1
|
Zhang C, Xu L, Miao X, Zhang D, Xie Y, Hu Y, Zhang Z, Wang X, Wu X, Liu Z, Zang W, He C, Li Z, Ren W, Chen T, Xu C, Zhang Y, Wu A, Lin J. Machine learning assisted dual-modal SERS detection for circulating tumor cells. Biosens Bioelectron 2024; 268:116897. [PMID: 39488132 DOI: 10.1016/j.bios.2024.116897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 10/05/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Detecting circulating tumor cells (CTCs) from blood has become a promising approach for cancer diagnosis. Surface-enhanced Raman Spectroscopy (SERS) has rapidly developed as a significant detection technology for CTCs, offering high sensitivity and selectivity. Encoded SERS bioprobes have gained attention due to their excellent specificity and ability to identify tumor cells using Raman signals. Machine learning has also made significant contributions to biomedical applications, especially in medical diagnosis. In this study, we developed a detection strategy combining encoded SERS bioprobes and machine learning models to identify CTCs. Dual-modal SERS bioprobes were designed and co-incubated with tumor cells by the "cocktail" method. An identification model for CTCs was constructed using principal component analysis (PCA) and the Random Forest classification algorithm. This innovative strategy endows SERS bioprobes with both effective magnetic separation and highly sensitive identification of CTCs, even at low concentrations of 2 cells/mL. It achieved a high detection rate of 98% for CTCs and effectively eliminated interference from peripheral WBCs. This simple and efficient strategy provides a new approach for CTCs detection and holds important significance for cancer diagnosis.
Collapse
Affiliation(s)
- Chenguang Zhang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, PR China
| | - Lei Xu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China
| | - Xinyu Miao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China
| | - Dinghu Zhang
- Zhejiang Cancer Hospital, Hangzhou, 310022, PR China
| | - Yujiao Xie
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China.
| | - Yue Hu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, PR China
| | - Zhouxu Zhang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, PR China
| | - Xinfangzi Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, PR China
| | - Xiaoxia Wu
- Zhejiang Cancer Hospital, Hangzhou, 310022, PR China
| | - Zhusheng Liu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, PR China
| | - Wen Zang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, PR China
| | - Chenglong He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, PR China
| | - Zihou Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Wenzhi Ren
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Tianxiang Chen
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chen Xu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yujie Zhang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Jie Lin
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
2
|
Huang Y, Chen M, Jiang F, Lu C, Zhu Q, Yang Y, Fu L, Li L, Liu J, Wang Z, Cao X, Wei W. Microfluidic-SERS sensing system based on dual signal amplification and aptamer for gastric cancer detection. Mikrochim Acta 2024; 191:668. [PMID: 39400726 DOI: 10.1007/s00604-024-06760-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Studies have found that matrix metalloproteinase-9 (MMP-9) and interleukin-6 (IL-6) play an important role in tumorigenesis. In order to detect MMP-9 and IL-6 concentrations with high sensitivity and specificity, an efficient microfluidic-SERS sensing system was prepared based on surface-enhanced Raman scattering (SERS). The aptamer recognition-release mechanism and the dual signal amplification strategy were applied in the sensing system. The sensor system was developed using two kinds of nanomaterials with excellent SERS properties, namely gold-coated iron tetroxide particles (Fe3O4@AuNPs) and gold nanocages (AuNCs). In addition, Fe3O4@AuNPs also has magnetic adsorption properties. In the sensing system, single-stranded DNA1 (ssDNA1) and aptamer were modified on Fe3O4@AuNPs. Single-stranded DNA2 (ssDNA2) and Raman tags were modified on AuNCs. When the target was present, the aptamer bound to the target and detached from the Fe3O4@AuNPs, and ssDNA2 bound to the exposed ssDNA1. At this time, the Fe3O4@AuNPs@AuNCs@SERS tag complex was formed, and the SERS signal was enhanced for the first time. Under the action of an external magnet on the microfluidic chip, the complex was magnetized and enriched. The SERS signal was enhanced for the second time. Due to the high affinity between the aptamer and the target object, the sensing system has a strong specificity. The double amplification of the SERS signal gave the system excellent sensitivity. The limit of detection (LOD) relative to MMP-9 and IL-6 were as low as 0.178 pg/mL and 0.165 pg/mL, respectively. The microfluidic-SERS sensing system has a feasible prospect in the early screening of gastric cancer.
Collapse
Affiliation(s)
- Yong Huang
- Department of Gastrointestinal Surgery, Jiangdu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225200, P. R. China
| | - Miao Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Fengjuan Jiang
- Department of Gastroenterology, Jiangdu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225200, P. R. China
| | - Chengzhe Lu
- Kangda College of Nanjing Medical University, Lianyungang, 222000, P. R. China
| | - Qunshan Zhu
- Department of Gastrointestinal Surgery, Jiangdu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225200, P. R. China
| | - Yan Yang
- Department of Gastrointestinal Surgery, Jiangdu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225200, P. R. China
| | - Lei Fu
- Department of Pathology, Jiangdu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225200, P. R. China
| | - Limao Li
- Department of Gastrointestinal Surgery, Jiangdu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225200, P. R. China
| | - Jia Liu
- Department of Gastroenterology, Jiangdu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225200, P. R. China
| | - Zhenguang Wang
- Department of Gastrointestinal Surgery, Jiangdu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225200, P. R. China
| | - Xiaowei Cao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Wei Wei
- Department of Gastrointestinal Surgery, Jiangdu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225200, P. R. China.
| |
Collapse
|
3
|
Sitjar J, Liao JD, Lee H, Tsai HP, Wang JR. Innovative and versatile surface-enhanced Raman spectroscopy-inspired approaches for viral detection leading to clinical applications: A review. Anal Chim Acta 2024; 1325:342917. [PMID: 39244310 DOI: 10.1016/j.aca.2024.342917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 09/09/2024]
Abstract
The evolution of analytical techniques has opened the possibilities of accurate analyte detection through a straightforward method and short acquisition time, leading towards their applicability to identify medical conditions. Surface-enhanced Raman spectroscopy (SERS) has long been proven effective for rapid detection and relies on SERS spectra that are unique to each specific analyte. However, the complexity of viruses poses challenges to SERS and hinders further progress in its practical applications. The principle of SERS revolves around the interaction among substrate, analyte, and Raman laser, but most studies only emphasize the substrate, especially label-free methods, and the synergy among these factors is often ignored. Therefore, issues related to reproducibility and consistency of results, which are crucial for medical diagnosis and are the main highlights of this review, can be understood and largely addressed when considering these interactions. Viruses are composed of multiple surface components and can be detected by label-free SERS, but the presence of non-target molecules in clinical samples interferes with the detection process. Appropriate spectral data processing workflow also plays an important role in the interpretation of results. Furthermore, integrating machine learning into data processing can account for changes brought about by the presence of non-target molecules when analyzing spectral features to accurately group the data, for example, whether the sample corresponds to a positive or negative patient, and whether a virus variant or multiple viruses are present in the sample. Subsequently, advances in interdisciplinary fields can bring SERS closer to practical applications.
Collapse
Affiliation(s)
- Jaya Sitjar
- Engineered Materials for Biomedical Applications Laboratory, Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Jiunn-Der Liao
- Engineered Materials for Biomedical Applications Laboratory, Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Han Lee
- Engineered Materials for Biomedical Applications Laboratory, Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Huey-Pin Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Jen-Ren Wang
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
4
|
Han L, Wang X, Yu B, Qin X, Liu B, Han X, Yuan H, Yu B, Zhao Z. Development of Fe 3O 4/DEX/PDA@Au(Raman reporters)@Au-MPBA nanocomposites based multi-hotspot SERS probe for ultrasensitive, reliable, and quantitative detection of glucose in sweat. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 326:125192. [PMID: 39342716 DOI: 10.1016/j.saa.2024.125192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/16/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Glucose is a key biomarker of diabetes, and effective glucose monitoring methods are crucial to the prevention and management of diabetes. Therefore, in this paper, Fe3O4/DEX/PDA@Au (Raman reporters) @Au nanocomposites were synthetized that with DTNB (5,5'-dithiobis(2-nitrobenzoic)), MMTA (2-mercapto-4-methyl-5-thiazole acetic acid), MBA (4-mercaptobenzoic acid) and 4-Mpy(4-Mercaptopyridine) were used separately as Raman reporters. Fe3O4 and PDA (Polymerized dopamine) could supply more high surface area of active sites and high SERS (Surface-Enhanced Raman Scattering) substrate, which has high stability and reproducibility. Dextran coating is an effective way to prepare biocompatible materials TEM, XRD, TG and VSM were used to analyze the size, morphology and magnetic properties of the nanocomposites. Fe3O4/DEX/PDA@Au(Raman reporters)@Au that integrates a multi-hotspot structure and magnetic separation techniques were studied the enhancement effect of Raman spectra, and glucose solutions with different concentrations were tested. Furthermore, the optimal Fe3O4/DEX/PDA@Au(Raman reporters)@Au nanocomposites were supplied as SERS substrates for detection of glucose accurately and quickly in sweat. SERS signal intensity is linearly correlated with glucose concentration within the measurement range of 5 × 10-3 to 10 mM, and the minimum detectable concentration is 5 µM. The Fe3O4/DEX/PDA@Au(Raman reporters)@Au nanocomposites exhibit high reliability, specificity and repeatability of the strategy were then verified by practical detection of sweat.
Collapse
Affiliation(s)
- Lun Han
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| | - Xu Wang
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Guangzhou Jingwei Jinfang Protection Technology Co., Ltd, Guangzhou 510000, China
| | - Bin Yu
- Department of Supply Management, Naval Logistics Academy, Tianjin 300000, China
| | - Xiaoyuan Qin
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Baocheng Liu
- Guangzhou Jingwei Jinfang Protection Technology Co., Ltd, Guangzhou 510000, China
| | - Xu Han
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Huifen Yuan
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Bin Yu
- School of Textile, Henan University of Engineering, Zhengzhou 450000, Henan, China
| | - Zhiqi Zhao
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| |
Collapse
|
5
|
Kant K, Beeram R, Cao Y, Dos Santos PSS, González-Cabaleiro L, García-Lojo D, Guo H, Joung Y, Kothadiya S, Lafuente M, Leong YX, Liu Y, Liu Y, Moram SSB, Mahasivam S, Maniappan S, Quesada-González D, Raj D, Weerathunge P, Xia X, Yu Q, Abalde-Cela S, Alvarez-Puebla RA, Bardhan R, Bansal V, Choo J, Coelho LCC, de Almeida JMMM, Gómez-Graña S, Grzelczak M, Herves P, Kumar J, Lohmueller T, Merkoçi A, Montaño-Priede JL, Ling XY, Mallada R, Pérez-Juste J, Pina MP, Singamaneni S, Soma VR, Sun M, Tian L, Wang J, Polavarapu L, Santos IP. Plasmonic nanoparticle sensors: current progress, challenges, and future prospects. NANOSCALE HORIZONS 2024. [PMID: 39240539 PMCID: PMC11378978 DOI: 10.1039/d4nh00226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Plasmonic nanoparticles (NPs) have played a significant role in the evolution of modern nanoscience and nanotechnology in terms of colloidal synthesis, general understanding of nanocrystal growth mechanisms, and their impact in a wide range of applications. They exhibit strong visible colors due to localized surface plasmon resonance (LSPR) that depends on their size, shape, composition, and the surrounding dielectric environment. Under resonant excitation, the LSPR of plasmonic NPs leads to a strong field enhancement near their surfaces and thus enhances various light-matter interactions. These unique optical properties of plasmonic NPs have been used to design chemical and biological sensors. Over the last few decades, colloidal plasmonic NPs have been greatly exploited in sensing applications through LSPR shifts (colorimetry), surface-enhanced Raman scattering, surface-enhanced fluorescence, and chiroptical activity. Although colloidal plasmonic NPs have emerged at the forefront of nanobiosensors, there are still several important challenges to be addressed for the realization of plasmonic NP-based sensor kits for routine use in daily life. In this comprehensive review, researchers of different disciplines (colloidal and analytical chemistry, biology, physics, and medicine) have joined together to summarize the past, present, and future of plasmonic NP-based sensors in terms of different sensing platforms, understanding of the sensing mechanisms, different chemical and biological analytes, and the expected future technologies. This review is expected to guide the researchers currently working in this field and inspire future generations of scientists to join this compelling research field and its branches.
