1
|
Samadi Pakchin P, Fathi F, Samadi H, Adibkia K. Recent advances in receptor-based optical biosensors for the detection of multiplex biomarkers. Talanta 2025; 281:126852. [PMID: 39321560 DOI: 10.1016/j.talanta.2024.126852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/24/2024] [Accepted: 09/07/2024] [Indexed: 09/27/2024]
Abstract
Multiplex biosensors are highly sought-after tools in disease diagnosis. This technique involves the simultaneous sensing of multiple biomarkers, whose levels and ratios can provide a more comprehensive assessment of disease conditions compared to single biomarker detection. In most diseases like cancer due to its complexity, several biomarkers are involved in their occurrence. On the other hand, a single biomarker may be implicated in various diseases. Multiplex sensing employs various techniques, such as optical, electrochemical, and electrochemiluminescence methods. This comprehensive review focuses on optical multiplex sensing techniques, including surface plasmon resonance, localized surface plasmon resonance, fluorescence resonance energy transfer, chemiluminescence, surface-enhanced Raman spectroscopy, and photonic crystal sensors. The review delves into their mechanisms, materials utilized, and strategies for biomarker detection.
Collapse
Affiliation(s)
- Parvin Samadi Pakchin
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Farzaneh Fathi
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Biosensor Sciences and Technologies Research Center Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Hamed Samadi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Shu Z, Sun X, Xu X, Qin M, Li J. Colloidal photonic crystals towards biological applications. J Mater Chem B 2024; 12:8488-8504. [PMID: 39161280 DOI: 10.1039/d4tb01325e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Colloidal photonic crystals (CPCs), fabricated from the assembly of micro-/nano-particles, have attracted considerable interest due to their unique properties, such as structural color, slow-photon effect, and high specific surface area (SSA). Benefiting from these properties, significant progress has been made in the biological applications of CPCs. In this perspective, these properties and relative manipulation strategies are firstly discussed, building bridges between properties and biological applications of CPCs. Structural color endows CPCs with naked-eye sensing capability, which can be applied to physiological state assessment and diagnosis, as well as self-report of CPC-based diagnostic and therapeutic devices. The slow-photon effect contributes to enhanced fluorescence, surface-enhanced Raman scattering, and efficacy of photodynamic/photothermal therapy, when CPCs are combined with corresponding functional materials. High SSA provides CPCs with abundant binding sites and superior capabilities for loading, adsorption, delivery, etc. These properties can be utilized individually or synergistically to grant CPCs superior performance in biological applications. Next, the recent advancements of CPCs towards biological applications are summarized, including biosensors, wound dressings, cells-on-a-chip, and phototherapy. Finally, a perspective on the challenges and future development of CPCs for biological applications is presented.
Collapse
Affiliation(s)
- Zixin Shu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xiaoning Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xinyuan Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Meng Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Wang H, Zhou H, He W, Yang Z, Cao H, Wang D, Li Y. Research Progress on Blue-Phase Liquid Crystals for Pattern Replication Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 16:194. [PMID: 36614533 PMCID: PMC9821960 DOI: 10.3390/ma16010194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Blue-Phase Liquid Crystals (BPLCs) are considered to be excellent 3D photonic crystals and have attracted a great deal of attention due to their great potential for advanced applications in a wide range of fields including self-assembling tunable photonic crystals and fast-response displays. BPLCs exhibit promise in patterned applications due to their sub-millisecond response time, three-dimensional cubic structure, macroscopic optical isotropy and high contrast ratio. The diversity of patterned applications developed based on BPLCs has attracted much attention. This paper focuses on the latest advances in blue-phase (BP) materials, including applications in patterned microscopy, electric field driving, handwriting driving, optical writing and inkjet printing. The paper concludes with future challenges and opportunities for BP materials, providing important insights into the subsequent development of BP.
