusing on the integrated design and applications of the DMF system. Firstly, the electrowetting-on-dielectric principle, fabrication of DMF chips, and commercialization of the DMF system were elaborated. Then, the updated droplets and magnetic beads manipulation strategies with DMF were explored. DMF-based biomedical applications were comprehensively discussed, including automated sample preparation strategies, immunoassays, molecular diagnosis, blood processing/testing, and microbe analysis. Emerging applications such as enzyme activity assessment and DNA storage were also explored. The performance of each bioassay was compared and discussed, providing insight into the novel design and applications of the DMF technology. Finally, the advantages, challenges, and future trends of DMF systems were systematically summarized, demonstrating new perspectives on the extensive applications of DMF in basic research and commercialization.
Collapse
Affiliation(s)
- Chengbin Yang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.
| | - Xiangyu Gan
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.
| | - Yuping Zeng
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.
| | - Zhourui Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.
| | - Longqian Xu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Chenxuan Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Hanbin Ma
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China; Guangdong ACXEL Micro & Nano Tech Co., Ltd, Foshan, China.
| | - Bao Chai
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China; Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.
| | - Siyi Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Yujuan Chai
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.
| |
Collapse
|
6
|
Wu X, Tang D, He Q, Liu L, Jia Z, Tan Y. Research progress of electrode shapes in EWOD-based digital microfluidics. RSC Adv 2023; 13:16815-16827. [PMID: 37283873 PMCID: PMC10240258 DOI: 10.1039/d3ra01817b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
Digital microfluidics (DMF) is an innovative technology used for precise manipulation of liquid droplets. This technology has garnered significant attention in both industrial applications and scientific research due to its unique advantages. Among the key components of DMF, the driving electrode plays a role in facilitating droplet generation, transportation, splitting, merging, and mixing. This comprehensive review aims to present an in-depth understanding of the working principle of DMF particularly focusing on the Electrowetting On Dielectric (EWOD) method. Furthermore, it examines the impact of driving electrodes with varying geometries on droplet manipulation. By analyzing and comparing their characteristics, this review offers valuable insights and a fresh perspective on the design and application of driving electrodes in DMF based on the EWOD approach. Lastly, an assessment of the development trend and potential applications of DMF concludes the review, providing an outlook for future prospects in the field.
Collapse
Affiliation(s)
- Xingyue Wu
- School of Electrical Engineering, Ultra-fast/Micro-nano Technology and Advanced Laser Manufacturing Key Laboratory of Hunan Province, University of South China Hengyang 421001 China
| | - Dongbao Tang
- School of Electrical Engineering, Ultra-fast/Micro-nano Technology and Advanced Laser Manufacturing Key Laboratory of Hunan Province, University of South China Hengyang 421001 China
| | - Qianpei He
- Department of Comparative Medicine, School of Medicine, University of Washington Seattle WA USA
| | - Luxuan Liu
- School of Electrical Engineering, Ultra-fast/Micro-nano Technology and Advanced Laser Manufacturing Key Laboratory of Hunan Province, University of South China Hengyang 421001 China
| | - Zhaoyuan Jia
- School of Electrical Engineering, Ultra-fast/Micro-nano Technology and Advanced Laser Manufacturing Key Laboratory of Hunan Province, University of South China Hengyang 421001 China
| | - Yuyu Tan
- School of Electrical Engineering, Ultra-fast/Micro-nano Technology and Advanced Laser Manufacturing Key Laboratory of Hunan Province, University of South China Hengyang 421001 China
| |
Collapse
|
7
|
Coelho BJ, Pinto JV, Martins J, Rovisco A, Barquinha P, Fortunato E, Baptista PV, Martins R, Igreja R. Parylene C as a Multipurpose Material for Electronics and Microfluidics. Polymers (Basel) 2023; 15:polym15102277. [PMID: 37242852 DOI: 10.3390/polym15102277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Poly(p-xylylene) derivatives, widely known as Parylenes, have been considerably adopted by the scientific community for several applications, ranging from simple passive coatings to active device components. Here, we explore the thermal, structural, and electrical properties of Parylene C, and further present a variety of electronic devices featuring this polymer: transistors, capacitors, and digital microfluidic (DMF) devices. We evaluate transistors produced with Parylene C as a dielectric, substrate, and encapsulation layer, either semitransparent or fully transparent. Such transistors exhibit steep transfer curves and subthreshold slopes of 0.26 V/dec, negligible gate leak currents, and fair mobilities. Furthermore, we characterize MIM (metal-insulator-metal) structures with Parylene C as a dielectric and demonstrate the functionality of the polymer deposited in single and double layers under temperature and AC signal stimuli, mimicking the DMF stimuli. Applying temperature generally leads to a decrease in the capacitance of the dielectric layer, whereas applying an AC signal leads to an increase in said capacitance for double-layered Parylene C only. By applying the two stimuli, the capacitance seems to suffer from a balanced influence of both the separated stimuli. Lastly, we demonstrate that DMF devices with double-layered Parylene C allow for faster droplet motion and enable long nucleic acid amplification reactions.