Collapse
Affiliation(s)
- Krishna Kant
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, UP, India
| | - Reshma Beeram
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Yi Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Paulo S S Dos Santos
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
| | | | - Daniel García-Lojo
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Siddhant Kothadiya
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Marta Lafuente
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Yong Xiang Leong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Yiyi Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Yuxiong Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Sree Satya Bharati Moram
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Sanje Mahasivam
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Sonia Maniappan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, India
| | - Daniel Quesada-González
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Divakar Raj
- Department of Allied Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, India
| | - Pabudi Weerathunge
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Qian Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Sara Abalde-Cela
- International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
| | - Ramon A Alvarez-Puebla
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Luis C C Coelho
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
- FCUP, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - José M M M de Almeida
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
- Department of Physics, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Sergio Gómez-Graña
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Marek Grzelczak
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Pablo Herves
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Jatish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, India
| | - Theobald Lohmueller
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstraße 10, 80539 Munich, Germany
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, Barcelona, 08010, Spain
| | - José Luis Montaño-Priede
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Xing Yi Ling
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Reyes Mallada
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Jorge Pérez-Juste
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - María P Pina
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Venugopal Rao Soma
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
- School of Physics, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | | | | |
Collapse
|
6
|
Li Y, Jiang G, Wan Y, Dauda SAA, Pi F. Tailoring strategies of SERS tags-based sensors for cellular molecules detection and imaging. Talanta 2024; 276:126283. [PMID: 38776777 DOI: 10.1016/j.talanta.2024.126283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/02/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
As an emerging nanoprobe, surface enhanced Raman scattering (SERS) tags hold significant promise in sensing and bioimaging applications due to their attractive merits of anti-photobleaching ability, high sensitivity and specificity, multiplex, and low background capabilities. Recently, several reviews have proposed the application of SERS tags in different fields, however, the specific sensing strategies of SERS tags-based sensors for cellular molecules have not yet been systematically summarized. To provide beneficial and comprehensive insights into the advanced SERS tags technique at the cellular level, this review systematically elaborated on the latest advances in SERS tags-based sensors for cellular molecules detection and imaging. The general SERS tags-based sensing strategies for biomolecules and ions were first introduced according to molecular classes. Then, aiming at such molecules located in the extracellular, cellular membrane and intracellular regions, the tailored strategies by designing and manipulating SERS tags were summarized and explored through several key examples. Finally, the challenges and perspectives of developing high performance of advanced SERS tags were briefly discussed to provide effective guidance for further development and extended applications.
Collapse
Affiliation(s)
- Yu Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Guoyong Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yuqi Wan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Sa-Adu Abiola Dauda
- School of Allied Health Sciences, University for Development Studies, P.O. Box 1883, Tamale, Ghana
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
7
|
Ya N, Zhang D, Wang Y, Zheng Y, Yang M, Wu H, Oudeng G. Recent advances of biocompatible optical nanobiosensors in liquid biopsy: towards early non-invasive diagnosis. NANOSCALE 2024; 16:13784-13801. [PMID: 38979555 DOI: 10.1039/d4nr01719f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Liquid biopsy is a non-invasive diagnostic method that can reduce the risk of complications and offers exceptional benefits in the dynamic monitoring and acquisition of heterogeneous cell population information. Optical nanomaterials with excellent light absorption, luminescence, and photoelectrochemical properties have accelerated the development of liquid biopsy technologies. Owing to the unique size effect of optical nanomaterials, their improved optical properties enable them to exhibit good sensitivity and specificity for mitigating signal interference from various molecules in body fluids. Nanomaterials with biocompatible and optical sensing properties play a crucial role in advancing the maturity and diversification of liquid biopsy technologies. This article offers a comprehensive review of recent advanced liquid biopsy technologies that utilize novel biocompatible optical nanomaterials, including fluorescence, colorimetric, photoelectrochemical, and Raman broad-spectrum-based biosensors. We focused on liquid biopsy for the most significant early biomarkers in clinical medicine, and specifically reviewed reports on the effectiveness of optical nanosensing technology in the detection of real patient samples, which may provide basic evidence for the transition of optical nanosensing technology from engineering design to clinical practice. Furthermore, we introduced the integration of optical nanosensing-based liquid biopsy with modern devices, such as smartphones, to demonstrate the potential of the technology in portable clinical diagnosis.
Collapse
Affiliation(s)
- Na Ya
- Pediatric Research Institute, Shenzhen Children's Hospital, Shenzhen, Guangdong, P.R. China
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P.R. China
| | - Dangui Zhang
- Pediatric Research Institute, Shenzhen Children's Hospital, Shenzhen, Guangdong, P.R. China
- Research Center of Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Yan Wang
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P.R. China
| | - Yi Zheng
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P.R. China
| | - Mo Yang
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P.R. China
| | - Hao Wu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
| | - Gerile Oudeng
- Pediatric Research Institute, Shenzhen Children's Hospital, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
8
|
Li S, Pei XY, Liu XY, Wang SL, Xu W, Wang JJ, Feng Z, Ding H, Zhang YF, Zhang R. Sensitive fluorescence detection of miRNA-124 in cardiomyocytes under oxidative stress using a nucleic acid probe. Heliyon 2024; 10:e33588. [PMID: 39040278 PMCID: PMC11260977 DOI: 10.1016/j.heliyon.2024.e33588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 05/26/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs of 18-25 bases. miRNAs are also important new biomarkers that can be used for disease diagnosis in the future. Studies have shown that miR-124 levels are significantly elevated during acute myocardial infarction (AMI) and play a key role in the cardiovascular system. A variety of methods have been established to detect myocardial infarction-related miRNAs. However, most require complex miRNA extraction and isolation, and these methods are virtually undetectable when RNA levels are low in the sample. It may lead to biased results. Thus, it is necessary to develop a technique that can detect miRNA without extracting it, which means that intracellular detection is of great significance. Here, we improved the traditional silicon spheres and obtained a biosensor that could effectively capture and detect specific noncoding nucleic acids through the layer-by-layer assembly method. The sensor is protected by hyaluronic acid so it can successfully escape the lysosome into the cell and achieve detection. With the help of a full-featured microplate reader, we determined that the detection limit of the biosensor could reach 1 fM, meeting the needs of intracellular detection. At the same time, we prepared an oxidative stress cardiomyocyte infarction model and successfully captured the overexpressed miR-124 in the infarcted cells to achieve in situ detection. This study could provide a new potential tool to develop miRNAs for sensitive diagnosis in AMI, and the proposed strategy implies its potential for biomedical research.
Collapse
Affiliation(s)
- Shuo Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shandong, China
- Institute for Translational Medicine, Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, China
| | - Xiang-Yu Pei
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shandong, China
- Institute for Translational Medicine, Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, China
| | - Xin-Yi Liu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shandong, China
- Institute for Translational Medicine, Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, China
| | - Shu-Liang Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shandong, China
- Institute for Translational Medicine, Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, China
| | - Wen Xu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shandong, China
- Institute for Translational Medicine, Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, China
| | - Jing-Jing Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shandong, China
- Institute for Translational Medicine, Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, China
| | - Zhen Feng
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shandong, China
- Institute for Translational Medicine, Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, China
| | - Han Ding
- Institute for Translational Medicine, Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, China
| | - Rui Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shandong, China
| |
Collapse
|
9
|
Zhang T, Wu H, Qiu C, Wang M, Wang H, Zhu S, Xu Y, Huang Q, Li S. Ultrasensitive Hierarchical AuNRs@SiO 2@Ag SERS Probes for Enrichment and Detection of Insulin and C-Peptide in Serum. Int J Nanomedicine 2024; 19:6281-6293. [PMID: 38919772 PMCID: PMC11198011 DOI: 10.2147/ijn.s462601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction Insulin and C-peptide played crucial roles as clinical indicators for diabetes and certain liver diseases. However, there has been limited research on the simultaneous detection of insulin and C-peptide in trace serum. It is necessary to develop a novel method with high sensitivity and specificity for detecting insulin and C-peptide simultaneously. Methods A core-shell-satellites hierarchical structured nanocomposite was fabricated as SERS biosensor using a simple wet-chemical method, employing 4-MBA and DTNB for recognition and antibodies for specific capture. Gold nanorods (Au NRs) were modified with Raman reporter molecules and silver nanoparticles (Ag NPs), creating SERS tags with high sensitivity for detecting insulin and C-peptide. Antibody-modified commercial carboxylated magnetic bead@antibody served as the capture probes. Target materials were captured by probes and combined with SERS tags, forming a "sandwich" composite structure for subsequent detection. Results Under optimized conditions, the nanocomposite fabricated could be used to detect simultaneously for insulin and C-peptide with the detection limit of 4.29 × 10-5 pM and 1.76 × 10-10 nM in serum. The insulin concentration (4.29 × 10-5-4.29 pM) showed a strong linear correlation with the SERS intensity at 1075 cm-1, with high recoveries (96.4-105.3%) and low RSD (0.8%-10.0%) in detecting human serum samples. Meanwhile, the C-peptide concentration (1.76 × 10-10-1.76 × 10-3 nM) also showed a specific linear correlation with the SERS intensity at 1333 cm-1, with recoveries 85.4%-105.0% and RSD 1.7%-10.8%. Conclusion This breakthrough provided a novel, sensitive, convenient and stable approach for clinical diagnosis of diabetes and certain liver diseases. Overall, our findings presented a significant contribution to the field of biomedical research, opening up new possibilities for improved diagnosis and monitoring of diabetes and liver diseases.
