1
|
Le CV, Yoon H. Advances in the Use of Conducting Polymers for Healthcare Monitoring. Int J Mol Sci 2024; 25:1564. [PMID: 38338846 PMCID: PMC10855550 DOI: 10.3390/ijms25031564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Conducting polymers (CPs) are an innovative class of materials recognized for their high flexibility and biocompatibility, making them an ideal choice for health monitoring applications that require flexibility. They are active in their design. Advances in fabrication technology allow the incorporation of CPs at various levels, by combining diverse CPs monomers with metal particles, 2D materials, carbon nanomaterials, and copolymers through the process of polymerization and mixing. This method produces materials with unique physicochemical properties and is highly customizable. In particular, the development of CPs with expanded surface area and high conductivity has significantly improved the performance of the sensors, providing high sensitivity and flexibility and expanding the range of available options. However, due to the morphological diversity of new materials and thus the variety of characteristics that can be synthesized by combining CPs and other types of functionalities, choosing the right combination for a sensor application is difficult but becomes important. This review focuses on classifying the role of CP and highlights recent advances in sensor design, especially in the field of healthcare monitoring. It also synthesizes the sensing mechanisms and evaluates the performance of CPs on electrochemical surfaces and in the sensor design. Furthermore, the applications that can be revolutionized by CPs will be discussed in detail.
Collapse
Affiliation(s)
- Cuong Van Le
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea;
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Hyeonseok Yoon
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea;
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| |
Collapse
|
2
|
Tyagi R, Yadav K, Srivastava N, Sagar R. Applications of Pyrrole and Pyridine-based Heterocycles in Cancer Diagnosis and Treatment. Curr Pharm Des 2024; 30:255-277. [PMID: 38711394 DOI: 10.2174/0113816128280082231205071504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/23/2023] [Indexed: 05/08/2024]
Abstract
BACKGROUND The escalation of cancer worldwide is one of the major causes of economy burden and loss of human resources. According to the American Cancer Society, there will be 1,958,310 new cancer cases and 609,820 projected cancer deaths in 2023 in the United States. It is projected that by 2040, the burden of global cancer is expected to rise to 29.5 million per year, causing a death toll of 16.4 million. The hemostasis regulation by cellular protein synthesis and their targeted degradation is required for normal cell growth. The imbalance in hemostasis causes unbridled growth in cells and results in cancer. The DNA of cells needs to be targeted by chemotherapeutic agents for cancer treatment, but at the same time, their efficacy and toxicity also need to be considered for successful treatment. OBJECTIVE The objective of this study is to review the published work on pyrrole and pyridine, which have been prominent in the diagnosis and possess anticancer activity, to obtain some novel lead molecules of improved cancer therapeutic. METHODS A literature search was carried out using different search engines, like Sci-finder, Elsevier, ScienceDirect, RSC etc., for small molecules based on pyrrole and pyridine helpful in diagnosis and inducing apoptosis in cancer cells. The research findings on the application of these compounds from 2018-2023 were reviewed on a variety of cell lines, such as breast cancer, liver cancer, epithelial cancer, etc. Results: In this review, the published small molecules, pyrrole and pyridine and their derivatives, which have roles in the diagnosis and treatment of cancers, were discussed to provide some insight into the structural features responsible for diagnosis and treatment. The analogues with the chromeno-furo-pyridine skeleton showed the highest anticancer activity against breast cancer. The compound 5-amino-N-(1-(pyridin-4- yl)ethylidene)-1H-pyrazole-4-carbohydrazides was highly potent against HEPG2 cancer cell. Redaporfin is used for the treatment of cholangiocarcinoma, biliary tract cancer, cisplatin-resistant head and neck squamous cell carcinoma, and pigmentation melanoma, and it is in clinical trials for phase II. These structural features present a high potential for designing novel anticancer agents for diagnosis and drug development. CONCLUSION Therefore, the N- and C-substituted pyrrole and pyridine-based novel privileged small Nheterocyclic scaffolds are potential molecules used in the diagnosis and treatment of cancer. This review discusses the reports on the synthesis of such molecules during 2018-2023. The review mainly discusses various diagnostic techniques for cancer, which employ pyrrole and pyridine heterocyclic scaffolds. Furthermore, the anticancer activity of N- and C-substituted pyrrole and pyridine-based scaffolds has been described, which works against different cancer cell lines, such as MCF-7, A549, A2780, HepG2, MDA-MB-231, K562, HT- 29, Caco-2 cells, Hela, Huh-7, WSU-DLCL2, HCT-116, HBL-100, H23, HCC827, SKOV3, etc. This review will help the researchers to obtain a critical insight into the structural aspects of pyrrole and pyridine-based scaffolds useful in cancer diagnosis as well as treatment and design pathways to develop novel drugs in the future.