Collapse
Affiliation(s)
- Beatriz J Coelho
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
- UCIBIO, I4HB, Department of Life Sciences, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Joana V Pinto
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Jorge Martins
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Ana Rovisco
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Pedro Barquinha
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Elvira Fortunato
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Pedro V Baptista
- UCIBIO, I4HB, Department of Life Sciences, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Rodrigo Martins
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Rui Igreja
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| |
Collapse
|
8
|
Choi JW, Seo WH, Kang T, Kang T, Chung BG. Droplet digital recombinase polymerase amplification for multiplexed detection of human coronavirus. LAB ON A CHIP 2023; 23:2389-2398. [PMID: 37083004 DOI: 10.1039/d3lc00025g] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Since the outbreak of coronavirus 2019 (COVID-19), detection technologies have been attracting a great deal of attention in molecular diagnosis applications. In particular, the droplet digital PCR (ddPCR) has become a promising tool as it offers absolute quantification of target nucleic acids with high specificity and sensitivity. In recent years, the combination of the isothermal amplification strategies has made ddPCR a popular method for on-site testing by enabling amplification at a constant temperature. However, the current isothermal ddPCR assays are still challenging due to inherent non-specific amplification. In this paper, we present a multiplexed droplet digital recombinase polymerase amplification (MddRPA) with precise initiation of the reaction. First, the reaction temperature and dynamic range of reverse transcription (RT) and RPA were characterized by real-time monitoring of fluorescence intensities. Using a droplet-based microfluidic chip, the master mix and the initiator were fractionated and rapidly mixed within well-confined droplets. Due to the high heat transfer and mass transfer of the droplets, the precise initiation of the amplification was enabled and the entire assay could be conducted within 30 min. The concentrations of target RNA in the range from 5 copies per μL to 2500 copies per μL could be detected with high linearity (R2 > 0.999). Furthermore, the multiplexed detection of three types of human coronaviruses was successfully demonstrated with high specificity (>96%). Finally, we compared the performance of the assay with a commercial RT-qPCR system using COVID-19 clinical samples. The MddRPA assay showed a 100% concordance with the RT-qPCR results, indicating its reliability and accuracy in detecting SARS-CoV-2 nucleic acids in clinical samples. Therefore, our MddRPA assay with rapid detection, precise quantification, and multiplexing capability would be an interesting method for molecular diagnosis of viral infections.
Collapse
Affiliation(s)
- Ji Wook Choi
- Department of Mechanical Engineering, Sogang University, Seoul, Korea.
| | - Won Ho Seo
- Department of Biomedical Engineering, Sogang University, Seoul, Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- School of Pharmacy, Sungkyunkwan University (SKKU), Suwon, Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Korea
- Institute of Integrated Biotechnology, Sogang University, Seoul, Korea
| | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul, Korea.
- Institute of Integrated Biotechnology, Sogang University, Seoul, Korea
| |
Collapse
|
9
|
Wu L, Manchanda A, Gupta V, Paull B. Graphene Oxide-Functionalized Thread-Based Electrofluidic Approach for DNA Hybridization. ACS OMEGA 2023; 8:13569-13577. [PMID: 37091394 PMCID: PMC10116522 DOI: 10.1021/acsomega.2c06228] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
A novel, low-cost, and disposable thread-based electrofluidic analytical method employing isotachophoresis (ITP) was developed for demonstrating surface DNA hybridization. This approach was based on graphene oxide (GO) surface-functionalized zones on nylon threads as a binding platform to trap a fluorescently labeled isotachophoretically focused single-stranded DNA (ssDNA) band, resulting in quenching of the fluorescence, which signaled quantitative trapping. In the event of an isotachophoretically focused complementary DNA (cDNA) band passing over the GO-trapped ssDNA zone, surface hybridization of the ssDNA and cDNA to form double-stranded DNA (dsDNA) band occurred, which is released from the GO-coated zones, resulting in restoration of the fluorescent signal as it exits the GO band and migrates further along the thread. This controllable process demonstrates the potential of the GO-functionalized thread-based microfluidic analytical approach for DNA hybridization and its visualization, which could be adapted into point-of-care (POC) diagnostic devices for real-world applications.