Collapse
Affiliation(s)
- Tong Zhang
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
- Chuzhou Center for Disease Control and Prevention, Chuzhou City, Anhui, 239000, People’s Republic of China
| | - Han Wu
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
| | - Chenling Qiu
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
| | - Mingxin Wang
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
| | - Haiting Wang
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
| | - Shunhua Zhu
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
- Public Experimental Research Center of Xuzhou Medical University, Xuzhou City, Jiangsu, 221004, People’s Republic of China
| | - Yinhai Xu
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
| | - Qingli Huang
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
- Public Experimental Research Center of Xuzhou Medical University, Xuzhou City, Jiangsu, 221004, People’s Republic of China
| | - Shibao Li
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
| |
Collapse
|
10
|
Liu Q, Zhang Q, Yao Z, Yi G, Kang Y, Qiu Y, Yang Y, Yuan H, Fu R, Sheng W, Cheng L, Wang W, Wang H, Peng C. Pushing Forward the DNA Walkers in Connection with Tumor-Derived Extracellular Vesicles. Int J Nanomedicine 2024; 19:6231-6252. [PMID: 38915916 PMCID: PMC11194468 DOI: 10.2147/ijn.s464895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/15/2024] [Indexed: 06/26/2024] Open
Abstract
Extracellular vesicles (EVs) are microparticles released from cells in both physiological and pathological conditions and could be used to monitor the progression of various pathological states, including neoplastic diseases. In various EVs, tumor-derived extracellular vesicles (TEVs) are secreted by different tumor cells and are abundant in many molecular components, such as proteins, nucleic acids, lipids, and carbohydrates. TEVs play a crucial role in forming and advancing various cancer processes. Therefore, TEVs are regarded as promising biomarkers for the early detection of cancer in liquid biopsy. However, the currently developed TEV detection methods still face several key scientific problems that need to be solved, such as low sensitivity, poor specificity, and poor accuracy. To overcome these limitations, DNA walkers have emerged as one of the most popular nanodevices that exhibit better signal amplification capability and enable highly sensitive and specific detection of the analytes. Due to their unique properties of high directionality, flexibility, and efficiency, DNA walkers hold great potential for detecting TEVs. This paper provides an introduction to EVs and DNA walker, additionally, it summarizes recent advances in DNA walker-based detection of TEVs (2018-2024). The review highlights the close relationship between TEVs and DNA walkers, aims to offer valuable insights into TEV detection and to inspire the development of reliable, efficient, simple, and innovative methods for detecting TEVs based on DNA walker in the future.
Collapse
Affiliation(s)
- Qingyi Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Qiongdan Zhang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Zhijian Yao
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Gangqiang Yi
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Yeonseok Kang
- College of Korean Medicine, Wonkwang University, Jeonbuk, Korea
| | - Yixing Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Yupei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Hanwen Yuan
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Ronggeng Fu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Wenbing Sheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Lidong Cheng
- Hunan Yirentang Chinese Herbal Pieces Co., Ltd, Changde, People’s Republic of China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Huizhen Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- Institute of Innovation and Applied Research in Chinese Medicine Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| |
Collapse
|
11
|
Chen Y, Ye Z, Ma M, Yang J, Liu R, Zhang Y, Ma P, Song D. Electrochemiluminescence biosensor for specific detection of pancreatic ductal carcinoma through dual targeting of MUC1 and miRNA-196a. Biosens Bioelectron 2024; 254:116241. [PMID: 38527406 DOI: 10.1016/j.bios.2024.116241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) poses significant diagnostic challenges due to its asymptomatic nature in its early stages, low specificity of conventional in vitro assays, and limited efficacy of surgical interventions. However, clinical specificity of the current serum biomarkers is suboptimal, leading to diagnostic inaccuracies and oversights. Therefore, this study introduced a novel dual-target electrochemiluminescence (ECL) biosensor to address these critical issues. The ECL biosensor synergistically employs the serum biomarker MUC1 and microRNA-196a to detect early-stage PDAC precisely. While MUC1 is a differential marker between normal and cancerous pancreatic cells, its standalone diagnostic performance is limited. However, integrating miRNA-196a as a complementary marker substantially enhances the specificity of the assay. This biosensor exhibits distinct ECL signal modulation-"on-off" in the presence of MUC1 and "off-on" upon concurrent detection of MUC1 and miRNA-196a. The biosensor achieves remarkably low limits of detection (LODs) at 0.63 fg mL-1 and 4.57 aM for MUC1 and miRNA-196a, respectively. Thus, it facilitates the real-time differentiation between human normal pancreatic (hTERT-HPNE) and pancreatic cancer (PANC-1) cells in authentic biological matrices. This innovative approach heralds a significant advancement in the early and specific detection of PDAC, offering promising prospects for clinical translation and the broader landscape of cancer diagnostics.
Collapse
Affiliation(s)
- Yuxuan Chen
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Zhuoxin Ye
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Mo Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China; School of Pharmacy, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Jukun Yang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Ruiyan Liu
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Yan Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| |
Collapse
|
12
|
Yu W, Li J, Huang G, He Z, Tian H, Xie F, Jin W, Huang Q, Fu W, Yang X. Rapid and sensitive detection of Staphylococcus aureus using a THz metamaterial biosensor based on aptamer-functionalized Fe 3O 4@Au nanocomposites. Talanta 2024; 272:125760. [PMID: 38364563 DOI: 10.1016/j.talanta.2024.125760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Staphylococcus aureus (S. aureus) poses a serious threat to global public health, necessitating the establishment of rapid and simple tools for its accurate identification. Herein, we developed a terahertz (THz) metamaterial biosensor based on aptamer-functionalized Fe3O4@Au nanocomposites for quantitative S. aureus assays in different clinical samples. Fe3O4@Au@Cys@Apt has the dual advantages of magnetism and a high refractive index in the THz range and was used to rapidly separate and enrich target bacteria in a complex environmental solution. Furthermore, conjugation to the nanocomposites significantly increased the resonance frequency shift of the THz metamaterial after target loading. Our results showed that the shifts in the metamaterial resonance frequency were linearly related to S. aureus concentrations ranging from 1.0 × 103 to 1.0 × 107 CFU/mL, with a detection limit of 4.78 × 102 CFU/mL. The biosensor was further applied to S. aureus detection in spiked human urine and blood with satisfactory recoveries (82.4-109.6%). Our approach also demonstrated strong concordance with traditional plate counting (R2 = 0.99306) while significantly lowering the analysis time from 24 h to <1 h. In conclusion, the proposed biosensor can not only perform culture-free and extraction-free detection of target bacteria but can also be easily extended to the determination of other pathogenic bacteria, rendering it suitable for various bacteria-related disease diagnoses.
Collapse
Affiliation(s)
- Wenjing Yu
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jining Li
- Institute of Laser and Opto-electronics, School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Guorong Huang
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhe He
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Huiyan Tian
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Fengxin Xie
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Weidong Jin
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qing Huang
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China.
| | - Weiling Fu
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Xiang Yang
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
13
|
Cheng HP, Yang TH, Wang JC, Chuang HS. Recent Trends and Innovations in Bead-Based Biosensors for Cancer Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:2904. [PMID: 38733011 PMCID: PMC11086254 DOI: 10.3390/s24092904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Demand is strong for sensitive, reliable, and cost-effective diagnostic tools for cancer detection. Accordingly, bead-based biosensors have emerged in recent years as promising diagnostic platforms based on wide-ranging cancer biomarkers owing to the versatility, high sensitivity, and flexibility to perform the multiplexing of beads. This comprehensive review highlights recent trends and innovations in the development of bead-based biosensors for cancer-biomarker detection. We introduce various types of bead-based biosensors such as optical, electrochemical, and magnetic biosensors, along with their respective advantages and limitations. Moreover, the review summarizes the latest advancements, including fabrication techniques, signal-amplification strategies, and integration with microfluidics and nanotechnology. Additionally, the challenges and future perspectives in the field of bead-based biosensors for cancer-biomarker detection are discussed. Understanding these innovations in bead-based biosensors can greatly contribute to improvements in cancer diagnostics, thereby facilitating early detection and personalized treatments.
Collapse
Affiliation(s)
- Hui-Pin Cheng
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (T.-H.Y.)
| | - Tai-Hua Yang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (T.-H.Y.)
- Department of Orthopedic Surgery, National Cheng Kung University Hospital, Tainan 704, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Jhih-Cheng Wang
- Department of Urology, Chimei Medical Center, Tainan 710, Taiwan
- Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Han-Sheng Chuang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (T.-H.Y.)
- Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
14
|
Vázquez-Iglesias L, Stanfoca Casagrande GM, García-Lojo D, Ferro Leal L, Ngo TA, Pérez-Juste J, Reis RM, Kant K, Pastoriza-Santos I. SERS sensing for cancer biomarker: Approaches and directions. Bioact Mater 2024; 34:248-268. [PMID: 38260819 PMCID: PMC10801148 DOI: 10.1016/j.bioactmat.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
These days, cancer is thought to be more than just one illness, with several complex subtypes that require different screening approaches. These subtypes can be distinguished by the distinct markings left by metabolites, proteins, miRNA, and DNA. Personalized illness management may be possible if cancer is categorized according to its biomarkers. In order to stop cancer from spreading and posing a significant risk to patient survival, early detection and prompt treatment are essential. Traditional cancer screening techniques are tedious, time-consuming, and require expert personnel for analysis. This has led scientists to reevaluate screening methodologies and make use of emerging technologies to achieve better results. Using time and money saving techniques, these methodologies integrate the procedures from sample preparation to detection in small devices with high accuracy and sensitivity. With its proven potential for biomedical use, surface-enhanced Raman scattering (SERS) has been widely used in biosensing applications, particularly in biomarker identification. Consideration was given especially to the potential of SERS as a portable clinical diagnostic tool. The approaches to SERS-based sensing technologies for both invasive and non-invasive samples are reviewed in this article, along with sample preparation techniques and obstacles. Aside from these significant constraints in the detection approach and techniques, the review also takes into account the complexity of biological fluids, the availability of biomarkers, and their sensitivity and selectivity, which are generally lowered. Massive ways to maintain sensing capabilities in clinical samples are being developed recently to get over this restriction. SERS is known to be a reliable diagnostic method for treatment judgments. Nonetheless, there is still room for advancement in terms of portability, creation of diagnostic apps, and interdisciplinary AI-based applications. Therefore, we will outline the current state of technological maturity for SERS-based cancer biomarker detection in this article. The review will meet the demand for reviewing various sample types (invasive and non-invasive) of cancer biomarkers and their detection using SERS. It will also shed light on the growing body of research on portable methods for clinical application and quick cancer detection.
Collapse
Affiliation(s)
- Lorena Vázquez-Iglesias
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | | | - Daniel García-Lojo
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | - Letícia Ferro Leal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Barretos School of Medicine Dr. Paulo Prata—FACISB, Barretos, 14785-002, Brazil
| | - Tien Anh Ngo
- Vinmec Tissue Bank, Vinmec Health Care System, Hanoi, Viet Nam
| | - Jorge Pérez-Juste
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, 4710-057, Braga, Portugal
| | - Krishna Kant
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | - Isabel Pastoriza-Santos
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| |
Collapse
|
15
|
Wang C, Wang C, Lu W, Wang Y, Yue Q, Xin D, Sun B, Wu J, Sun J, Wang Y. Novel SERS Signal Amplification Strategy for Ultrasensitive and Specific Detection of Spinal Cord Injury-Related miRNA. ACS Sens 2024; 9:736-744. [PMID: 38346401 DOI: 10.1021/acssensors.3c02024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The expression of microRNA (miRNA) changes in many diseases plays an important role in the diagnosis, treatment, and prognosis of diseases. Spinal cord injury (SCI) is a serious disease of the central nervous system, accompanied by inflammation, cell apoptosis, neuronal necrosis, axonal rupture, demyelination, and other pathological processes, resulting in impaired sensory and motor functions of patients. Studies have shown that miRNA expression has changed after SCI, and miRNAs participate in the pathophysiological process and treatment of SCI. Therefore, quantitative analysis and monitoring of the expression of miRNA were of great significance for the diagnosis and treatment of SCI. Through the SCI-related miRNA chord plot, we screened out miRNA-21-5p and miRNA-let-7a with a higher correlation. However, for traditional detection strategies, it is still a great challenge to achieve a fast, accurate, and sensitive detection of miRNA in complex biological environments. The most frequently used method for detecting miRNAs is polymerase chain reaction (PCR), but it has disadvantages such as being time-consuming and cumbersome. In this paper, a novel SERS sensor for the quantitative detection of miRNA-21-5p and miRNA-let-7a in serum and cerebrospinal fluid (CSF) was developed. The SERS probe eventually formed a sandwich-like structure of Fe3O4@hpDNA@miRNA@hpDNA@GNCs with target miRNAs, which had high specificity and stability. This SERS sensor achieved a wide range of detection from 1 fM to 1 nM and had a good linear relationship. The limits of detection (LOD) for miRNA-21-5p and miRNA-let-7a were 0.015 and 0.011 fM, respectively. This new strategy realized quantitative detection and long-term monitoring of miRNA-21-5p and miRNA-let-7a in vivo. It is expected to become a powerful biomolecule analysis tool and will provide ideas for the diagnosis and treatment of many diseases.