Collapse
Affiliation(s)
| | | | - Wanli He
- Correspondence: ; Tel.: +010-62333759
| | | | | | | | | |
Collapse
|
4
|
Premachandran S, Haldavnekar R, Das S, Venkatakrishnan K, Tan B. DEEP Surveillance of Brain Cancer Using Self-Functionalized 3D Nanoprobes for Noninvasive Liquid Biopsy. ACS NANO 2022; 16:17948-17964. [PMID: 36112671 DOI: 10.1021/acsnano.2c04187] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Brain cancers, one of the most fatal malignancies, require accurate diagnosis for guided therapeutic intervention. However, conventional methods for brain cancer prognosis (imaging and tissue biopsy) face challenges due to the complex nature and inaccessible anatomy of the brain. Therefore, deep analysis of brain cancer is necessary to (i) detect the presence of a malignant tumor, (ii) identify primary or secondary origin, and (iii) find where the tumor is housed. In order to provide a diagnostic technique with such exhaustive information here, we attempted a liquid biopsy-based deep surveillance of brain cancer using a very minimal amount of blood serum (5 μL) in real time. We hypothesize that holistic analysis of serum can act as a reliable source for deep brain cancer surveillance. To identify minute amounts of tumor-derived material in circulation, we synthesized an ultrasensitive 3D nanosensor, adopted SERS as a diagnostic methodology, and undertook a DEEP neural network-based brain cancer surveillance. Detection of primary and secondary tumor achieved 100% accuracy. Prediction of intracranial tumor location achieved 96% accuracy. This modality of using patient sera for deep surveillance is a promising noninvasive liquid biopsy tool with the potential to complement current brain cancer diagnostic methodologies.
Collapse
Affiliation(s)
- Srilakshmi Premachandran
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Rupa Haldavnekar
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Sunit Das
- Scientist, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Institute of Medical Sciences, Neurosurgery, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Krishnan Venkatakrishnan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Bo Tan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
5
|
Fathi F, Monirinasab H, Ranjbary F, Nejati-Koshki K. Inverse opal photonic crystals: Recent advances in fabrication methods and biological applications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Mu Z, Gu H, Chen Q, Li J, He X. FDTD Modeling of Au/Ag Nanoparticles Incorporated Au/Ag Photonic Crystal for Seeking the Maximal Localized Electric Field. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhongde Mu
- Jiangsu Cancer Hospital Jiangsu Institute of Cancer Research The Affiliated Cancer Hospital of Nanjing Medical University Nanjing 210009 P. R. China
| | - Hongcheng Gu
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University Nanjing 210096 P. R. China
| | - Qiang Chen
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University Nanjing 210096 P. R. China
| | - Jianqing Li
- School of Biomedical Engineering and Informatics Nanjing Medical University Nanjing 210009 P. R. China
| | - Xia He
- Jiangsu Cancer Hospital Jiangsu Institute of Cancer Research The Affiliated Cancer Hospital of Nanjing Medical University Nanjing 210009 P. R. China
| |
Collapse
|
7
|
Zhao L, Kuang J, Zhuang W, Chao J, Liao W, Fu X, Li C, Ye L, Liu H. Studies on transmittance modulation and ions transfer kinetic based on capacitive-controlled 2D V 2O 5inverse opal film for electrochromic energy storage application. NANOTECHNOLOGY 2021; 33:054001. [PMID: 34670203 DOI: 10.1088/1361-6528/ac317b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Two-dimensional vanadium pentoxide inverse opal (2D V2O5IO) architecture was fabricated by polystyrene (PS) sphere template assisted electrodeposition process. In comparison to the un-templated V2O5film, the 2D V2O5IO film exhibited a highly ordered hexagonal close-packed bowel-like array, as well as noticeable electrochromism, such as transmittance modulation up to 42.6% at 800 nm, high coloration efficiency (28.6 cm2 · C-1), fast ions transfer kinetic (tb = 7.2 s,tc = 2.5 s). These improvements of electrochromic performance were attributed to the ordered morphology with larger surface areas, which considerably shortened the ions diffusion paths and accelerated ions migration. An electrochromic energy storage device assembled from the 2D V2O5IO film with simultaneous electrochromic and pseudocapacitive performance could not only show transmittance modulation accompanied by multicolor variations but also powered an LCD screen and an LED bulb, demonstrating a promising potential for practical applications.