Collapse
|
10
|
Xu X, Cai L, Liang S, Zhang Q, Lin S, Li M, Yang Q, Li C, Han Z, Yang C. Digital microfluidics for biological analysis and applications. LAB ON A CHIP 2023; 23:1169-1191. [PMID: 36644972 DOI: 10.1039/d2lc00756h] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Digital microfluidics (DMF) is an emerging liquid-handling technology based on arrays of microelectrodes for the precise manipulation of discrete droplets. DMF offers the benefits of automation, addressability, integration and dynamic configuration ability, and provides enclosed picoliter-to-microliter reaction space, making it suitable for lab-on-a-chip biological analysis and applications that require high integration and intricate processes. A review of DMF bioassays with a special emphasis on those actuated by electrowetting on dielectric (EWOD) force is presented here. Firstly, a brief introduction is presented on both the theory of EWOD actuation and the types of droplet motion. Subsequently, a comprehensive overview of DMF-based biological analysis and applications, including nucleic acid, protein, immunoreaction and cell assays, is provided. Finally, a discussion on the strengths, challenges, and potential applications and perspectives in this field is presented.
Collapse
Affiliation(s)
- Xing Xu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Linfeng Cai
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Shanshan Liang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Qiannan Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Shiyan Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Mingying Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Qizheng Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Chong Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Ziyan Han
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|
11
|
Yang B, Shi L, Tang Q, Liu W, Li B, Yang C, Jin Y. Automated study on kinetics and biosensing of glow-type luminescence reaction via digital microfluidics-chemiluminescence. LAB ON A CHIP 2023; 23:785-792. [PMID: 36723360 DOI: 10.1039/d2lc01153k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Automated manipulation of discrete droplets by digital microfluidics (DMF) combined with chemiluminescence (CL) is promising to achieve automated and sensitive biosensing and bioanalysis. Herein, a DMF-CL device was built to automatically study CL kinetics and biosensing of a glow-type CL reaction. Copper-cysteine nanoparticles (Cu/CysNP) were synthesized as a new CL catalyst to extend the CL reaction of luminol-H2O2 to more than 10 min. The automated manipulation of droplets reduced reagent costs and manual errors, leading to real-time, automated, and reliable study of CL kinetics. The CL kinetics curve collected by the DMF-CL integration device is in accordance with that of a commercial CL analyser. The long-lasting luminescence ensured automated, sensitive, and reliable detection of H2O2 as a direct or indirect analyte of the cascade catalytic reaction. Moreover, an innovative asymmetrical splitting method is proposed to quickly and precisely generate daughter droplets to ensure uniformity of the droplets and good repeatability of the DMF-CL measurements. Therefore, the DMF-CL analysis holds great potential for achieving online and automatic analysis and biosensing.
Collapse
Affiliation(s)
- Bing Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Lu Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Qiaorong Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Chaoyong Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
12
|
Recent progress in microfluidic biosensors with different driving forces. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Zhang T, Zhao W, Chen X, Zhang X, Zhu J, Li S, Wu C, Tian Z, Sui G. Fully Automated CRISPR-LAMP Platform for SARS-CoV-2 Delta and Omicron Variants. Anal Chem 2022; 94:15472-15480. [PMID: 36282886 DOI: 10.1021/acs.analchem.2c03607] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Integrated clustered regularly interspaced short palindromic repeat (CRISPR)-loop-mediated amplification (LAMP) technology is of great importance in CRISPR-based diagnostic systems, which urgently needs to be developed to improve diagnostic accuracy. A labor-free, contamination-free, and fully automated droplet manipulation platform for the CRISPR-LAMP technology has not been developed before. Herein, we propose a fully automated CRISPR-LAMP platform, which can precisely manipulate the CRISPR-LAMP droplet and perform combined reactions with high sensitivity and specificity. SARS-CoV-2 Spike T478K, D614G, P681R, and P681H mutations, typical point mutations of B.1.617.2 (Delta) and Omicron variants, are monitored with this platform with a detection limit of 102 copies/μL. Allele discrimination between the mutants and wild type is significant with the designed one/two-mismatch CRISPR RNA (crRNA) at a limit of 102 copies/μL. Chemically synthesized and modified crRNAs greatly increase the CRISPR-LAMP signal, which advance the wide application. Combined with the previously developed RdRp CRISPR-LAMP assay, clinical results showed that Spike T478K and P681H can discriminate the mutant type form the wild type with 70% (49.66-85.50%, 95% confidence interval) and 78% (57.27-90.62%, 95% confidence interval) sensitivity, respectively, and 100% specificity (51.68-100%, 95% confidence interval), and the RdRp target can detect SARS-CoV-2 strains with 85% sensitivity (65.39-95.14%, 95% confidence interval) and 100% specificity (51.68-100%, 95% confidence interval). We believe that this automatic digital microfluid (DMF) system can advance the integrated CRISPR-LAMP technology with higher stability, sensitivity, and practicability, also for other CRISPR-associated diagnostic platforms.