Collapse
Affiliation(s)
- Cai Wang
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Chengcheng Wang
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Weizhao Lu
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Yanjiao Wang
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Qianwen Yue
- Taishan Vocational College of Nursing, Taian, Shandong 271000, China
| | - Dongyuan Xin
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Baoliang Sun
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Jingguo Wu
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Jingyi Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Ying Wang
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| |
Collapse
|
16
|
Wang Z, Yu SX, Shao X, Liu YJ, Wang J, Xie W, Zhao Z, Li X. Droplet-Based Preparation of ZnO-nanostructure Array for Microfluidic Fluorescence Biodetection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5401-5411. [PMID: 38271201 DOI: 10.1021/acsami.3c14319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Nanostructure-enhanced biodetection is widely used for early diagnosis and treatment, which plays an essential role in improving the cure rates of cancer patients. ZnO nanostructure-based fluorescence immunoassay has been demonstrated to enable effective and sensitive detection of cancer biomarkers for their excellent biocompatibility, high electrical point, and unique fluorescence enhancement properties. Further optimization of such fluorescence detection technology is still in demand to meet the requirements of highly sensitive, multiplex detection, and user-friendly devices. Droplet microfluidics is a promising platform for high-throughput analysis of biological assays, and they have been intensively used in analytical chemistry and synthesis of nanoparticles. Here, we propose a simple droplet chip, where a static droplet array was successfully obtained for in situ growth of ZnO nanostructures with varied diameters by changing the entire growth time and replenishment interval. This device provides a novel and alternative approach for patterned growth of ZnO nanostructures and understanding the growth condition of ZnO nanostructures in static droplet, which offers some guidance toward the design of multiple fluorescence amplification platforms potentially for biosensing. As a demonstration, we used the patterned grown ZnO nanostructures for multiple detection of cancer biomarkers, achieving a low limit of detection as low as 138 fg/mL in the human α-fetoprotein assay and 218 fg/mL in the carcinoembryonic antigen assay with a large dynamic range of 8 orders. These results suggest that such multifunctional microfluidic devices may be useful tools for efficient fluorescence diagnostic assays.
Collapse
Affiliation(s)
- Zhenlong Wang
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Sai-Xi Yu
- Shanghai Institute of Cardiovascular Diseases, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xuan Shao
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Yan-Jun Liu
- Shanghai Institute of Cardiovascular Diseases, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiangtao Wang
- National Trusted Embedded Software Engineering Technology Research Center, East China Normal University, Shanghai 200062, China
| | - Wenhui Xie
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Zhenjie Zhao
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Xin Li
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| |
Collapse
|
17
|
Jung YK, Son MH. Polydiacetylene-based aptasensors for rapid and specific colorimetric detection of malignant exosomes. Talanta 2024; 268:125342. [PMID: 37918246 DOI: 10.1016/j.talanta.2023.125342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Exosomes (50-150 nm) play significant biological functions in intercellular communication and transportation of diverse biomolecules, including proteins and nucleic acids. In particular, malignant exosomes have received a great deal of attention as possible indicators for cancer detection and treatment. To swiftly and precisely identify malignant exosomes from normal exosomes in diverse bodily fluids, we developed polydiacetylene (PDA)-based aptasensors with distinct optical features exhibiting color shift in response to biological recognition. To identify epithelial cell adhesion molecules (EpCAM) overexpressed on the surface of malignant exosomes, anti-EpCAM aptamer-conjugated diacetylene monomer (TCDA-Apt) was synthesized and used to create anti-EpCAM aptamer-conjugated PDA (anti-EpCAM Apt-PDA) vesicles. In just 15 min following the reaction with malignant exosomes, the anti-EpCAM Apt-PDA vesicles underwent a visible color change from blue to purple. They showed high specificity to EpCAM-positive malignant exosomes over non-malignant exosomes, bovine serum albumin (BSA), and fibrinogen. Moreover, its effectiveness in the point-of-care (POC) detection of malignant exosomes was evaluated using human sera. Therefore, our PDA-based aptasensors have tremendous potential for on-site cancer diagnosis.
Collapse
Affiliation(s)
- Yun Kyung Jung
- Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, Republic of Korea; School of Biomedical Engineering, Inje University, Gimhae, 50834, Republic of Korea.
| | - Min Hyeong Son
- Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, Republic of Korea
| |
Collapse
|
18
|
Wang Y, Fang L, Wang Y, Xiong Z. Current Trends of Raman Spectroscopy in Clinic Settings: Opportunities and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2300668. [PMID: 38072672 PMCID: PMC10870035 DOI: 10.1002/advs.202300668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/08/2023] [Indexed: 02/17/2024]
Abstract
Early clinical diagnosis, effective intraoperative guidance, and an accurate prognosis can lead to timely and effective medical treatment. The current conventional clinical methods have several limitations. Therefore, there is a need to develop faster and more reliable clinical detection, treatment, and monitoring methods to enhance their clinical applications. Raman spectroscopy is noninvasive and provides highly specific information about the molecular structure and biochemical composition of analytes in a rapid and accurate manner. It has a wide range of applications in biomedicine, materials, and clinical settings. This review primarily focuses on the application of Raman spectroscopy in clinical medicine. The advantages and limitations of Raman spectroscopy over traditional clinical methods are discussed. In addition, the advantages of combining Raman spectroscopy with machine learning, nanoparticles, and probes are demonstrated, thereby extending its applicability to different clinical phases. Examples of the clinical applications of Raman spectroscopy over the last 3 years are also integrated. Finally, various prospective approaches based on Raman spectroscopy in clinical studies are surveyed, and current challenges are discussed.
Collapse
Affiliation(s)
- Yumei Wang
- Department of NephrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Liuru Fang
- Hubei Province Key Laboratory of Systems Science in Metallurgical ProcessWuhan University of Science and TechnologyWuhan430081China
| | - Yuhua Wang
- Hubei Province Key Laboratory of Systems Science in Metallurgical ProcessWuhan University of Science and TechnologyWuhan430081China
| | - Zuzhao Xiong
- Hubei Province Key Laboratory of Systems Science in Metallurgical ProcessWuhan University of Science and TechnologyWuhan430081China
| |
Collapse
|
19
|
Yu Q, Wu T, Tian B, Li J, Liu Y, Wu Z, Jin X, Wang C, Wang C, Gu B. Recent advances in SERS-based immunochromatographic assay for pathogenic microorganism diagnosis: A review. Anal Chim Acta 2024; 1286:341931. [PMID: 38049231 DOI: 10.1016/j.aca.2023.341931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 12/06/2023]
Abstract
Infectious diseases caused by bacteria, viruses, fungi, and other pathogenic microorganisms are among the most harmful public health problems in the world, causing tens of millions of deaths and incalculable economic losses every year. The establishment of rapid, simple, and highly sensitive diagnostic methods for pathogenic microorganisms is important for the prevention and control of infectious diseases, guidance of timely treatment, and the reduction of public safety risks. Lateral flow immunoassay (LFA) based on the colorimetric signal of colloidal gold is the most popular point-of-care testing technology at present, but it is limited by poor sensitivity and low throughput and hardly meets the needs of the highly sensitive screening of pathogenic microorganisms. In recent years, the combination of surface-enhanced Raman scattering (SERS) and LFA technology has developed into a novel analytical platform with high sensitivity and multiple detection capabilities and has shown great advantages in the detection of pathogenic microorganisms and infectious diseases. This review summarizes the working principle, design ideas, and application of the existing SERS-based LFA methods in pathogenic microorganism detection and further introduces the effect of new technologies such as Raman signal encoding, magnetic enrichment, novel membrane nanotags, and integrated Raman reading equipment on the performance of SERS-LFA. Finally, the main challenges and the future direction of development in this field of SERS-LFA are discussed.
Collapse
Affiliation(s)
- Qing Yu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China; College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Ting Wu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Benshun Tian
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Jiaxuan Li
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Yun Liu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Zelan Wu
- Guangzhou Labway Clinical Laboratory Co., Ltd, Guangdong, 510000, China
| | - Xiong Jin
- Guangzhou Labway Clinical Laboratory Co., Ltd, Guangdong, 510000, China
| | - Chaoguang Wang
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, 410073, China.
| | - Chongwen Wang
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China; College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Bing Gu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China.
| |
Collapse
|
20
|
Yu Y, Liang C, Wan QQ, Jin D, Liu X, Zhang Z, Sun ZY, Zhang GJ. Integrated FET sensing microsystem for specific detection of pancreatic cancer exosomal miRNA10b. Anal Chim Acta 2023; 1284:341995. [PMID: 37996166 DOI: 10.1016/j.aca.2023.341995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
Tumor-derived exosome (TD-Ex) serves as a crucial early diagnostic biomarker of pancreatic cancer (PC). However, accurate identification of TD-Ex from PC is still a challenging work. In this paper, a detection microsystem that integrates magnetic separation and FET biosensor is developed, which is capable of selectively separating TD-Ex of PC from the plasma and detecting exosomal miRNA10b in a sensitive and specific manner. The magnetic beads were functionalized with dual antibody (GPC-1 antibody and EpCAM antibody), enabling selective recognition and capture of PC-derived exosomes. On the other hand, a peptide nucleic acid (PNA)- functionalized reduced graphene oxide field-effect transistor (RGO FET) biosensor was subsequently utilized to detect the exosomal miRNA10b, which is highly expressed in PC- derived exosomes. This system could achieve a low detection limit down to 78 fM, and selectively identify miRNA10b from single-base mismatched miRNA. In addition, 40 clinical plasma samples were tested with this microsystem, and the results indicate that it could effectively distinguish PC patients from healthy individuals. The assay combines specific capture and enrichment of PC-derived exosomes with sensitive and selective detection of exosomal miRNA, showing its potential to be used as an effective scheme for PC early diagnosis.
Collapse
Affiliation(s)
- Yi Yu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
| | - Chunzi Liang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
| | | | - Dan Jin
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
| | - Xi Liu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
| | - Zhiyong Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing, 100871, China.
| | - Zhong-Yue Sun
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China.
