1
|
Mamidi N, De Silva FF, Vacas AB, Gutiérrez Gómez JA, Montes Goo NY, Mendoza DR, Reis RL, Kundu SC. Multifaceted Hydrogel Scaffolds: Bridging the Gap between Biomedical Needs and Environmental Sustainability. Adv Healthc Mater 2024; 13:e2401195. [PMID: 38824416 DOI: 10.1002/adhm.202401195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Hydrogels are dynamically evolving 3D networks composed of hydrophilic polymer scaffolds with significant applications in the healthcare and environmental sectors. Notably, protein-based hydrogels mimic the extracellular matrix, promoting cell adhesion. Further enhancing cell proliferation within these scaffolds are matrix-metalloproteinase-triggered amino acid motifs. Integration of cell-friendly modules like peptides and proteins expands hydrogel functionality. These exceptional properties position hydrogels for diverse applications, including biomedicine, biosensors, environmental remediation, and the food industry. Despite significant progress, there is ongoing research to optimize hydrogels for biomedical and environmental applications further. Engineering novel hydrogels with favorable characteristics is crucial for regulating tissue architecture and facilitating ecological remediation. This review explores the synthesis, physicochemical properties, and biological implications of various hydrogel types and their extensive applications in biomedicine and environmental sectors. It elaborates on their potential applications, bridging the gap between advancements in the healthcare sector and solutions for environmental issues.
Collapse
Affiliation(s)
- Narsimha Mamidi
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Nuevo Leon, Monterrey, 64849, Mexico
| | - Fátima Franco De Silva
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Nuevo Leon, Monterrey, 64849, Mexico
| | - Alejandro Bedón Vacas
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Nuevo Leon, Monterrey, 64849, Mexico
| | - Javier Adonay Gutiérrez Gómez
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Nuevo Leon, Monterrey, 64849, Mexico
| | - Naomi Yael Montes Goo
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Nuevo Leon, Monterrey, 64849, Mexico
| | - Daniela Ruiz Mendoza
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Nuevo Leon, Monterrey, 64849, Mexico
| | - Rui L Reis
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
2
|
Sun J, Wang H, Li P, Li C, Li D, Dong H, Guo Z, Geng L, Zhang X, Fang M, Xu Y, Ahmed MBM, Guo Y, Sun X. Metal-organic framework-based aptasensor utilizing a novel electrochemiluminescence system for detecting acetamiprid residues in vegetables. Biosens Bioelectron 2024; 259:116371. [PMID: 38761742 DOI: 10.1016/j.bios.2024.116371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
The work was based on N-(4-Aminobutyl)-N-ethylisoluminol (ABEI)-functionalized Fe-MIL-101 and gold nanoparticles (AuNPs) as sensing materials, and an electrochemiluminescence (ECL) aptasensor was constructed for detecting acetamiprid. As a metal-organic framework (MOF) material, Fe-MIL-101, was renowned for its unique three-dimensional network structure and efficient catalytic capability. ABEI, a common ECL reagent, was widely applied. ABEI was introduced into the Fe-MIL-101 structure as a luminescence functionalization reagent to form Fe-MIL-101@ABEI. This approach avoided limitations on the loading capacity of luminescent reagents imposed by modification and encapsulation methods. With character of excellent catalytic activity and ease of bioconjugation, AuNPs offered significant advantages in biosensing. Leveraging the reductive properties of ABEI, AuNPs were reduced around Fe-MIL-101@ABEI, resulting in the modified luminescent functionalized material denoted as Fe-MIL-101@ABEI@AuNPs. An aptamer was employed as a recognition element and was modified accordingly. The aptamer was immobilized on Fe-MIL-101@ABEI@AuNPs through gold-sulfur (Au-S) bonds. After capturing acetamiprid, the aptamer induced a decrease in the ECL signal intensity within the ABEI-hydrogen peroxide (H2O2) system, enabling the quantitative detection of acetamiprid. The aptasensor displayed remarkable stability and repeatability, featured a detection range of 1×10-3-1×102 nM, and had a limit of detection (LOD) of 0.3 pM (S/N=3), which underscored its substantial practical application potential.