Collapse
Affiliation(s)
- Tong Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200433, P. R. China
| | - Wang Zhao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200433, P. R. China
| | - Xi Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200433, P. R. China
| | - Xinlian Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200433, P. R. China
| | - Jinhui Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200433, P. R. China
| | - Shenwei Li
- Shanghai International Travel Healthcare Center (Shanghai Customs Port Clinic), 2090 Jinqiao Road, Shanghai 200433, P. R. China
| | - Chuanyong Wu
- Shanghai Hengxin BioTechnology, 1688 North Guo Quan Road, Bldg A8, Rm 801, Shanghai 200438, P. R. China
| | - Zhengan Tian
- Shanghai International Travel Healthcare Center (Shanghai Customs Port Clinic), 2090 Jinqiao Road, Shanghai 200433, P. R. China
| | - Guodong Sui
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200433, P. R. China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, P. R. China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing 210044, P. R. China
| |
Collapse
|
14
|
All-in-One Digital Microfluidics System for Molecular Diagnosis with Loop-Mediated Isothermal Amplification. BIOSENSORS 2022; 12:bios12050324. [PMID: 35624625 PMCID: PMC9138765 DOI: 10.3390/bios12050324] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022]
Abstract
In this study, an “all-in-one” digital microfluidics (DMF) system was developed for automatic and rapid molecular diagnosis and integrated with magnetic bead-based nucleic acid extraction, loop-mediated isothermal amplification (LAMP), and real-time optical signal monitoring. First, we performed on- and off-chip comparison experiments for the magnetic bead nucleic acid extraction module and LAMP amplification function. The extraction efficiency for the on-chip test was comparable to that of conventional off-chip methods. The processing time for the automatic on-chip workflow was only 23 min, which was less than that of the conventional methods of 28 min 45 s. Meanwhile, the number of samples used in on-chip experiments was significantly smaller than that used in off-chip experiments; only 5 µL of E. coli samples was required for nucleic acid extraction, and 1 µL of the nucleic acid template was needed for the amplification reaction. In addition, we selected SARS-CoV-2 nucleic acid reference materials for the nucleic acid detection experiment, demonstrating a limit of detection of 10 copies/µL. The proposed “all-in-one” DMF system provides an on-site “sample to answer” time of approximately 60 min, which can be a powerful tool for point-of-care molecular diagnostics.
Collapse
|
15
|
Zhou P, He H, Ma H, Wang S, Hu S. A Review of Optical Imaging Technologies for Microfluidics. MICROMACHINES 2022; 13:mi13020274. [PMID: 35208397 PMCID: PMC8877635 DOI: 10.3390/mi13020274] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/15/2022]
Abstract
Microfluidics can precisely control and manipulate micro-scale fluids, and are also known as lab-on-a-chip or micro total analysis systems. Microfluidics have huge application potential in biology, chemistry, and medicine, among other fields. Coupled with a suitable detection system, the detection and analysis of small-volume and low-concentration samples can be completed. This paper reviews an optical imaging system combined with microfluidics, including bright-field microscopy, chemiluminescence imaging, spectrum-based microscopy imaging, and fluorescence-based microscopy imaging. At the end of the article, we summarize the advantages and disadvantages of each imaging technology.
Collapse
Affiliation(s)
- Pan Zhou
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China;
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Foshan University, Foshan 528225, China;
| | - Haipeng He
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Foshan University, Foshan 528225, China;
| | - Hanbin Ma
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China;
- Guangdong ACXEL Micro & Nano Tech Co., Ltd., Foshan 528000, China
| | - Shurong Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Foshan University, Foshan 528225, China;
- Correspondence: (S.W.); (S.H.)
| | - Siyi Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China;
- Correspondence: (S.W.); (S.H.)