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China.
| |
Collapse
|
21
|
Jiang Z, Zheng X, Li M, Liu M. Improving the prognosis of pancreatic cancer: insights from epidemiology, genomic alterations, and therapeutic challenges. Front Med 2023; 17:1135-1169. [PMID: 38151666 DOI: 10.1007/s11684-023-1050-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/15/2023] [Indexed: 12/29/2023]
Abstract
Pancreatic cancer, notorious for its late diagnosis and aggressive progression, poses a substantial challenge owing to scarce treatment alternatives. This review endeavors to furnish a holistic insight into pancreatic cancer, encompassing its epidemiology, genomic characterization, risk factors, diagnosis, therapeutic strategies, and treatment resistance mechanisms. We delve into identifying risk factors, including genetic predisposition and environmental exposures, and explore recent research advancements in precursor lesions and molecular subtypes of pancreatic cancer. Additionally, we highlight the development and application of multi-omics approaches in pancreatic cancer research and discuss the latest combinations of pancreatic cancer biomarkers and their efficacy. We also dissect the primary mechanisms underlying treatment resistance in this malignancy, illustrating the latest therapeutic options and advancements in the field. Conclusively, we accentuate the urgent demand for more extensive research to enhance the prognosis for pancreatic cancer patients.
Collapse
Affiliation(s)
- Zhichen Jiang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of General Surgery, Division of Gastroenterology and Pancreas, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Xiaohao Zheng
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Min Li
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Mingyang Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
22
|
Kim R, Mun B, Lim S, Park C, Kim J, Lim J, Jeong H, Son HY, Rho HW, Lim EK, Haam S. Colorimetric Detection of HER2-Overexpressing-Cancer-Derived Exosomes in Mouse Urine Using Magnetic-Polydiacetylene Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307262. [PMID: 37963850 DOI: 10.1002/smll.202307262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/31/2023] [Indexed: 11/16/2023]
Abstract
Breast cancer (BC) is a major global health problem, with ≈20-25% of patients overexpressing human epidermal growth factor receptor 2 (HER2), an aggressive marker, yet access to early detection and treatment varies across countries. A low-cost, equipment-free, and easy-to-use polydiacetylene (PDA)-based colorimetric sensor is developed for HER2-overexpressing cancer detection, designed for use in low- and middle-income countries (LMICs). PDA nanoparticles are first prepared through thin-film hydration. Subsequently, hydrophilic magnetic nanoparticles and HER2 antibodies are sequentially conjugated to them. The synthesized HER2-MPDA can be concentrated and separated by a magnetic field while inheriting the optical characteristics of PDA. The specific binding of HER2 antibody in HER2-MPDA to HER2 receptor in HER2-overexpressing exosomes causes a blue-to-red color change by altering the molecular structure of the PDA backbone. This colorimetric sensor can simultaneously separate and detect HER2-overexpressing exosomes. HER2-MPDA can detect HER2-overexpressing exosomes in the culture medium of HER2-overexpressing BC cells and in mouse urine samples from a HER2-overexpressing BC mouse model. It can selectively isolate and detect only HER2-overexpressing exosomes through magnetic separation, and its detection limit is found to be 8.5 × 108 particles mL-1 . This colorimetric sensor can be used for point-of-care diagnosis of HER2-overexpressing BC in LMICs.
Collapse
Affiliation(s)
- Ryunhyung Kim
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Byeonggeol Mun
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seongjae Lim
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chaewon Park
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jinyoung Kim
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jaewook Lim
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyein Jeong
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hye Young Son
- Department of Radiology, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyun Wook Rho
- Department of Radiology, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
23
|
Pyrak E, Kowalczyk A, Weyher JL, Nowicka AM, Kudelski A. Influence of sandwich-type DNA construction strategy and plasmonic metal on signal generated by SERS DNA sensors. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122606. [PMID: 36934597 DOI: 10.1016/j.saa.2023.122606] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
The DNA biosensors are powerful tools in the gene mutation or pathogens detection. That is why there are a lot of DNA detection strategies and methods. Here we present the insight on a slightly overlooked DNA detection technique, surface-enhanced Raman scattering (SERS). The present work is a summary of the influence of the plasmonic metal of the SERS substrate and strategy of the sandwich-type biosensor construction, simply the placement of the Raman reporter and mismatches, on the SERS signal enhancement. We found that, although in general there is an increase in the intensity of the SERS signal when the distance between the Raman scatterer and the SERS-active surface decreases, for this type of DNA SERS sensor a greater intensity of the measured Raman signal is usually observed when the Raman reporter is farther away from the plasmonic substrate. This is probably caused by a significant change in the hybridisation efficiency for the different structures of the sensor analysed due to some steric hindrances.
Collapse
Affiliation(s)
- Edyta Pyrak
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., PL 02-093 Warsaw, Poland; Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteura 3 St., 02-093 Warsaw, Poland
| | - Agata Kowalczyk
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., PL 02-093 Warsaw, Poland
| | - Jan L Weyher
- Institute of High Pressure Physics of the Polish Academy of Science, Sokolowska 29/37 Str., PL 01-142 Warsaw, Poland
| | - Anna M Nowicka
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., PL 02-093 Warsaw, Poland
| | - Andrzej Kudelski
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., PL 02-093 Warsaw, Poland.
| |
Collapse
|
24
|
Zhang H, Zhang Z, Wang H, Huang L, Yang Z, Wang Y, Li H. Versatile flexible SERS substrate for in situ detection of contaminants in water and fruits based on Ag NPs decorated wrinkled PDMS film. OPTICS EXPRESS 2023; 31:21025-21037. [PMID: 37381212 DOI: 10.1364/oe.492496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023]
Abstract
Flexible surface-enhanced Raman spectroscopy (SERS) substrate has attracted great attention due to its convenient sampling and on-site monitoring capability. However, it is still challenging to fabricate a versatile flexible SERS substrate, which can be used for in situ detection of analytes either in water or on irregular solid surfaces. Here, we report a flexible and transparent SERS substrate based on a wrinkled polydimethylsiloxane (PDMS) film obtained by transferring corrugated structures on the aluminium/polystyrene bilayer film, onto which silver nanoparticles (Ag NPs) are deposited by thermal evaporation. The as-fabricated SERS substrate exhibits a high enhancement factor (∼1.19×105), good signal uniformity (RSD of 6.27%), and excellent batch-to-batch reproducibility (RSD of 7.3%) for rhodamine 6 G. In addition, the Ag NPs@W-PDMS film can maintain high detection sensitivity even after mechanical deformations of bending or torsion for 100 cycles. More importantly, being flexible, transparent, and light, the Ag NPs@W-PDMS film can both float on the water surface and conformally contact with the curved surface for in situ detection. The malachite green in aqueous environment and on apple peel can be easily detected down to 10-6 M with a portable Raman spectrometer. Therefore, it is expected that such a versatile flexible SERS substrate has great potential in on-site, in situ contaminant monitoring for realistic applications.
Collapse
|
25
|
Yang X, Zhang S, Lin N. Application of Metal-Based Nanomaterials in In Vitro Diagnosis of Tumor Markers: Summary and Prospect. Molecules 2023; 28:4370. [PMID: 37298846 PMCID: PMC10254239 DOI: 10.3390/molecules28114370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer, which presents with high incidence and mortality rates, has become a significant health threat worldwide. However, there is currently no effective solution for rapid screening and high-quality treatment of early-stage cancer patients. Metal-based nanoparticles (MNPs), as a new type of compound with stable properties, convenient synthesis, high efficiency, and few adverse reactions, have become highly competitive tools for early cancer diagnosis. Nevertheless, challenges such as the difference between the microenvironment of detected markers and the real-life body fluids remain in achieving widespread clinical application of MNPs. This review provides a comprehensive review of the research progress made in the field of in vitro cancer diagnosis using metal-based nanoparticles. By delving into the characteristics and advantages of these materials, this paper aims to inspire and guide researchers towards fully exploiting the potential of metal-based nanoparticles in the early diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Xiaobo Yang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310019, China; (X.Y.); (S.Z.)
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, China
| | - Shaodian Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310019, China; (X.Y.); (S.Z.)
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, China
| | - Nong Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310019, China; (X.Y.); (S.Z.)
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, China
| |
Collapse
|
26
|
Lin C, Li Y, Peng Y, Zhao S, Xu M, Zhang L, Huang Z, Shi J, Yang Y. Recent development of surface-enhanced Raman scattering for biosensing. J Nanobiotechnology 2023; 21:149. [PMID: 37149605 PMCID: PMC10163864 DOI: 10.1186/s12951-023-01890-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/10/2023] [Indexed: 05/08/2023] Open
Abstract
Surface-Enhanced Raman Scattering (SERS) technology, as a powerful tool to identify molecular species by collecting molecular spectral signals at the single-molecule level, has achieved substantial progresses in the fields of environmental science, medical diagnosis, food safety, and biological analysis. As deepening research is delved into SERS sensing, more and more high-performance or multifunctional SERS substrate materials emerge, which are expected to push Raman sensing into more application fields. Especially in the field of biological analysis, intrinsic and extrinsic SERS sensing schemes have been widely used and explored due to their fast, sensitive and reliable advantages. Herein, recent developments of SERS substrates and their applications in biomolecular detection (SARS-CoV-2 virus, tumor etc.), biological imaging and pesticide detection are summarized. The SERS concepts (including its basic theory and sensing mechanism) and the important strategies (extending from nanomaterials with tunable shapes and nanostructures to surface bio-functionalization by modifying affinity groups or specific biomolecules) for improving SERS biosensing performance are comprehensively discussed. For data analysis and identification, the applications of machine learning methods and software acquisition sources in SERS biosensing and diagnosing are discussed in detail. In conclusion, the challenges and perspectives of SERS biosensing in the future are presented.
Collapse
Affiliation(s)
- Chenglong Lin
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yanyan Li
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yusi Peng
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Shuai Zhao
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Meimei Xu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Lingxia Zhang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhengren Huang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Jianlin Shi
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yong Yang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
27
|
Hsu CC, Yang Y, Kannisto E, Zeng X, Yu G, Patnaik SK, Dy GK, Reid ME, Gan Q, Wu Y. Simultaneous Detection of Tumor Derived Exosomal Protein-MicroRNA Pairs with an Exo-PROS Biosensor for Cancer Diagnosis. ACS NANO 2023; 17:8108-8122. [PMID: 37129374 DOI: 10.1021/acsnano.2c10970] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Tumor derived exosomes (TEXs) have emerged as promising biomarkers for cancer liquid biopsy. Conventional methods (such as ELISA and qRT-PCR) and emerging biosensing technologies mainly detect a single type of exosomal biomarker due to the distinct properties of different biomolecules. Sensitive detection of two different types of TEX biomarkers, i.e., protein and microRNA combined biomarkers, may greatly improve cancer diagnostic accuracy. We developed an exosome protein microRNA one-stop (Exo-PROS) biosensor that not only selectively captured TEXs but also enabled in situ, simultaneous detection of TEX protein-microRNA pairs via a surface plasmon resonance mechanism. Exo-PROS assay is a fast, reliable, low sample consumption, and user-friendly test. With a total of 175 cancer patients and normal controls, we demonstrated that TEX protein-microRNA pairs measured by Exo-PROS assay detected lung cancer and breast cancer with 99% and 96% accuracy, respectively. Exo-PROS assay also showed superior diagnostic performance to conventional ELISA and qRT-PCR methods. Our results demonstrated that Exo-PROS assay is a potent liquid biopsy assay for cancer diagnosis.