Collapse
Affiliation(s)
- Jiashuai Sun
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Haifang Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Peisen Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Chengqiang Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Donghan Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Haowei Dong
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Zhen Guo
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Lingjun Geng
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Xin Zhang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Mingxuan Fang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Yingchao Xu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Mohamed Bedair Mohamed Ahmed
- Food Toxicology and Contaminants Dept., Division of Food Industries and Nutrition, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt
| | - Yemin Guo
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China.
| | - Xia Sun
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China.
| |
Collapse
|
3
|
Medvedeva AS, Dyakova EI, Kuznetsova LS, Mironov VG, Gurkin GK, Rogova TV, Kharkova AS, Melnikov PV, Naumova AO, Butusov DN, Arlyapov VA. A Two-Mediator System Based on a Nanocomposite of Redox-Active Polymer Poly(thionine) and SWCNT as an Effective Electron Carrier for Eukaryotic Microorganisms in Biosensor Analyzers. Polymers (Basel) 2023; 15:3335. [PMID: 37631392 PMCID: PMC10459408 DOI: 10.3390/polym15163335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Electropolymerized thionine was used as a redox-active polymer to create a two-mediated microbial biosensor for determining biochemical oxygen demand (BOD). The electrochemical characteristics of the conducting system were studied by cyclic voltammetry and electrochemical impedance spectroscopy. It has been shown that the most promising in terms of the rate of interaction with the yeast B. adeninivorans is the system based on poly(thionine), single-walled carbon nanotubes (SWCNT), and neutral red (kint = 0.071 dm3/(g·s)). The biosensor based on this system is characterized by high sensitivity (the lower limit of determined BOD concentrations is 0.4 mgO2/dm3). Sample analysis by means of the developed analytical system showed that the results of the standard dilution method and those using the biosensor differed insignificantly. Thus, for the first time, the fundamental possibility of effectively using nanocomposite materials based on SWCNT and the redox-active polymer poly(thionine) as one of the components of two-mediator systems for electron transfer from yeast microorganisms to the electrode has been shown. It opens up prospects for creating stable and highly sensitive electrochemical systems based on eukaryotes.
Collapse
Affiliation(s)
- Anastasia S. Medvedeva
- Research Center “BioChemTech”, Tula State University, 92 Lenin Avenue, 300012 Tula, Russia
| | - Elena I. Dyakova
- Research Center “BioChemTech”, Tula State University, 92 Lenin Avenue, 300012 Tula, Russia
| | - Lyubov S. Kuznetsova
- Research Center “BioChemTech”, Tula State University, 92 Lenin Avenue, 300012 Tula, Russia
| | - Vladislav G. Mironov
- Research Center “BioChemTech”, Tula State University, 92 Lenin Avenue, 300012 Tula, Russia
| | - George K. Gurkin
- Research Center “BioChemTech”, Tula State University, 92 Lenin Avenue, 300012 Tula, Russia
| | - Tatiana V. Rogova
- Research Center “BioChemTech”, Tula State University, 92 Lenin Avenue, 300012 Tula, Russia
| | - Anna S. Kharkova
- Research Center “BioChemTech”, Tula State University, 92 Lenin Avenue, 300012 Tula, Russia
| | - Pavel V. Melnikov
- M. V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119571 Moscow, Russia
| | - Alina O. Naumova
- M. V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119571 Moscow, Russia
| | - Denis N. Butusov
- Computer-Aided Design Department, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
| | - Vyacheslav A. Arlyapov
- Research Center “BioChemTech”, Tula State University, 92 Lenin Avenue, 300012 Tula, Russia
| |
Collapse
|
4
|
Yuan S, Yu R, Tu Y, Du Y, Feng X, Nie F. An enhanced chemiluminescence hybrids of luminol by sulfonated polyaniline decorated copper-based metal organic frame composite applicable to the measurement of hydrogen peroxide in a wide pH range. Talanta 2023; 254:124183. [PMID: 36512973 DOI: 10.1016/j.talanta.2022.124183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Here, sulfonated polyaniline (SPAN) was decorated on the surface of copper-based metal organic frame (HKUST-1) and the composite was functionalized by luminol to construct a chemiluminescence (CL) hybrids (SPAN/HKUST-1@Luminol). The as-prepared SPAN/HKUST-1@Luminol demonstrated a great dispersion and stability performance in aqueous solution. Moreover, the resultant SPAN/HKUST-1@Luminol hybrids exhibited extremely strong CL properties, and the CL quantum yield was 136 times higher than that of luminol. In particular, it exhibited outstanding CL activity not only under alkaline conditions, but also under neutral conditions. The sensitive response of the hybrid to hydrogen peroxide was used to construct CL methods for the detection of hydrogen peroxide at a wide range of pH, with the detection limit of 60 nM at a neutral condition and 25 pM at alkaline condition. Due to strong and stable signal of the SPAN/HKUST-1@Luminol, the CL method provides a viable tool for determination of H2O2 in biological systems and enabled the monitoring of stimulated production of H2O2 released by living cells.