| |
Collapse
|
16
|
Iqbal F, Shabbir MI. Genetic analysis with pyrosequencing using loop pipetting and a light dependent resistor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5035-5047. [PMID: 34647115 DOI: 10.1039/d1ay01123e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
DNA sequencing is among the most important techniques in biology to decipher the key genetic players of health and disease. The existing laboratory instruments for DNA sequencing are well established and reliable. However, these instruments are still out of reach of most laboratories in the world due to very high equipment and running costs and require trained personnel to keep them running. These instruments are also large and bulky making them unsuitable for analysis in remote settings away from laboratories. Here we describe a proof-of-concept of a DNA sequencing device LoopSeeq using a simple approach to address the said problems without minimizing the quality of results. The device was designed to perform pyrosequencing by iterative addition of dNTPs by contact dispensing through a loop pipette (loopette) and detection of chemiluminiscence with the cheapest sensor in the market, a light dependent resistor (LDR). Two small geared motors drive the moving parts in a controlled and coordinated manner with the help of a motor driver circuit, an Arduino Nano microcontroller and two small neodymium magnets. The real-time light intensity data from the LDR were transferred to a laptop computer for further analysis. Pyrosequencing was optimized using 55 nt self-primed oligo. In order to demonstrate the DNA sequencing ability with real samples, molecular genetic analysis was performed for a previously identified novel mutation from our lab in exon4 of the OCA2 gene. LoopSeeq successfully identified the homozygous normal (c.408-409_AA), homozygous mutant (c.408-409_delAA) and heterozygous carrier (c.408-409_AA/delAA) alleles in three individuals of a family affected with oculocutaneous albinism (OCA). Further, this can be implemented for molecular diagnostic applications for bacterial, viral or other pathogen detection and genotyping among different subtypes following some reports described earlier. A few drawbacks in the current implementation including the evaporation of liquid reagents, possible loopette contamination, etc. associated with use for longer times are also described along with suggestions to rectify these problems in future designs. With the described capabilities, the LoopSeeq device can be implemented in routine labs as well as in several real-world situations where conventional DNA sequencing instruments are unfeasible, for example, diagnostic testing at remote settings or at the point-of-care.
Collapse
Affiliation(s)
- Faisal Iqbal
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Sector H-10, Islamabad, Pakistan.
| | - Muhammad Imran Shabbir
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Sector H-10, Islamabad, Pakistan.
| |
Collapse
|
17
|
Lin S, Liu Y, Zhang M, Xu X, Chen Y, Zhang H, Yang C. Microfluidic single-cell transcriptomics: moving towards multimodal and spatiotemporal omics. LAB ON A CHIP 2021; 21:3829-3849. [PMID: 34541590 DOI: 10.1039/d1lc00607j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cells are the basic units of life with vast heterogeneity. Single-cell transcriptomics unveils cell-to-cell gene expression variabilities, discovers novel cell types, and uncovers the critical roles of cellular heterogeneity in biological processes. The recent advances in microfluidic technologies have greatly accelerated the development of single-cell transcriptomics with regard to throughput, sensitivity, cost, and automation. In this article, we review state-of-the-art microfluidic single-cell transcriptomics, with a focus on the methodologies. We first summarize six typical microfluidic platforms for isolation and transcriptomic analysis of single cells. Then the on-going trend of microfluidic transcriptomics towards multimodal omics, which integrates transcriptomics with other omics to provide more comprehensive pictures of gene expression networks, is discussed. We also highlight single-cell spatial transcriptomics and single-cell temporal transcriptomics that provide unprecedented spatiotemporal resolution to reveal transcriptomic dynamics in space and time, respectively. The emerging applications of microfluidic single-cell transcriptomics are also discussed. Finally, we discuss the current challenges to be tackled and provide perspectives on the future development of microfluidic single-cell transcriptomics.
Collapse
Affiliation(s)
- Shichao Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yilong Liu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Mingxia Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xing Xu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yingwen Chen
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Huimin Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|
18
|
Qin F, Zhang K, Lin B, Su P, Jia Z, Xi K, Ye J, Gu S. Solution for Mass Production of High-Throughput Digital Microfluidic Chip Based on a-Si TFT with In-Pixel Boost Circuit. MICROMACHINES 2021; 12:mi12101199. [PMID: 34683251 PMCID: PMC8541461 DOI: 10.3390/mi12101199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022]
Abstract
As one of the most popular research hotspot of lab-on-chip, digital microfluidic (DMF) technology based on the principle of electrowetting has unique advantages of high-precision, low cost and programmable control. However, due to the limitation of electrodes number, the throughput is hard to further upgrade. Therefore, active matrix electrowetting-on-dielectric (AM-EWOD) technology is a solution to acquire larger scale of driving electrodes. However, the process of manufacturing of AM-EWOD based on thin-film-transistor (TFT) is complex and expensive. Besides, the driving voltage of DMF chip is usually much higher than that of common display products.In this paper, a solution for mass production of AM-EWOD based on amorphous silicon (a-Si) is provided. Samples of 32 × 32 matrix AM-EWOD chips was designed and manufactured. A boost circuit was integrated into the pixel, which can raise the pixel voltage up by about 50%. Customized designed Printed Circuit Board (PCB) was used to supply the timing signals and driving voltage to make the motion of droplets programmable. The process of moving, mixing and generation of droplets was demonstrated.The minimum voltage in need was about 20 V and a velocity of up to 96 mm/s was achieved. Such an DMF device with large-scale matrix and low driving voltage will be very suitable for POCT applications.