Collapse
Affiliation(s)
- Lili Zhao
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, People's Republic of China
| | - Junwei Kuang
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, People's Republic of China
| | - Weifeng Zhuang
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, People's Republic of China
| | - Jie Chao
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, People's Republic of China
| | - Wenbo Liao
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, People's Republic of China
| | - Xiaobo Fu
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, People's Republic of China
| | - Chao Li
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, People's Republic of China
| | - Lingyun Ye
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, People's Republic of China
| | - Hailu Liu
- Guangdong Biomaterials Engineering Technology Research Center, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, People's Republic of China
| |
Collapse
|
8
|
Xie X, Zhang Y, Zhang L, Zheng J, Huang Y, Fa H. Plasmon-Driven Interfacial Catalytic Reactions in Plasmonic MOF Nanoparticles. Anal Chem 2021; 93:13219-13225. [PMID: 34546701 DOI: 10.1021/acs.analchem.1c02272] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Benefiting from the noble metal nanoparticle core and organic porous nanoshell, plasmonic metal-organic frameworks (MOFs) become a nanostructure with great enhancement of the electromagnetic field and a high density of reaction sites, which has fantastic optical properties in surface plasmon-related fields. In this work, the plasmon-driven interfacial catalytic reactions involving p-aminothiophenol to 4,4'-dimercaptoazobenzene (trans-DMAB) in both the liquid and gaseous phases are studied in plasmonic MOF nanoparticles, which consist of a Ag nanoparticle core and an organic shell (ZIF-8). The surface-enhanced Raman spectroscopy (SERS) spectra recorded at the plasmonic MOF in an aqueous environment demonstrate that the reversible plasmon-driven interfacial catalytic reactions could be modulated by a reductant (NaBH4) or oxidant (H2O2). Also, the situ SERS spectra also point out that plasmonic MOF (AgNP@ZIF-8) nanoparticles exhibit much better catalytic performance in the H2O2 solution compared to pure Ag nanoparticles for the anti-oxidation caused by the MOF shell. It is surprising that although there is greater SERS enhancement obtained at pure Ag nanoparticles, the plasmon-driven interfacial catalytic reactions only occur at plasmonic AgNP@ZIF-8 nanoparticles in the gaseous phase. This interesting phenomenon is further confirmed and analyzed by simulated electromagnetic field distributions, which could be understood by the effective capture of gaseous molecules by the organic porous nanoshell. Our work not only explores the plasmonic MOF nanoparticles with unique optical properties but also strengthens the understanding of plasmon-driven interfacial catalytic reactions.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 400044, China
| | - Yaoyao Zhang
- National-municipal Joint Engineering Laboratory for Chemical Process, Intensification and Reaction, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Lingjun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 400044, China
| | - Jiangen Zheng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 400044, China
| | - Yingzhou Huang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 400044, China
| | - Huanbao Fa
- National-municipal Joint Engineering Laboratory for Chemical Process, Intensification and Reaction, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
9
|
Wang J, Pinkse PWH, Segerink LI, Eijkel JCT. Bottom-Up Assembled Photonic Crystals for Structure-Enabled Label-Free Sensing. ACS NANO 2021; 15:9299-9327. [PMID: 34028246 PMCID: PMC8291770 DOI: 10.1021/acsnano.1c02495] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/19/2021] [Indexed: 05/10/2023]
Abstract
Photonic crystals (PhCs) display photonic stop bands (PSBs) and at the edges of these PSBs transport light with reduced velocity, enabling the PhCs to confine and manipulate incident light with enhanced light-matter interaction. Intense research has been devoted to leveraging the optical properties of PhCs for the development of optical sensors for bioassays, diagnosis, and environmental monitoring. These applications have furthermore benefited from the inherently large surface area of PhCs, giving rise to high analyte adsorption and the wide range of options for structural variations of the PhCs leading to enhanced light-matter interaction. Here, we focus on bottom-up assembled PhCs and review the significant advances that have been made in their use as label-free sensors. We describe their potential for point-of-care devices and in the review include their structural design, constituent materials, fabrication strategy, and sensing working principles. We thereby classify them according to five sensing principles: sensing of refractive index variations, sensing by lattice spacing variations, enhanced fluorescence spectroscopy, surface-enhanced Raman spectroscopy, and configuration transitions.