Collapse
Affiliation(s)
- Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110007, India
| | - Kanchan Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110007, India
| | - Nitin Srivastava
- Department of Chemistry, Amity University Lucknow Campus, Lucknow, Uttar Pradesh 226028, India
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110007, India
| |
Collapse
|
3
|
Pang Y, Qu J, Zhang H, Cao Y, Ma X, Wang S, Wang J, Wu J, Zhang T. Nose-to-brain translocation and nervous system injury in response to indium tin oxide nanoparticles of long-term low-dose exposures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167314. [PMID: 37742979 DOI: 10.1016/j.scitotenv.2023.167314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Indium tin oxide (ITO) is a semiconductor nanomaterial with broad application in liquid crystal displays, solar cells, and electrochemical immune sensors. It is worth noting that, with the gradual increase in worker exposure opportunities, the exposure risk in occupational production cannot be ignored. At present, the toxicity of ITO mainly focuses on respiratory toxicity. ITO inhaled through the upper respiratory tract can cause pathological changes such as interstitial pneumonia and pulmonary fibrosis. Still, extrapulmonary toxicity after nanoscale ITO nanoparticle (ITO NPs) exposure, such as long-term effects on the central nervous system, should also be of concern. Therefore, we set up exposure dose experiments (0 mg·kg-1, 3.6 mg·kg-1, and 36 mg·kg-1) based on occupational exposure limits to treat C57BL/6 mice via nasal drops for 15 weeks. Moreover, we conducted a preliminary assessment of the neurotoxicity of ITO NPs (20-30 nm) in vivo. The results indicated that ITO NPs can cause diffuse inflammatory infiltrates in brain tissue, increased glial cell responsiveness, abnormal neuronal cell lineage transition, neuronal migration disorders, and neuronal apoptosis related to the oxidative stress induced by ITO NPs exposure. Hence, our findings provide useful information for the fuller risk assessment of ITO NPs after occupational exposure.
Collapse
Affiliation(s)
- Yanting Pang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jing Qu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Haopeng Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yuna Cao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xinmo Ma
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Shile Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jianli Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jingying Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
4
|
Recent Advances in Electrochemical and Optical Biosensors for Cancer Biomarker Detection. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Goldoni R, Scolaro A, Boccalari E, Dolci C, Scarano A, Inchingolo F, Ravazzani P, Muti P, Tartaglia G. Malignancies and Biosensors: A Focus on Oral Cancer Detection through Salivary Biomarkers. BIOSENSORS-BASEL 2021; 11:bios11100396. [PMID: 34677352 PMCID: PMC8533918 DOI: 10.3390/bios11100396] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022]
Abstract
Oral cancer is among the deadliest types of malignancy due to the late stage at which it is usually diagnosed, leaving the patient with an average five-year survival rate of less than 50%. The booming field of biosensing and point of care diagnostics can, in this regard, play a major role in the early detection of oral cancer. Saliva is gaining interest as an alternative biofluid for non-invasive diagnostics, and many salivary biomarkers of oral cancer have been proposed. While these findings are promising for the application of salivaomics tools in routine practice, studies on larger cohorts are still needed for clinical validation. This review aims to summarize the most recent development in the field of biosensing related to the detection of salivary biomarkers commonly associated with oral cancer. An introduction to oral cancer diagnosis, prognosis and treatment is given to define the clinical problem clearly, then saliva as an alternative biofluid is presented, along with its advantages, disadvantages, and collection procedures. Finally, a brief paragraph on the most promising salivary biomarkers introduces the sensing technologies commonly exploited to detect oral cancer markers in saliva. Hence this review provides a comprehensive overview of both the clinical and technological advantages and challenges associated with oral cancer detection through salivary biomarkers.