Collapse
Affiliation(s)
- Sijie Yuan
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, Shaanxi, People's Republic of China
| | - Ru Yu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, Shaanxi, People's Republic of China
| | - Ying Tu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, Shaanxi, People's Republic of China
| | - Yanhua Du
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi'an, 710054, Shaanxi, People's Republic of China
| | - Xuan Feng
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi'an, 710054, Shaanxi, People's Republic of China
| | - Fei Nie
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, Shaanxi, People's Republic of China.
| |
Collapse
|
5
|
Nanoparticle–Hydrogel Based Sensors: Synthesis and Applications. Catalysts 2022. [DOI: 10.3390/catal12101096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hydrogels are hydrophilic three-dimensional (3D) porous polymer networks that can easily stabilize various nanoparticles. Loading noble metal nanoparticles into a 3D network of hydrogels can enhance the synergy of the components. It can also be modified to prepare intelligent materials that can recognize external stimuli. The combination of noble metal nanoparticles and hydrogels to produce modified or new composite materials has attracted considerable attention as to the use of these materials in sensors. However, there is limited review literature on nanoparticle–hydrogel-based sensors. This paper presents the detailed strategies of synthesis and design of the composites, and the latest applications of nanoparticle–hydrogel materials in the sensing field. Finally, the current challenges and future development directions of nanoparticle–hydrogel-based sensors are proposed.
Collapse
|
6
|
Ghorbanizamani F, Moulahoum H, Guler Celik E, Timur S. Ionic liquids enhancement of hydrogels and impact on biosensing applications. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Moulahoum H, Ghorbanizamani F, Guler Celik E, Timur S. Nano-Scaled Materials and Polymer Integration in Biosensing Tools. BIOSENSORS 2022; 12:301. [PMID: 35624602 PMCID: PMC9139048 DOI: 10.3390/bios12050301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 12/27/2022]
Abstract
The evolution of biosensors and diagnostic devices has been thriving in its ability to provide reliable tools with simplified operation steps. These evolutions have paved the way for further advances in sensing materials, strategies, and device structures. Polymeric composite materials can be formed into nanostructures and networks of different types, including hydrogels, vesicles, dendrimers, molecularly imprinted polymers (MIP), etc. Due to their biocompatibility, flexibility, and low prices, they are promising tools for future lab-on-chip devices as both manufacturing materials and immobilization surfaces. Polymers can also allow the construction of scaffold materials and 3D structures that further elevate the sensing capabilities of traditional 2D biosensors. This review discusses the latest developments in nano-scaled materials and synthesis techniques for polymer structures and their integration into sensing applications by highlighting their various structural advantages in producing highly sensitive tools that rival bench-top instruments. The developments in material design open a new door for decentralized medicine and public protection that allows effective onsite and point-of-care diagnostics.
Collapse
Affiliation(s)
- Hichem Moulahoum
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey; (H.M.); (F.G.)
| | - Faezeh Ghorbanizamani
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey; (H.M.); (F.G.)
| | - Emine Guler Celik
- Bioengineering Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey;
| | - Suna Timur
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey; (H.M.); (F.G.)
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, Bornova, 35100 Izmir, Turkey
| |
Collapse
|
8
|
|
9
|
Frias IAM, Vega Gonzales Gil LH, Cordeiro MT, Oliveira MDL, Andrade CAS. Self-Enriching Electrospun Biosensors for Impedimetric Sensing of Zika Virus. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41-48. [PMID: 34932313 DOI: 10.1021/acsami.1c14052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Zika virus (ZIKV) infection is associated with the Guillain-Barré syndrome, and when non-vector congenital transmission occurs, fetal brain abnormalities are expected. After ZIKV infection, the blood, breast milk, and other body fluids contain low viral loads. Their detection is challenging as it requires the processing of larger input volumes of the clinical samples. Pre-enrichment is a valuable strategy to increase the analyte concentration. Therefore, the authors propose the use of a hierarchal composite polyaniline-(electrospun nanofiber) hydrogel mat (ENM) for the simultaneous enrichment and impedimetric sensing of ZIKV viral particles. The electrospinning conditions of polyvinyl alcohol and alginate, including blend formulation, were optimized through a factorial design. Disintegration and gelatinization were controlled via cross-linking to improve the hydrogel properties. Hierarchization was achieved by in situ chemical deposition of conductive polyaniline. The carboxyl groups of the ENM were used for the covalent immobilization of anti-ZIKV polyclonal antibodies used in the specific recognition of ZIKV within the medium of Vero cell culture. The specific capture and desorption of virions were studied at different pHs. ENMs were characterized by scanning electron microscopy and FTIR. Atomic force microscopy along with UV-vis and electrochemical impedance spectroscopies was used to monitor the antibody immobilization, ZIKV capture, and elution processes. Our results show that 14.2 mg (0.25 cm3) of ENM can capture 38.7 ± 2.5 μg of ZIKV with a desorption rate of 99.97% (38.29 ± 2.7 μg ZIKV), which is reusable for at least three times. Therefore, the capture capacity (micrograms of ZIKV captured per milligram of ENM) of polyaniline-hierarchized mats was 2.72 μg ZIKV/mg. The impedance LOD value was determined to be 2.76 μg of ZIKV particles (approximately 6.6 × 103 PFU/mL). As a result, we present a fast small-scale purification system that can simultaneously monitor ZIKV electrochemically and optically.