Collapse
Affiliation(s)
- Juan Wang
- BIOS
Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical
Medical Centre & Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522 NB Enschede, The Netherlands
| | - Pepijn W. H. Pinkse
- Complex
Photonic Systems Group, MESA+ Institute for Nanotechnology, University of Twente, 7522 NB Enschede, The Netherlands
| | - Loes I. Segerink
- BIOS
Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical
Medical Centre & Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522 NB Enschede, The Netherlands
| | - Jan C. T. Eijkel
- BIOS
Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical
Medical Centre & Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522 NB Enschede, The Netherlands
| |
Collapse
|
10
|
Liu N, Zheng Z, Yu D, Hong W, Liu H, Chen X. Programmable Invisible Photonic Patterns with Rapid Response Based on Two-Dimensional Colloidal Crystals. Polymers (Basel) 2021; 13:polym13121926. [PMID: 34200568 PMCID: PMC8226874 DOI: 10.3390/polym13121926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 02/04/2023] Open
Abstract
The development of invisible patterns via programmable patterning can lead to promising applications in optical encryption. This study reports a facile method for building responsive photonic crystal patterns. Commercially printed patterns were used as a mask to induce invisible patterns revealed by wetting. The masked areas exhibit different swelling kinetics, leading to strong structural colors in the masked area and transparent features in the unmasked area. The contrast could disappear through different wetting behavior, providing a unique and reversible wetting feature. This programmable printing is expected to become an environmentally friendly technique for scalable invisible optical anti-counterfeiting technology.
Collapse
Affiliation(s)
- Naiyu Liu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (N.L.); (Z.Z.); (D.Y.); (W.H.)
| | - Zhikun Zheng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (N.L.); (Z.Z.); (D.Y.); (W.H.)
| | - Dingshan Yu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (N.L.); (Z.Z.); (D.Y.); (W.H.)
| | - Wei Hong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (N.L.); (Z.Z.); (D.Y.); (W.H.)
| | - Hailu Liu
- Guangdong Biomaterials Engineering Technology Research Center, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China
- Correspondence: (H.L.); (X.C.)
| | - Xudong Chen
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (N.L.); (Z.Z.); (D.Y.); (W.H.)
- Correspondence: (H.L.); (X.C.)
| |
Collapse
|
11
|
Kuo PC, Lin ZX, Wu TY, Hsu CH, Lin HP, Wu TS. Effects of morphology and pore size of mesoporous silicas on the efficiency of an immobilized enzyme. RSC Adv 2021; 11:10010-10017. [PMID: 35423525 PMCID: PMC8695390 DOI: 10.1039/d1ra01358k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
An investigation is performed into the efficiency of the Streptomyces griseus HUT 6037 enzyme immobilized in three different mesoporous silicas, namely mesoporous silica film, mesocellular foam, and rod-like SBA-15. It is shown that for all three supports, the pH value changes the surface charge and charge density and hence determines the maximum loading capacity of the enzyme. The products of the enzyme hydrolytic reaction are analyzed by 1H-NMR. The results show that among the three silica supports, the mesoporous silica film (with a channel length in the range of 60–100 nm) maximizes the accessibility of the immobilized enzyme. The loading capacity of the enzyme is up to 95% at pH 7 and the activity of the immobilized enzyme is maintained for more than 15 days when using a silica film support. The order of the activity of the enzyme immobilized in different mesoporous silica supports is: mesoporous silica film > mesocellular foam > rod-like SBA-15. Furthermore, the immobilized enzyme can be easily separated from the reaction solution via simple filtration or centrifugation methods and re-used for hydrolytic reaction as required. Mesoporous silica films were used as supports with high loading capacity and enzyme activity.![]()
Collapse
Affiliation(s)
- Ping-Chung Kuo
- School of Pharmacy, College of Medicine, National Cheng Kung University Tainan 701 Taiwan +886-6-2740552 +886-6-2747538
| | - Zhi-Xun Lin
- Department of Chemistry, National Cheng Kung University Tainan 701 Taiwan +886-6-2757575 ext. 65342
| | - Tzi-Yi Wu
- Department of Chemical & Materials Engineering, National Yunlin University of Science and Technology Yunlin 644 Taiwan
| | - Chun-Han Hsu
- General Education Center, National Tainan Junior College of Nursing Tainan 700 Taiwan
| | - Hong-Ping Lin
- Department of Chemistry, National Cheng Kung University Tainan 701 Taiwan +886-6-2757575 ext. 65342
| | - Tian-Shung Wu
- School of Pharmacy, College of Medicine, National Cheng Kung University Tainan 701 Taiwan +886-6-2740552 +886-6-2747538.,Department of Pharmacy, College of Pharmacy and Health Care, Tajen University Pingtung 907 Taiwan
| |
Collapse
|
12
|