Collapse
Affiliation(s)
- Chang-Chieh Hsu
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Yunchen Yang
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Eric Kannisto
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Elm and Carlton Street, Buffalo, New York 14263, United States
| | - Xie Zeng
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Guan Yu
- Department of Biostatistics, University at Buffalo, The State University of New York, Buffalo, New York 14263, United States
| | - Santosh K Patnaik
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Elm and Carlton Street, Buffalo, New York 14263, United States
| | - Grace K Dy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Elm and Carlton Street, Buffalo, New York 14263, United States
| | - Mary E Reid
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Elm and Carlton Street, Buffalo, New York 14263, United States
| | - Qiaoqiang Gan
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Materials Science Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
28
|
Geng X, Li L, Luo Y, Yang W, Hu J, Zhao Z, Cheng C, Zhang T, Zhang Y, Liu L, Xie Y, Li G, Liu D, Bai R, Bai X, Wang G, Chen H, Wang Y, Chen H, Sun B. Tumor Cell Derived Lnc-FSD2-31:1 Contributes to Cancer-Associated Fibroblasts Activation in Pancreatic Ductal Adenocarcinoma Progression through Extracellular Vesicles Cargo MiR-4736. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203324. [PMID: 36727832 PMCID: PMC10074102 DOI: 10.1002/advs.202203324] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/10/2023] [Indexed: 05/11/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents with high mortality and short overall survival. Cancer-associated fibroblasts (CAFs) act as refuge for cancer cells in PDAC. Mechanisms of intracelluar communication between CAFs and cancer cells need to be explored. Long noncoding RNAs (lncRNAs) are involved in the modulation of oncogenesis and tumor progression of PDAC; however, specific lncRNAs and their mechanism of action have not been clarified clearly in tumoral microenvironment. This work aims to identify novel lncRNAs involved in cellular interaction between cancer cells and CAFs in PDAC. To this end, differentially expressed lncRNAs between long-term and short-term survival PDAC patients are screened. Lnc-FSD2-31:1 is found to be significantly increased in long-term survival patients. This work then discovers that tumor-derived lnc-FSD2-31:1 restrains CAFs activation via miR-4736 transported by extracellular vesicles (EVs) in vitro and in vivo. Mechanistically, EVs-derived miR-4736 suppresses autophagy and contributes to CAFs activation by targeting ATG7. Furthermore, blocking miR-4736 suppresses tumor growth in genetically engineered KPC (LSL-KrasG12D/+, LSL-Trp53R172H/+, and Pdx-1-Cre) mouse model of PDAC. This study demonstrates that intratumoral lnc-FSD2-31:1 modulates autophagy in CAFs resulting in their activation through EVs-derived miR-4736. Targeting miR-4736 may be a potential biomarker and therapeutic target for PDAC.
Collapse
Affiliation(s)
- Xinglong Geng
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Le Li
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Yan Luo
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Wenbo Yang
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Jisheng Hu
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Zhongjie Zhao
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Chundong Cheng
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Tao Zhang
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Yangyang Zhang
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Liwei Liu
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Yu Xie
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Guanqun Li
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Danxi Liu
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Rui Bai
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Xuewei Bai
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Gang Wang
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Hua Chen
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Yongwei Wang
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Hongze Chen
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Bei Sun
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| |
Collapse
|
29
|
Masterson AN, Chowdhury NN, Fang Y, Yip-Schneider MT, Hati S, Gupta P, Cao S, Wu H, Schmidt CM, Fishel ML, Sardar R. Amplification-Free, High-Throughput Nanoplasmonic Quantification of Circulating MicroRNAs in Unprocessed Plasma Microsamples for Earlier Pancreatic Cancer Detection. ACS Sens 2023; 8:1085-1100. [PMID: 36853001 DOI: 10.1021/acssensors.2c02105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly malignancy that is often detected at an advanced stage. Earlier diagnosis of PDAC is key to reducing mortality. Circulating biomarkers such as microRNAs are gaining interest, but existing technologies require large sample volumes, amplification steps, extensive biofluid processing, lack sensitivity, and are low-throughput. Here, we present an advanced nanoplasmonic sensor for the highly sensitive, amplification-free detection and quantification of microRNAs (microRNA-10b, microRNA-let7a) from unprocessed plasma microsamples. The sensor construct utilizes uniquely designed -ssDNA receptors attached to gold triangular nanoprisms, which display unique localized surface plasmon resonance (LSPR) properties, in a multiwell plate format. The formation of -ssDNA/microRNA duplex controls the nanostructure-biomolecule interfacial electronic interactions to promote the charge transfer/exciton delocalization processes and enhance the LSPR responses to achieve attomolar (10-18 M) limit of detection (LOD) in human plasma. This improve LOD allows the fabrication of a high-throughput assay in a 384-well plate format. The performance of nanoplasmonic sensors for microRNA detection was further assessed by comparing with the qRT-PCR assay of 15 PDAC patient plasma samples that shows a positive correlation between these two assays with the Pearson correlation coefficient value >0.86. Evaluation of >170 clinical samples reveals that oncogenic microRNA-10b and tumor suppressor microRNA-let7a levels can individually differentiate PDAC from chronic pancreatitis and normal controls with >94% sensitivity and >94% specificity at a 95% confidence interval (CI). Furthermore, combining both oncogenic and tumor suppressor microRNA levels significantly improves differentiation of PDAC stages I and II versus III and IV with >91% and 87% sensitivity and specificity, respectively, in comparison to the sensitivity and specificity values for individual microRNAs. Moreover, we show that the level of microRNAs varies substantially in pre- and post-surgery PDAC patients (n = 75). Taken together, this ultrasensitive nanoplasmonic sensor with excellent sensitivity and specificity is capable of assaying multiple biomarkers simultaneously and may facilitate early detection of PDAC to improve patient care.
Collapse
Affiliation(s)
- Adrianna N Masterson
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, Indiana 46202, United States
| | - Nayela N Chowdhury
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana 46202, United States
| | - Yue Fang
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Michele T Yip-Schneider
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Sumon Hati
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, Indiana 46202, United States
| | - Prashant Gupta
- Department of Mechanical Engineering, Washington University, St. Louis, Missouri 63130, United States
| | - Sha Cao
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Huangbing Wu
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - C Max Schmidt
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana 46202, United States
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Melissa L Fishel
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana 46202, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Rajesh Sardar
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, Indiana 46202, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana 46202, United States
| |
Collapse
|
30
|
Zeng Z, Zhou X, Zhou R, Zeng Z, Sun R, Zhang X, Li H, Zhang D, Zhu Q, Chen C. Rational design of nonlinear hybridization immunosensor chain reactions for simultaneous ultrasensitive detection of two tumor marker proteins. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1422-1430. [PMID: 36857646 DOI: 10.1039/d2ay01941h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Sensitive biomarker detection techniques are beneficial for both disease diagnosis and postoperative examinations. The nonlinear hybridization chain reaction (NHCR) is widely used as an output signal amplification technique for biosensor platforms. A novel hairpin-free NHCR was developed in this study as a flow cytometric immunoassay to detect alpha-fetoprotein (AFP) and prostate specific antigen (PSA). First, the target AFP is captured on magnetic beads (MBs) that are modified with capture antibodies. Then, the prepared biotin-streptavidin-biotin (B-S-B) system, which links biotinylated detection antibodies and biotinylated trigger DNA together through the high affinity between biotin-streptavidin interaction, is added to label the target AFP, forming a sandwich complex with three trigger DNA chains. Each trigger DNA chain grows a dendritic DNA nanostructure following a nonlinear hybridization chain reaction. As the substrate flue chains are labeled with fluorophores, the self-assembly process of dendritic DNA is accompanied by the continuous release of fluorophores. Dendrites with strong fluorescence then form on the surface of MBs. Finally, the target AFP is quantified by analyzing the fluorescent MBs using flow cytometry. The proposed immunoassay has a high selectivity along with isothermal, enzyme-free, and exponential amplification efficiency. It shows a limit of detection (LOD) of 1.74 pg mL-1. The proposed biosensor was also successfully used to quantitatively detect AFP in serum samples. It may be utilized to detect multiple tumor markers simultaneously by changing the size of MBs and antibody-antigen pairs. Most tumor markers are only related to tumor diagnosis but without specificity, so the combined detection of multiple tumor markers can improve the accuracy of early tumor diagnoses.
Collapse
Affiliation(s)
- Zhaokui Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| | - Xingchen Zhou
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Rong Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| | - Zhuoer Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| | - Ruowei Sun
- Hunan Zaochen Nanorobot Co., Ltd, Liuyang 410300, China
| | - Xun Zhang
- Hunan Zaochen Nanorobot Co., Ltd, Liuyang 410300, China
| | - Huimin Li
- Yueyang Inspection and Testing Center, Yueyang 414000, China
| | - Di Zhang
- Department of Laboratory, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
31
|
Recent advances in plasmon-enhanced luminescence for biosensing and bioimaging. Anal Chim Acta 2023; 1254:341086. [PMID: 37005018 DOI: 10.1016/j.aca.2023.341086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023]
Abstract
Plasmon-enhanced luminescence (PEL) is a unique photophysical phenomenon in which the interaction between luminescent moieties and metal nanostructures results in a marked luminescence enhancement. PEL offers several advantages and has been extensively used to design robust biosensing platforms for luminescence-based detection and diagnostics applications, as well as for the development of many efficient bioimaging platforms, enabling high-contrast non-invasive real-time optical imaging of biological tissues, cells, and organelles with high spatial and temporal resolution. This review summarizes recent progress in the development of various PEL-based biosensors and bioimaging platforms for diverse biological and biomedical applications. Specifically, we comprehensively assessed rationally designed PEL-based biosensors that can efficiently detect biomarkers (proteins and nucleic acids) in point-of-care tests, highlighting significant improvements in the sensing performance upon the integration of PEL. In addition to discussing the merits and demerits of recently developed PEL-based biosensors on substrates or in solutions, we include a brief discussion on integrating PEL-based biosensing platforms into microfluidic devices as a promising multi-responsive detection method. The review also presents comprehensive details about the recent advances in the development of various PEL-based multi-functional (passive targeting, active targeting, and stimuli-responsive) bioimaging probes, highlighting the scope of future improvements in devising robust PEL-based nanosystems to achieve more effective diagnostic and therapeutic insights by enabling imaging-guided therapy.
Collapse
|
32
|
Sharifi M, Khalilzadeh B, Bayat F, Isildak I, Tajali H. Application of thermal annealing-assisted gold nanoparticles for ultrasensitive diagnosis of pancreatic cancer using localized surface plasmon resonance. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
33
|
Kim ER, Joe C, Mitchell RJ, Gu MB. Biosensors for healthcare: current and future perspectives. Trends Biotechnol 2023; 41:374-395. [PMID: 36567185 DOI: 10.1016/j.tibtech.2022.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Biosensors are utilized in several different fields, including medicine, food, and the environment; in this review, we examine recent developments in biosensors for healthcare. These involve three distinct types of biosensor: biosensors for in vitro diagnosis with blood, saliva, or urine samples; continuous monitoring biosensors (CMBs); and wearable biosensors. Biosensors for in vitro diagnosis have seen a significant expansion recently, with newly reported clustered regularly interspaced short palindromic repeats (CRISPR)/Cas methodologies and improvements to many established integrated biosensor devices, including lateral flow assays (LFAs) and microfluidic/electrochemical paper-based analytical devices (μPADs/ePADs). We conclude with a discussion of two novel groups of biosensors that have drawn great attention recently, continuous monitoring and wearable biosensors, as well as with perspectives on the commercialization and future of biosensors.