Collapse
Affiliation(s)
- Isaac A M Frias
- Therapeutic Innovation Program, Federal University of Pernambuco, Recife 50670-901, Brazil
- Biochemistry Department, Federal University of Pernambuco, Recife 50670-901, Brazil
| | | | - Marli T Cordeiro
- Institute Aggeu Magalhães (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife 21040-900, Brazil
| | - Maria D L Oliveira
- Therapeutic Innovation Program, Federal University of Pernambuco, Recife 50670-901, Brazil
- Biochemistry Department, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Cesar A S Andrade
- Therapeutic Innovation Program, Federal University of Pernambuco, Recife 50670-901, Brazil
- Biochemistry Department, Federal University of Pernambuco, Recife 50670-901, Brazil
| |
Collapse
|
10
|
Qi J, Su G, Li Z. Gel-Based Luminescent Conductive Materials and Their Applications in Biosensors and Bioelectronics. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6759. [PMID: 34832161 PMCID: PMC8621303 DOI: 10.3390/ma14226759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 12/27/2022]
Abstract
The gel is an ideal platform for fabricating materials for bio-related applications due to its good biocompatibility, adjustable mechanical strength, and flexible and diversified functionalization. In recent decades, gel-based luminescent conductive materials that possess additional luminescence and conductivity simultaneously advanced applications in biosensors and bioelectronics. Herein, a comprehensive overview of gel-based luminescent conductive materials is summarized in this review. Gel-based luminescent conductive materials are firstly outlined, highlighting their fabrication methods, network structures, and functions. Then, their applications in biosensors and bioelectronics fields are illustrated. Finally, challenges and future perspectives of this emerging field are discussed with the hope of inspire additional ideas.
Collapse
Affiliation(s)
- Jiajin Qi
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (J.Q.); (G.S.)
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing 100081, China
| | - Gongmeiyue Su
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (J.Q.); (G.S.)
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing 100081, China
| | - Zhao Li
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (J.Q.); (G.S.)
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
11
|
Shi H, Dai Z, Sheng X, Xia D, Shao P, Yang L, Luo X. Conducting polymer hydrogels as a sustainable platform for advanced energy, biomedical and environmental applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147430. [PMID: 33964778 DOI: 10.1016/j.scitotenv.2021.147430] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/08/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Environmentally friendly polymeric materials and derivative technologies play increasingly important roles in the sustainable development of our modern society. Conducting polymer hydrogels (CPHs) synergizing the advantageous characteristics of conventional hydrogels and conducting polymers are promising to satisfy the requirements of environmental sustainability. Beyond their use in energy and biomedical applications that require exceptional mechanical and electrical properties, CPHs are emerging as promising contaminant adsorbents owing to their porous network structure and regulable functional groups. Here, we review the currently available strategies for synthesizing CPHs, focusing primarily on multifunctional applications in energy storage/conversion, biomedical engineering and environmental remediation, and discuss future perspectives and challenges for CPHs in terms of their synthesis and applications. It is envisioned to stimulate new thinking and innovation in the development of next-generation sustainable materials.
Collapse
Affiliation(s)
- Hui Shi
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Zhenxi Dai
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xin Sheng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Dan Xia
- School of Space and Environment, Beihang University, Beijing 100083, PR China.