Collapse
Affiliation(s)
- Feng Qin
- School of Electronic Science & Engineering, Nanjing University, Nanjing 210023, China; (F.Q.); (J.Y.)
- Shanghai AVIC Optoelectronics, 3388 Huaning Rd., Minhang District, Shanghai 201108, China;
| | - Kaidi Zhang
- Shanghai Tianma Micro-Electronics, 889 Huiqing Rd., Pudong District, Shanghai 201201, China; (K.Z.); (B.L.); (P.S.); (Z.J.)
| | - Baiquan Lin
- Shanghai Tianma Micro-Electronics, 889 Huiqing Rd., Pudong District, Shanghai 201201, China; (K.Z.); (B.L.); (P.S.); (Z.J.)
| | - Ping Su
- Shanghai Tianma Micro-Electronics, 889 Huiqing Rd., Pudong District, Shanghai 201201, China; (K.Z.); (B.L.); (P.S.); (Z.J.)
| | - Zhenyu Jia
- Shanghai Tianma Micro-Electronics, 889 Huiqing Rd., Pudong District, Shanghai 201201, China; (K.Z.); (B.L.); (P.S.); (Z.J.)
| | - Kerui Xi
- Shanghai AVIC Optoelectronics, 3388 Huaning Rd., Minhang District, Shanghai 201108, China;
| | - Jiandong Ye
- School of Electronic Science & Engineering, Nanjing University, Nanjing 210023, China; (F.Q.); (J.Y.)
| | - Shulin Gu
- School of Electronic Science & Engineering, Nanjing University, Nanjing 210023, China; (F.Q.); (J.Y.)
- Correspondence:
| |
Collapse
|
19
|
Wang J, Guo J, Zhao K, Ruan W, Li L, Ling J, Peng R, Zhang H, Yang C, Zhu Z. Auto-Panning: a highly integrated and automated biopanning platform for peptide screening. LAB ON A CHIP 2021; 21:2702-2710. [PMID: 34105587 DOI: 10.1039/d1lc00129a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biopanning, a common affinity selection approach in phage display, has evolved numerous ligands for diagnosis, imaging, delivery, and therapy applications. However, traditional biopanning has suffered from time-consuming processes, highly-repetitive procedures and labor-intensive manual operation. Herein, a highly integrated and automated biopanning platform (Auto-Panning) is proposed. Based on digital microfluidics (DMF), biopanning processes are integrated on a chip with highly reproducible, precise, automated liquid manipulation. Therefore, 3 rounds of Auto-Panning can be accomplished within 16 h, instead of nearly a week of complicated manual operations. Auto-Panning has been used to evolve a specific peptide against cancer biomarker EphA2 with excellent cellular penetrating ability and significant invasion suppression biofunction, successfully demonstrating the practicality of the platform. Overall, as an automated programmable molecular screening platform, Auto-Panning will further promote the discovery and applications of novel ligands.
Collapse
Affiliation(s)
- Junxia Wang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Jingjing Guo
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Kaifeng Zhao
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China. and Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Weidong Ruan
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Liang Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Jiajun Ling
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Ruixiao Peng
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Huimin Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China. and Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
20
|
An ISFET Microarray Sensor System for Detecting the DNA Base Pairing. MICROMACHINES 2021; 12:mi12070731. [PMID: 34206209 PMCID: PMC8305849 DOI: 10.3390/mi12070731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 01/15/2023]
Abstract
Deoxyribonucleic acid (DNA) sequencing technology provides important data for the disclosure of genetic information and plays an important role in gene diagnosis and gene therapy. Conventional sequencing devices are expensive and require large and bulky optical structures and additional fluorescent labeling steps. Sequencing equipment based on a semiconductor chip has the advantages of fast sequencing speed, low cost and small size. The detection of DNA base pairing is the most important step in gene sequencing. In this study, a large-scale ion-sensitive field-effect transistor (ISFET) array chip with more than 13 million sensitive units is successfully designed for detecting the DNA base pairing. DNA base pairing is successfully detected by the sensor system, which includes the ISFET microarray chip, microfluidic system, and test platform. The chip achieves a high resolution of at least 0.5 mV, thus enabling the recognition of the change of 0.01 pH value. This complementary metal-oxide semiconductor (CMOS) compatible and cost-efficient sensor array chip, together with other specially designed components, can form a complete DNA sequencing system with potential application in the molecular biology fields.