Tang Z, Wu J, Yu X, Hong R, Zu X, Lin X, Luo H, Lin W, Yi G. Fabrication of Au Nanoparticle Arrays on Flexible Substrate for Tunable Localized Surface Plasmon Resonance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9281-9288. [PMID: 33587614 DOI: 10.1021/acsami.0c22785] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, Au nanoparticle (AuNP) arrays on shape memory polyurethane (SMPU) substrates serve as flexible materials for tunable localized surface plasmon resonance (LSPR). AuNP arrays prepared by diblock copolymer self-assembly are transferred from rigid silicon wafers onto flexible SMPU substrates with ultrasonic treatment rather than peeling off directly. The resultant AuNP array SMPU films have excellent mechanical properties and stable thermodynamic properties. The LSPR arising from AuNP arrays is increased by negative bending on SMPU substrates, whereas the LSPR is decreased by positive bending. Besides, upon uniaxial tension, the vertical LSPR is increased first then decreased, whereas the parallel LSPR is similar, resulting in the overall LSPR of AuNP arrays being increased first and then decreased with the mechanical uniaxial tension of SMPU. Moreover, the resultant AuNP array SMPU films exhibit excellent flexibility, stability, and homogeneity in practical surface-enhanced Raman scattering (SERS) application. This approach of incorporating AuNP arrays on SMPU substrates for tuning plasmonic properties have great potential applications in SERS, fluorescence enhancement, and newly optoelectronic materials.
Collapse
Affiliation(s)
- Zilun Tang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jianyu Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xiaofeng Yu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Rui Hong
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xihong Zu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xiaofeng Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Hongsheng Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Wenjing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Guobin Yi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
13
|
Tzeng Y, Lin BY. Silver-Based SERS Pico-Molar Adenine Sensor. BIOSENSORS-BASEL 2020; 10:bios10090122. [PMID: 32932787 PMCID: PMC7559806 DOI: 10.3390/bios10090122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 11/22/2022]
Abstract
Adenine is an important molecule for biomedical and agricultural research and applications. The detection of low concentration adenine molecules is thus desirable. Surface-enhanced Raman scattering (SERS) is a promising label-free detection and fingerprinting technique for molecules of significance. A novel SERS sensor made of clusters of silver nanostructures deposited on copper bumps in valleys of an etched silicon substrate was previously reported to exhibit a low and reproducible detection limit for a 10−11 M neutral adenine aqueous solution. Reflection of laser illumination from the silicon surface surrounding a valley provides additional directions of laser excitation to adenine molecules adsorbing on a silver surface for the generation of enhanced SERS signal strength leading to a low detection limit. This paper further reports a concentration dependent shift of the ring-breathing mode SERS adenine peak towards 760 cm−1 with decreasing concentration and its pH-dependent SERS signal strength. For applications, where the pH value can vary, reproducible detection of 10−12 M adenine in a pH 9 aqueous solution is feasible, making the novel SERS structure a desirable pico-molar adenine sensor.
Collapse
|
14
|
Fathi F, Rashidi MR, Pakchin PS, Ahmadi-Kandjani S, Nikniazi A. Photonic crystal based biosensors: Emerging inverse opals for biomarker detection. Talanta 2020; 221:121615. [PMID: 33076145 PMCID: PMC7466948 DOI: 10.1016/j.talanta.2020.121615] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/02/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022]
Abstract
Photonic crystal (PC)-based inverse opal (IO) arrays are one of the substrates for label-free sensing mechanism. IO-based materials with their advanced and ordered three-dimensional microporous structures have recently found attractive optical sensor and biological applications in the detection of biomolecules like proteins, DNA, viruses, etc. The unique optical and structural properties of IO materials can simplify the improvements in non-destructive optical study capabilities for point of care testing (POCT) used within a wide variety of biosensor research. In this review, which is an interdisciplinary investigation among nanotechnology, biology, chemistry and medical sciences, the recent fabrication methodologies and the main challenges regarding the application of (inverse opals) IOs in terms of their bio-sensing capability are summarized. The recent main challenges regarding the application of inverse opals (IOs) in the detection of biomolecules are reviewed. Sensing mechanisms of biomolecules including glucose, proteins, DNA, viruses were summarized. IO materials with their ordered 3D microporous structures have found attractive optical biosensor applications.