Collapse
Affiliation(s)
- Eun Ryung Kim
- Department of Biotechnology, Korea University, Anam-dong, Sungbuk-Gu, Seoul 02841, Republic of Korea
| | - Cheulmin Joe
- Department of Biotechnology, Korea University, Anam-dong, Sungbuk-Gu, Seoul 02841, Republic of Korea
| | - Robert J Mitchell
- Department of Biological Sciences, UNIST, Ulsan 44919, Republic of Korea
| | - Man Bock Gu
- Department of Biotechnology, Korea University, Anam-dong, Sungbuk-Gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
34
|
Zhang J, Guan M, Ma C, Liu Y, Lv M, Zhang Z, Gao H, Zhang K. Highly Effective Detection of Exosomal miRNAs in Plasma Using Liposome-Mediated Transfection CRISPR/Cas13a. ACS Sens 2023; 8:565-575. [PMID: 36722721 DOI: 10.1021/acssensors.2c01683] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Exosomal miRNAs play a critical role in cancer biology and could be potential biomarkers for cancer diagnosis. However, due to the low abundance of miRNAs in the exosomes, recognizing and detecting disease-associated exosomal miRNAs in an easy-to-operate way remain a challenge. Herein, we used a liposome-mediated membrane fusion strategy (MFS) to transfect CRISPR/Cas13a into exosomes, termed MFS-CRISPR, directly measuring exosomal miRNAs in plasma. Using the MFS-CRISPR platform for detection of the exosomal miR-21, we achieve a linear range spanning four orders of magnitude (104-108 particles/mL) and the method is able to detect the exosomal miR-21 in as low as 1.2 × 103 particles/mL. The liposome-mediated MFS could confine fluorescent signals in fused vesicles, which can be used for exosome heterogeneity analysis. Moreover, MFS-CRISPR assay was evaluated by measuring clinical samples, and the difference of miR-21 expression of breast cancer patients and healthy donors was significant. Because of high sensitivity and simplicity, the proposed method could have promising clinical potential for cancer diagnosis and treatment monitoring.
Collapse
Affiliation(s)
- Junli Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.,Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
| | - Mengting Guan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chihong Ma
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yingying Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Min Lv
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.,Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
| | - Hua Gao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.,Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450052, China
| |
Collapse
|
35
|
Signaling strategies of silver nanoparticles in optical and electrochemical biosensors: considering their potential for the point-of-care. Mikrochim Acta 2023; 190:91. [PMID: 36790481 PMCID: PMC9930094 DOI: 10.1007/s00604-023-05666-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/25/2023] [Indexed: 02/16/2023]
Abstract
Silver nanoparticles (AgNPs) have long been overshadowed by gold NPs' success in sensor and point-of-care (POC) applications. However, their unique physical, (electro)chemical, and optical properties make them excellently suited for such use, as long as their inherent higher instability toward oxidation is controlled. Recent advances in this field provide novel strategies that demonstrate that the AgNPs' inherent capabilities improve sensor performance and enable the specific detection of analytes at low concentrations. We provide an overview of these advances by focusing on the nanosized Ag (in the range of 1-100 nm) properties with emphasis on optical and electrochemical biosensors. Furthermore, we critically assess their potential for point-of-care sensors discussing advantages as well as limitations for each detection technique. We can conclude that, indeed, strategies using AgNP are ready for sensitive POC applications; however, research focusing on the simplification of assay procedures is direly needed for AgNPs to make the successful jump into actual applications.
Collapse
|
36
|
Chen Y, An Q, Teng K, Liu C, Sun F, Li G. Application of SERS in In-Vitro Biomedical Detection. Chem Asian J 2023; 18:e202201194. [PMID: 36581747 DOI: 10.1002/asia.202201194] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Surface-enhanced Raman scattering (SERS), as a rapid and nondestructive biological detection method, holds great promise for clinical on spot and early diagnosis. In order to address the challenging demands of on spot detection of biomedical samples, a variety of strategies has been developed. These strategies include substrate structural and component engineering, data processing techniques, as well as combination with other analytical methods. This report summarizes the recent SERS developments for biomedical detection, and their promising applications in cancer detection, virus or bacterial infection detection, miscarriage spotting, neurological disease screening et al. The first part discusses the frequently used SERS substrate component and structures, the second part reports on the detection strategies for nucleic acids, proteins, bacteria, and virus, the third part summarizes their promising applications in clinical detection in a variety of illnesses, and the forth part reports on recent development of SERS in combination with other analytical techniques. The special merits, challenges, and perspectives are discussed in both introduction and conclusion sections.
Collapse
Affiliation(s)
- Yunfan Chen
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China.,Engineering Research Center of Ministry of Education for, Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Qi An
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China.,Engineering Research Center of Ministry of Education for, Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Kaixuan Teng
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China.,Engineering Research Center of Ministry of Education for, Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Chao Liu
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China.,Department of Chemistry, China, Tsinghua University, Beijing, 100084, P. R. China.,Engineering Research Center of Ministry of Education for, Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Fuwei Sun
- Fujian Provincial Key Laboratory of, Terahertz Functional Devices and Intelligent Sensing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Guangtao Li
- Department of Chemistry, China, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
37
|
Awiaz G, Lin J, Wu A. Recent advances of Au@Ag core-shell SERS-based biosensors. EXPLORATION (BEIJING, CHINA) 2023; 3:20220072. [PMID: 37323623 PMCID: PMC10190953 DOI: 10.1002/exp.20220072] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/18/2022] [Indexed: 06/17/2023]
Abstract
The methodological advancements in surface-enhanced Raman scattering (SERS) technique with nanoscale materials based on noble metals, Au, Ag, and their bimetallic alloy Au-Ag, has enabled the highly efficient sensing of chemical and biological molecules at very low concentration values. By employing the innovative various type of Au, Ag nanoparticles and especially, high efficiency Au@Ag alloy nanomaterials as substrate in SERS based biosensors have revolutionized the detection of biological components including; proteins, antigens antibodies complex, circulating tumor cells, DNA, and RNA (miRNA), etc. This review is about SERS-based Au/Ag bimetallic biosensors and their Raman enhanced activity by focusing on different factors related to them. The emphasis of this research is to describe the recent developments in this field and conceptual advancements behind them. Furthermore, in this article we apex the understanding of impact by variation in basic features like effects of size, shape varying lengths, thickness of core-shell and their influence of large-scale magnitude and morphology. Moreover, the detailed information about recent biological applications based on these core-shell noble metals, importantly detection of receptor binding domain (RBD) protein of COVID-19 is provided.
Collapse
Affiliation(s)
- Gul Awiaz
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jie Lin
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| |
Collapse
|
38
|
Ye S, You Q, Song S, Wang H, Wang C, Zhu L, Yang Y. Nanostructures and Nanotechnologies for the Detection of Extracellular Vesicle. Adv Biol (Weinh) 2023; 7:e2200201. [PMID: 36394211 DOI: 10.1002/adbi.202200201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/17/2022] [Indexed: 11/19/2022]
Abstract
Liquid biopsy has been taken as a minimally invasive examination and a promising surrogate to the clinically applied tissue-based test for the diagnosis and molecular analysis of cancer. Extracellular vesicles (EVs) carry complex molecular information from the tumor, allowing for the multicomponent analysis of cancer and would be beneficial to personalized medicine. In this review, the advanced nanomaterials and nanotechniques for the detection and molecular profiling of EVs, highlight the advantages of nanotechnology in the high-purity isolation and the high-sensitive and high-specific identification of EVs, are summarized. An outlook on the clinical application of nanotechnology-based liquid biopsy in the diagnosis, prognostication, and surveillance of cancer is also provided. It provides information for developing liquid biopsy based on EVs by discussing the advantages and challenges of functionalized nanomaterials and various nanotechnologies.
Collapse
Affiliation(s)
- Siyuan Ye
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Qing You
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Shuya Song
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huayi Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,Translational Medicine Center, Chinese Institute for Brain Research (CIBR), Beijing, 102206, P. R. China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
39
|
Clancy JW, D'Souza-Schorey C. Tumor-Derived Extracellular Vesicles: Multifunctional Entities in the Tumor Microenvironment. ANNUAL REVIEW OF PATHOLOGY 2023; 18:205-229. [PMID: 36202098 PMCID: PMC10410237 DOI: 10.1146/annurev-pathmechdis-031521-022116] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Tumor cells release extracellular vesicles (EVs) that can function as mediators of intercellular communication in the tumor microenvironment. EVs contain a host of bioactive cargo, including membrane, cytosolic, and nuclear proteins, in addition to noncoding RNAs, other RNA types, and double-stranded DNA fragments. These shed vesicles may deposit paracrine information and can also be taken up by stromal cells, causing the recipient cells to undergo phenotypic changes that profoundly impact diverse facets of cancer progression. For example, this unique form of cellular cross talk helps condition the premetastatic niche, facilitates evasion of the immune response, and promotes invasive and metastatic activity. These findings, coupled with those demonstrating that the number and content of EVs produced by tumors can vary depending on their tumor of origin, disease stage, or response to therapy, have raised the exciting possibility that EVs can be used for risk stratification, diagnostic, and even prognostic purposes. We summarize recent developments and the current knowledge of EV cargoes, their impact on disease progression, and implementation of EV-based liquid biopsies as tumor biomarkers.
Collapse
Affiliation(s)
- James W Clancy
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; ,
| | | |
Collapse
|
40
|
Progress of Endogenous and Exogenous Nanoparticles for Cancer Therapy and Diagnostics. Genes (Basel) 2023; 14:genes14020259. [PMID: 36833186 PMCID: PMC9957423 DOI: 10.3390/genes14020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
The focus of this brief review is to describe the application of nanoparticles, including endogenous nanoparticles (e.g., extracellular vesicles, EVs, and virus capsids) and exogenous nanoparticles (e.g., organic and inorganic materials) in cancer therapy and diagnostics. In this review, we mainly focused on EVs, where a recent study demonstrated that EVs secreted from cancer cells are associated with malignant alterations in cancer. EVs are expected to be used for cancer diagnostics by analyzing their informative cargo. Exogenous nanoparticles are also used in cancer diagnostics as imaging probes because they can be easily functionalized. Nanoparticles are promising targets for drug delivery system (DDS) development and have recently been actively studied. In this review, we introduce nanoparticles as a powerful tool in the field of cancer therapy and diagnostics and discuss issues and future prospects.
Collapse
|
41
|
Abstract
Exosomes are extracellular vesicles, which have the ability to convey various types of cargo between cells. Lately, a great amount of interest has been paid to exosomal microRNAs (miRNAs), since much evidence has suggested that the sorting of miRNAs into exosomes is not an accidental process. It has been shown that exosomal miRNAs (exo-miRNAs) are implicated in a variety of cellular processes including (but not limited to) cell migration, apoptosis, proliferation, and autophagy. Exosomes can play a role in cardiovascular diseases and can be used as diagnostic biomarkers for several diseases, especially cancer. Tremendous advances in technology have led to the development of various platforms for miRNA profiling. Each platform has its own limitations and strengths that need to be understood in order to use them properly. In the current review, we summarize some exo-miRNAs that are relevant to exo-miRNA profiling studies and describe new methods used for the measurement of miRNA profiles in different human bodily fluids.