Collapse
|
21
|
Ruan Q, Zou F, Wang Y, Zhang Y, Xu X, Lin X, Tian T, Zhang H, Zhou L, Zhu Z, Yang C. Sensitive, Rapid, and Automated Detection of DNA Methylation Based on Digital Microfluidics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8042-8048. [PMID: 33576594 DOI: 10.1021/acsami.0c21995] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biomarkers based on DNA methylation have attracted wide attention in biomedical research due to their potential clinical value. Therefore, a sensitive and accurate method for DNA methylation detection is highly desirable for the discovery and diagnostics of human diseases, especially cancers. Here, an integrated, low-cost, and portable point-of-care (POC) device is presented to analyze DNA methylation, which integrates the process of pyrosequencing in a digital microfluidic chip. Without additional equipment and complicated operation, droplets are manipulated by patterned electrodes with individually programmed control. The system exhibited an excellent sensitivity with a limit of detection (LOD) of 10 pg and a comparable checkout down to 5% methylation level within 30 min, which offered a potential substitute for the detection of DNA methylation. With the advantages of portability, ease of use, high accuracy, and low cost, the POC platform shows great potential for the analysis of tumor-specific circulating DNA.
Collapse
Affiliation(s)
- Qingyu Ruan
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fenxiang Zou
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yang Wang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yingkun Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Xu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaoye Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tian Tian
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huimin Zhang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen 361005, China
| | - Leiji Zhou
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
22
|
Xu X, Zhang Q, Song J, Ruan Q, Ruan W, Chen Y, Yang J, Zhang X, Song Y, Zhu Z, Yang C. A Highly Sensitive, Accurate, and Automated Single-Cell RNA Sequencing Platform with Digital Microfluidics. Anal Chem 2020; 92:8599-8606. [DOI: 10.1021/acs.analchem.0c01613] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xing Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Qianqian Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Jia Song
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qingyu Ruan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Weidong Ruan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Yujie Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Jian Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Xuebing Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Yanling Song
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Zhi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Chaoyong Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
23
|
Guo J, Lin L, Zhao K, Song Y, Huang M, Zhu Z, Zhou L, Yang C. Auto-affitech: an automated ligand binding affinity evaluation platform using digital microfluidics with a bidirectional magnetic separation method. LAB ON A CHIP 2020; 20:1577-1585. [PMID: 32207498 DOI: 10.1039/d0lc00024h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The dissociation constant (Kd) is a crucial parameter for characterizing binding affinity in molecular recognition, including antigen-antibody, DNA-protein, and receptor-ligand interactions. However, conventional methods for Kd characterization usually involve a multi-step process and time-consuming operations for incubation, washing, and detection, thus causing problems, such as time delays, microbead loss, degradation of sensitive molecules, and personal errors. Here we demonstrate an automated ligand binding affinity evaluation platform (Auto-affitech) using digital microfluidics (DMF), with individual droplets at the microliter level, programmed to rapidly perform the incubation and separation of target-beads and binding ligands. Because the loss of the beads influences the detection results, we propose a new strategy for magnetic bead separation using DMF, termed the bidirectional separation method. By splitting one droplet into two asymmetric droplets, high bead retention efficiency (89.57% ± 0.05%) and high washing efficiency (99.59% ± 0.17%, with four washings) were obtained. We demonstrate the determination of Kd of an aptamer-protein system (EpCAM and its corresponding aptamer SYL3C) and an antigen-antibody system (H5N1 antigen and antibody), proving the capability and universality of Auto-affitech in various receptor-ligand systems. Integrating all the sample processing procedures, the Auto-affitech not only saves manual labor and minimizes personal errors, but also conserves samples and shortens analysis time. Overall, this platform successfully demonstrates to be an automated approach for dissociation constant evaluation and exhibits great potential for highly efficient screening of ligands.