Collapse
Affiliation(s)
- Farzaneh Fathi
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | | | - Parvin Samadi Pakchin
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sohrab Ahmadi-Kandjani
- Photonics Group, Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz, Iran
| | - Arash Nikniazi
- Photonics Group, Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz, Iran; Department of Physics, Engineering Physics & Astronomy, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
15
|
Tzeng Y, Lin BY. Silver SERS Adenine Sensors with a Very Low Detection Limit. BIOSENSORS-BASEL 2020; 10:bios10050053. [PMID: 32429203 PMCID: PMC7277772 DOI: 10.3390/bios10050053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 01/10/2023]
Abstract
The detection of adenine molecules at very low concentrations is important for biological and medical research and applications. This paper reports a silver-based surface-enhanced Raman scattering (SERS) sensor with a very low detection limit for adenine molecules. Clusters of closely packed silver nanoparticles on surfaces of discrete ball-like copper bumps partially covered with graphene are deposited by immersion in silver nitrate. These clusters of silver nanoparticles exhibit abundant nanogaps between nanoparticles, where plasmonic coupling induces very high local electromagnetic fields. Silver nanoparticles growing perpendicularly on ball-like copper bumps exhibit surfaces of large curvature, where electromagnetic field enhancement is high. Between discrete ball-like copper bumps, the local electromagnetic field is low. Silver is not deposited on the low-field surface area. Adenine molecules interact with silver by both electrostatic and functional groups and exhibit low surface diffusivity on silver surface. Adenine molecules are less likely to adsorb on low-field sensor surface without silver. Therefore, adenine molecules have a high probability of adsorbing on silver surface of high local electric fields and contribute to the measured Raman scattering signal strength. We demonstrated SERS sensors made of clusters of silver nanoparticles deposited on discrete ball-like copper bumps with very a low detection limit for detecting adenine water solution of a concentration as low as 10−11 M.
Collapse
|
16
|
Ashurov M, Baranchikov A, Klimonsky S. Photonic crystal enhancement of Raman scattering. Phys Chem Chem Phys 2020; 22:9630-9636. [PMID: 32328596 DOI: 10.1039/d0cp00781a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Thin films of photonic crystals with inverse opal structure were prepared from opal-type templates by photocurable resin polymerization, and methylene blue dye was embedded into them as an analyte. Raman spectra were recorded at different angles of light incidence for samples with different positions of the stop band. A pure effect of the photonic stop band on the amplitude of spontaneous Raman scattering peaks for inverse opal samples without metallic nanoparticles was established for the first time. A great enhancement of the Raman spectra due to the coincidence of the stop band center with the laser wavelength was shown; the enhancement factor was estimated to be more than 50.
Collapse
Affiliation(s)
- Matin Ashurov
- Faculty of Materials Science, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | | |
Collapse
|
17
|
Hong W, Yuan Z, Chen X. Structural Color Materials for Optical Anticounterfeiting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907626. [PMID: 32187853 DOI: 10.1002/smll.201907626] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/14/2020] [Accepted: 02/23/2020] [Indexed: 05/23/2023]
Abstract
The counterfeiting of goods is growing worldwide, affecting practically any marketable item ranging from consumer goods to human health. Anticounterfeiting is essential for authentication, currency, and security. Anticounterfeiting tags based on structural color materials have enjoyed worldwide and long-term commercial success due to their inexpensive production and exceptional ease of percept. However, conventional anticounterfeiting tags of holographic gratings can be readily copied or imitated. Much progress has been made recently to overcome this limitation by employing sufficient complexity and stimuli-responsive ability into the structural color materials. Moreover, traditional processing methods of structural color tags are mainly based on photolithography and nanoimprinting, while new processing methods such as the inkless printing and additive manufacturing have been developed, enabling massive scale up fabrication of novel structural color security engineering. This review presents recent breakthroughs in structural color materials, and their applications in optical encryption and anticounterfeiting are discussed in detail. Special attention is given to the unique structures for optical anticounterfeiting techniques and their optical aspects for encryption. Finally, emerging research directions and current challenges in optical encryption technologies using structural color materials is presented.
Collapse
Affiliation(s)
- Wei Hong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Center for High-Performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhongke Yuan
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Center for High-Performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xudong Chen
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Center for High-Performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|