Collapse
|
42
|
Qian F, Huang Z, Zhong H, Lei Q, Ai Y, Xie Z, Zhang T, Jiang B, Zhu W, Sheng Y, Hu J, Brinker CJ. Analysis and Biomedical Applications of Functional Cargo in Extracellular Vesicles. ACS NANO 2022; 16:19980-20001. [PMID: 36475625 DOI: 10.1021/acsnano.2c11298] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Extracellular vesicles (EVs) can facilitate essential communication among cells in a range of pathophysiological conditions including cancer metastasis and progression, immune regulation, and neuronal communication. EVs are membrane-enclosed vesicles generated through endocytic origin and contain many cellular components, including proteins, lipids, nucleic acids, and metabolites. Over the past few years, the intravesicular content of EVs has proven to be a valuable biomarker for disease diagnostics, involving cancer, cardiovascular diseases, and central nervous system diseases. This review aims to provide insight into EV biogenesis, composition, function, and isolation, present a comprehensive overview of emerging techniques for EV cargo analysis, highlighting their major technical features and limitations, and summarize the potential role of EV cargos as biomarkers in disease diagnostics. Further, progress and remaining challenges will be discussed for clinical diagnostic outlooks.
Collapse
Affiliation(s)
- Feiyang Qian
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Zena Huang
- Yunkang School of Medicine and Health, Nanfang College, Guangzhou 510970, P.R. China
| | - Hankang Zhong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Qi Lei
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Yiru Ai
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Zihui Xie
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Tenghua Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Bowen Jiang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Yan Sheng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Jiaming Hu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - C Jeffrey Brinker
- Center for Micro-Engineered Materials and the Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
43
|
Ashraf G, Zhong ZT, Asif M, Aziz A, Iftikhar T, Chen W, Zhao YD. State-of-the-Art Fluorescent Probes: Duplex-Specific Nuclease-Based Strategies for Early Disease Diagnostics. BIOSENSORS 2022; 12:bios12121172. [PMID: 36551139 PMCID: PMC9775407 DOI: 10.3390/bios12121172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 05/27/2023]
Abstract
Precision healthcare aims to improve patient health by integrating prevention measures with early disease detection for prompt treatments. For the delivery of preventive healthcare, cutting-edge diagnostics that enable early disease detection must be clinically adopted. Duplex-specific nuclease (DSN) is a useful tool for bioanalysis since it can precisely digest DNA contained in duplexes. DSN is commonly used in biomedical and life science applications, including the construction of cDNA libraries, detection of microRNA, and single-nucleotide polymorphism (SNP) recognition. Herein, following the comprehensive introduction to the field, we highlight the clinical applicability, multi-analyte miRNA, and SNP clinical assays for disease diagnosis through large-cohort studies using DSN-based fluorescent methods. In fluorescent platforms, the signal is produced based on the probe (dyes, TaqMan, or molecular beacon) properties in proportion to the target concentration. We outline the reported fluorescent biosensors for SNP detection in the next section. This review aims to capture current knowledge of the overlapping miRNAs and SNPs' detection that have been widely associated with the pathophysiology of cancer, cardiovascular, neural, and viral diseases. We further highlight the proficiency of DSN-based approaches in complex biological matrices or those constructed on novel nano-architectures. The outlooks on the progress in this field are discussed.
Collapse
Affiliation(s)
- Ghazala Ashraf
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zi-Tao Zhong
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ayesha Aziz
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tayyaba Iftikhar
- Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
44
|
Hsu CC, Wu Y. Recent advances in nanotechnology-enabled biosensors for detection of exosomes as new cancer liquid biopsy. Exp Biol Med (Maywood) 2022; 247:2152-2172. [PMID: 35938477 PMCID: PMC9837302 DOI: 10.1177/15353702221110813] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cancer liquid biopsy detects circulating biomarkers in body fluids, provides information that complements medical imaging and tissue biopsy, allows sequential monitoring of cancer development, and, therefore, has shown great promise in cancer screening, diagnosis, and prognosis. Exosomes (also known as small extracellular vesicles) are cell-secreted, nanosized vesicles that transport biomolecules such as proteins and RNAs for intercellular communication. Exosomes are actively involved in cancer development and progression and have become promising circulating biomarkers for cancer liquid biopsy. Conventional exosome characterization methods such as quantitative reverse transcription polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) are limited by low sensitivity, tedious process, large sample volume, and high cost. To overcome these challenges, new biosensors have been developed to offer sensitive, simple, fast, high throughput, low sample consumption, and cost-effective detection of exosomal biomarkers. In this review, we summarized recent advances in nanotechnology-enabled biosensors that detect exosomal RNAs (both microRNAs and mRNAs) and proteins for cancer screening, diagnosis, and prognosis. The biosensors were grouped based on their sensing mechanisms, including fluorescence-based biosensors, colorimetric biosensors, electrical/electrochemical biosensors, plasmonics-based biosensors, surface-enhanced Raman spectroscopy (SERS)-based biosensors, and inductively coupled plasma mass spectrometry (ICP-MS) and photothermal biosensors. The future directions for the development of exosome-based biosensors were discussed.
Collapse
|
45
|
Zheng H, Ding Q, Li C, Chen W, Chen X, Lin Q, Wang D, Weng Y, Lin D. Recent progress in surface-enhanced Raman spectroscopy-based biosensors for the detection of extracellular vesicles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4161-4173. [PMID: 36254847 DOI: 10.1039/d2ay01339h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Extracellular vesicles (EVs) are a type of mediator that enables intercellular communication. Moreover, EVs carry critical molecular information from parental cells, making them ideal biomarkers for clinical screening and diagnosis. Currently, several sensing technologies have been established to sensitively detect EVs. Among them, surface-enhanced Raman spectroscopy (SERS) has become a powerful analytical tool with high sensitivity and low detection limits. In this review, we first cover the biological characteristics of EVs and the principle of SERS amplification. Then, we describe the recent progress in SERS technology applied to detect EVs, including direct label-free methods and indirect labeling strategies, in which substrate fabrication and nanoprobe assembly were emphasized. Furthermore, SERS technology could also be used to characterize or monitor the behavior of programmable EVs. Finally, we discuss the prospects and issues to be addressed for the development of SERS technology for EV analysis.
Collapse
Affiliation(s)
- Hong Zheng
- Department of Otolaryngology Head and Neck Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Qin Ding
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China.
| | - Chen Li
- Department of Otolaryngology Head and Neck Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Wei Chen
- Department of Otolaryngology Head and Neck Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Xiaoqiang Chen
- Department of Otolaryngology Head and Neck Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Qin Lin
- Department of Otolaryngology Head and Neck Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Desheng Wang
- Department of Otolaryngology Head and Neck Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Youliang Weng
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China.
| | - Duo Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, China
| |
Collapse
|
46
|
Gu Y, Cao D, Mao Y, Ge S, Li Z, Gu Y, Sun Y, Li L, Cao X. A SERS microfluidic chip based on hpDNA-functioned Au-Ag nanobowl array for efficient simultaneous detection of non-small cell lung cancer-related microRNAs. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
47
|
Yin S, Chen A, Ding Y, Song J, Chen R, Zhang P, Yang C. Recent advances in exosomal RNAs analysis towards diagnostic and therapeutic applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Xu D, Di K, Fan B, Wu J, Gu X, Sun Y, Khan A, Li P, Li Z. MicroRNAs in extracellular vesicles: Sorting mechanisms, diagnostic value, isolation, and detection technology. Front Bioeng Biotechnol 2022; 10:948959. [PMID: 36324901 PMCID: PMC9618890 DOI: 10.3389/fbioe.2022.948959] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of short, single-stranded, noncoding RNAs, with a length of about 18–22 nucleotides. Extracellular vesicles (EVs) are derived from cells and play a vital role in the development of diseases and can be used as biomarkers for liquid biopsy, as they are the carriers of miRNA. Existing studies have found that most of the functions of miRNA are mainly realized through intercellular transmission of EVs, which can protect and sort miRNAs. Meanwhile, detection sensitivity and specificity of EV-derived miRNA are higher than those of conventional serum biomarkers. In recent years, EVs have been expected to become a new marker for liquid biopsy. This review summarizes recent progress in several aspects of EVs, including sorting mechanisms, diagnostic value, and technology for isolation of EVs and detection of EV-derived miRNAs. In addition, the study reviews challenges and future research avenues in the field of EVs, providing a basis for the application of EV-derived miRNAs as a disease marker to be used in clinical diagnosis and even for the development of point-of-care testing (POCT) platforms.
Collapse
Affiliation(s)
- Dongjie Xu
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Kaili Di
- Department of Laboratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Boyue Fan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jie Wu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinrui Gu
- Department of Laboratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yifan Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Adeel Khan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education (Southeast University), Southeast University, Nanjing, China
| | - Peng Li
- College of Animal Science, Yangtze University, Jingzhou, China
- *Correspondence: Peng Li, ; Zhiyang Li,
| | - Zhiyang Li
- Department of Laboratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Peng Li, ; Zhiyang Li,
| |
Collapse
|
49
|
Sazaklıoğlu SA, Torul H, Vatansever HS, Tamer U, Çelikkan H. Direct impedimetric detection of exosomes and practical application in urine. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01753-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Pan D, Lin Y, Liu X, Xin Y, Tian Q, Zhang J. Ultrasensitive and preprocessing-free electrochemical biosensing platform for the detection of cancer-derived exosomes based on spiky-shaped aptamer-magnetic beads. Biosens Bioelectron 2022; 217:114705. [PMID: 36150326 DOI: 10.1016/j.bios.2022.114705] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/02/2022]
Abstract
Cancer-derived exosomes, as liquid biopsy markers, have been shown to play an important role in the early screening, diagnosis, and prognosis of cancer. However, existing detection methods have shortcomings such as long-time consumption and low sensitivity. Herein, a sandwich-type electrochemical sensing platform based on Prussian blue/graphene oxide (GO/PB) and spiky Au@Fe3O4 nanoparticles was successfully designed and constructed to detect tumor-derived exosomes with high sensitivity and no preprocessing. In this strategy, nanospike structures were introduced on magnetic beads to form spiky Au@Fe3O4, which was used to enrich exosomes from serum, avoiding the extraction and purification processes of previous detections. The enrichment and signal amplification of spiky Au@Fe3O4 could also greatly improve the detection sensitivity of the sensing platform. Consequently, the concentration of exosomes could be directly quantified by monitoring the electroactive molecules of PB. Therefore, the limit of detection (LOD) of the proposed biosensor was 80 particles·μL-1. Furthermore, this proposed biosensor could realize the high sensitivity analysis of exosomes and effectively save detection time, and provide an effective assistant diagnostic tool for the early diagnosis of cancer.
Collapse
Affiliation(s)
- Deng Pan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China.
| | - Yan Lin
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Xiao Liu
- Department of Laboratory Medicine, Qingdao Eight People Hospital, Qingdao, Shandong, 266121, China
| | - Yanming Xin
- Department of Clinical Laboratory, Jining No.1 People's Hospital, Jining, 272011, Shandong, China
| | - Qingwu Tian
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Jiayou Zhang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China.
| |
Collapse
|