Collapse
Affiliation(s)
- Jingjing Guo
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Li Lin
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Kaifeng Zhao
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Yanling Song
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Mengjiao Huang
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Zhi Zhu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Leiji Zhou
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Chaoyong Yang
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China. and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
24
|
Zhao W, Tian S, Huang L, Liu K, Dong L. The review of Lab-on-PCB for biomedical application. Electrophoresis 2020; 41:1433-1445. [PMID: 31945803 DOI: 10.1002/elps.201900444] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/29/2022]
Abstract
Prevention of infectious diseases, diagnosis of diseases, and determination of treatment options all rely on biosensors to detect and analyze biomarkers, which are usually divided into four parts: cell analysis, biochemical analysis, immunoassay, and molecular diagnosis. However, traditional biosensing devices are expensive, bulky, and require a lot of time to detect, which also limited its application in resource-limited areas. In recent years, Lab-on-PCB, which combines biosensing technology and PCB technology, has been widely used in biomedical applications due to its high integration, personalized design, and easy mass production. Among these Lab-on-PCB sensing devices, the PCB circuit plays an important role. It can be directly used as a resistance sensor to count cells, and also used as a control device to automatically control the detection device. Flexible PCBs can be used to make wearable medical biosensors. In addition, due to the high degree of integration of the PCB circuit, Lab-on-PCB can perform multiple inspections on the same platform, which reduces the inspection time equivalently. Therefore, in this review paper, we discuss the application of Lab-on-PCB in four analysis methods of cell analysis, biochemical analysis, immunoassay, and molecular diagnosis, and give some suggestions for improvement and future development trends at the end.
Collapse
Affiliation(s)
- Wenhao Zhao
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Shulin Tian
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Lei Huang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Ke Liu
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Lijuan Dong
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, P.R. China
| |
Collapse
|
25
|
Biosensors for epigenetic biomarkers detection: A review. Biosens Bioelectron 2019; 144:111695. [PMID: 31526982 DOI: 10.1016/j.bios.2019.111695] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/24/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022]
Abstract
Epigenetic inheritance is a heritable change in gene function independent of alterations in nucleotide sequence. It regulates the normal cellular activities of the organisms by affecting gene expression and transcription, and its abnormal expression may lead to the developmental disorder, senile dementia, and carcinogenesis progression. Thus, epigenetic inheritance is recognized as an important biomarker, and the accurate quantification of epigenetic inheritance is crucial to clinical diagnosis, drug development and cancer treatment. Noncoding RNA, DNA methylation and histone modification are the most common epigenetic biomarkers. The conventional biosensors (e.g., northern blotting, radiometric, mass spectrometry and immunosorbent biosensors) for epigenetic biomarkers assay usually suffer from hazardous radiation, complicated manipulation, and time-consuming procedures. To facilitate the practical applications, some new biosensors including colorimetric, luminescent, Raman scattering spectroscopy, electrochemical and fluorescent biosensors have been developed for the detection of epigenetic biomarkers with simplicity, rapidity, high throughput and high sensitivity. In this review, we summarize the recent advances in epigenetic biomarkers assay. We classify the biosensors into the direct amplification-free and the nucleotide amplification-assisted ones, and describe the principles of various biosensors, and further compare their performance for epigenetic biomarkers detection. Moreover, we discuss the emerging trends and challenges in the future development of epigenetic biomarkers biosensors.
Collapse
|
26
|
Leclerc LMY, Soffer G, Kwan DH, Shih SCC. A fucosyltransferase inhibition assay using image-analysis and digital microfluidics. BIOMICROFLUIDICS 2019; 13:034106. [PMID: 31123538 PMCID: PMC6510662 DOI: 10.1063/1.5088517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/29/2019] [Indexed: 05/08/2023]
Abstract
Sialyl-LewisX and LewisX are cell-surface glycans that influence cell-cell adhesion behaviors. These glycans are assembled by α(1,3)-fucosyltransferase enzymes. Their increased expression plays a role in inflammatory disease, viral and microbial infections, and cancer. Efficient screens for specific glycan modifications such as those catalyzed by fucosyltransferases are tended toward costly materials and large instrumentation. We demonstrate for the first time a fucosylation inhibition assay on a digital microfluidic system with the integration of image-based techniques. Specifically, we report a novel lab-on-a-chip approach to perform a fluorescence-based inhibition assay for the fucosylation of a labeled synthetic disaccharide, 4-methylumbelliferyl β-N-acetyllactosaminide. As a proof-of-concept, guanosine 5'-diphosphate has been used to inhibit Helicobacter pylori α(1,3)-fucosyltransferase. An electrode shape (termed "skewed wave") is designed to minimize electrode density and improve droplet movement compared to conventional square-based electrodes. The device is used to generate a 10 000-fold serial dilution of the inhibitor and to perform fucosylation reactions in aqueous droplets surrounded by an oil shell. Using an image-based method of calculating dilutions, referred to as "pixel count," inhibition curves along with IC50 values are obtained on-device. We propose the combination of integrating image analysis and digital microfluidics is suitable for automating a wide range of enzymatic assays.
Collapse
Affiliation(s)
| | | | | | - Steve C. C. Shih
- Author to whom correspondence should be addressed:. Tel.: +1-(514)-848-2424x7579
| |
Collapse
|