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Liming Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China.
| |
Collapse
|
12
|
A Highly Sensitive Electrochemiluminescence Spermine Biosensor Based on Au−Ag Bimetallic Nanoclusters. ELECTROANAL 2021. [DOI: 10.1002/elan.202100169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
An "off-on" electrochemiluminescence biosensor coupled with strand displacement-powered 3D micromolecule walking nanomachine for ultrasensitive detection of adenosine triphosphate. Mikrochim Acta 2021; 188:237. [PMID: 34184148 DOI: 10.1007/s00604-021-04895-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/12/2021] [Indexed: 10/21/2022]
Abstract
A three-dimensional (3D) micromolecule walking nanomachine propelled by strand displacement was developed to establish a novel switching electrochemiluminescence (ECL) biosensor for ultrasensitive detection of adenosine triphosphate (ATP). Generally, walking nanomachines reported previously were limited to DNA walkers, while the proposed 3D walking nanomachine focused on the micromolecule walker. Firstly, TiO2 and silver nanoparticles (Ag NPs) functionalized N-(4-aminobutyl)-N-(ethylisoluminol) (Ag-ABEI) were deposited onto the electrode surface to offer an enhanced ECL signal, resulting from the double catalytic effect of TiO2 and Ag NPs for H2O2. Following, dopamine (DA)-labeled DNA duplex probes (S1/S2-DA) immobilized onto the modified electrode cut down the original ECL signal due to the quenching of DA toward ABEI (signal-off). Target ATP walker moved along the 3D DNA track, simultaneously releasing numerous DNA3, which was applied to displace S2-DA, resulting in the quenched ECL intensity recovery (signal-on). As a result, the biosensor showed a low limit of detection down to 0.5 nM (S/N = 3) and was successfully employed to determine ATP in human serum samples. Thus, the established biosensing strategy holds great potential for biochemical studies and clinical diagnosis.
Collapse
|
14
|
Wang Z, Liu Y, Wang Z, Huang X, Huang W. Hydrogel‐based composites: Unlimited platforms for biosensors and diagnostics. VIEW 2021. [DOI: 10.1002/viw.20200165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Zeyi Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing China
| | - Yanlei Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing China
| | - Zhiwei Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University Xi'an China
| | - Xiao Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University Xi'an China
| |
Collapse
|
15
|
Zong LP, Ruan LY, Li J, Marks RS, Wang JS, Cosnier S, Zhang XJ, Shan D. Fe-MOGs-based enzyme mimetic and its mediated electrochemiluminescence for in situ detection of H 2O 2 released from Hela cells. Biosens Bioelectron 2021; 184:113216. [PMID: 33894426 DOI: 10.1016/j.bios.2021.113216] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/16/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022]
Abstract
Enzyme mimetics have attracted wide interest due to their inherent enzyme-like activity and unique physicochemical properties, as well as promising applications in disease diagnosis, treatment and monitoring. Inspired by the attributes of nonheme iron enzymes, synthetic models were designed to mimic their capability and investigate the catalytic mechanisms. Herein, metal-organic gels (Fe-MOGs) with horseradish peroxidase (HRP) like Fe-NX structure were successfully synthesized though the coordination between iron and 1,10-phenanthroline-2,9-dicarboxylic acid (PDA) and exhibited excellent peroxidase-like activity. Its structure-activity relationship and the in-situ electrochemiluminescence (ECL) detection of H2O2 secreted by Hela cells were further investigated. The highly dispersed Fe-NX active sites inside Fe-MOGs were able to catalyze the decomposition of H2O2 into large amounts of reactive oxygen species (ROS) via a Fenton-like reaction under a low overpotential. Due to the accumulation of ROS free radicals, the luminol ECL emission was significantly amplified. A proof-of-concept biosensor was constructed with a detection limit as low as 2.2 nM and a wide linear range from 0.01 to 40 μM. As a novel metal organic gels based enzyme mimetic, Fe-MOGs show great promises in early cancer detection and pathological process monitoring.
Collapse
Affiliation(s)
- Li-Ping Zong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ling-Yu Ruan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Junji Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Robert S Marks
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jun-Song Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Serge Cosnier
- University of Grenoble Alpes-CNRS, DCM UMR 5250, F-38000, Grenoble, France
| | - Xue-Ji Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Dan Shan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
16
|
|
17
|
Breaking-down the catalyst used for the electrophotosynthesis of amino acids by nitrogen and carbon fixation. J Catal 2020. [DOI: 10.1016/j.jcat.2020.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
18
|
Qing M, Chen SL, Han L, Yang YZ, Luo HQ, Li NB. Three–dimensional donor–acceptor–type photoactive material/conducting polyaniline hydrogel complex for sensitive photocathodic enzymatic bioanalysis. Biosens Bioelectron 2020; 158:112179. [DOI: 10.1016/j.bios.2020.112179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022]
|