Collapse
Affiliation(s)
- Riccardo Goldoni
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milano, Italy; (R.G.); (A.S.); (E.B.); (C.D.); (P.M.)
| | - Alessandra Scolaro
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milano, Italy; (R.G.); (A.S.); (E.B.); (C.D.); (P.M.)
| | - Elisa Boccalari
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milano, Italy; (R.G.); (A.S.); (E.B.); (C.D.); (P.M.)
| | - Carolina Dolci
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milano, Italy; (R.G.); (A.S.); (E.B.); (C.D.); (P.M.)
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy;
| | - Paolo Ravazzani
- National Research Council, Institute of Electronics, Computer and Telecommunication Engineering (CNR IEIIT), 20133 Milano, Italy;
| | - Paola Muti
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milano, Italy; (R.G.); (A.S.); (E.B.); (C.D.); (P.M.)
| | - Gianluca Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milano, Italy; (R.G.); (A.S.); (E.B.); (C.D.); (P.M.)
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, 20100 Milano, Italy
- Correspondence:
| |
Collapse
|
6
|
Burtscher B, Manco Urbina PA, Diacci C, Borghi S, Pinti M, Cossarizza A, Salvarani C, Berggren M, Biscarini F, Simon DT, Bortolotti CA. Sensing Inflammation Biomarkers with Electrolyte-Gated Organic Electronic Transistors. Adv Healthc Mater 2021; 10:e2100955. [PMID: 34423579 PMCID: PMC11469060 DOI: 10.1002/adhm.202100955] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/16/2021] [Indexed: 01/08/2023]
Abstract
An overview of cytokine biosensing is provided, with a focus on the opportunities provided by organic electronic platforms for monitoring these inflammation biomarkers which manifest at ultralow concentration levels in physiopathological conditions. Specifically, two of the field's state-of-the-art technologies-organic electrochemical transistors (OECTs) and electrolyte gated organic field effect transistors (EGOFETs)-and their use in sensing cytokines and other proteins associated with inflammation are a particular focus. The overview will include an introduction to current clinical and "gold standard" quantification techniques and their limitations in terms of cost, time, and required infrastructure. A critical review of recent progress with OECT- and EGOFET-based protein biosensors is presented, alongside a discussion onthe future of these technologies in the years and decades ahead. This is especially timely as the world grapples with limited healthcare diagnostics during the Coronavirus disease (COVID-19)pandemic where one of the worst-case scenarios for patients is the "cytokine storm." Clearly, low-cost point-of-care technologies provided by OECTs and EGOFETs can ease the global burden on healthcare systems and support professionals by providing unprecedented wealth of data that can help to monitor disease progression in real time.
Collapse
Affiliation(s)
- Bernhard Burtscher
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | | | - Chiara Diacci
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Simone Borghi
- Department of Life SciencesUniversity of Modena and Reggio EmiliaVia Campi 103Modena41125Italy
| | - Marcello Pinti
- Department of Life SciencesUniversity of Modena and Reggio EmiliaVia Campi 103Modena41125Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and AdultsUniversity of Modena and Reggio EmiliaVia Campi 287Modena41125Italy
| | - Carlo Salvarani
- Rheumatology UnitUniversity of Modena and Reggio EmiliaMedical SchoolAzienda Ospedaliero‐UniversitariaPoliclinico di ModenaModena41124Italy
| | - Magnus Berggren
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Fabio Biscarini
- Department of Life SciencesUniversity of Modena and Reggio EmiliaVia Campi 103Modena41125Italy
- Center for Translation NeurophysiologyIstituto Italiano di TecnologiaVia Fossato di Mortara 17–19Ferrara44100Italy
| | - Daniel T. Simon
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Carlo A. Bortolotti
- Department of Life SciencesUniversity of Modena and Reggio EmiliaVia Campi 103Modena41125Italy
| |
Collapse
|
7
|
Aydın EB, Aydın M, Sezgintürk MK. New Impedimetric Sandwich Immunosensor for Ultrasensitive and Highly Specific Detection of Spike Receptor Binding Domain Protein of SARS-CoV-2. ACS Biomater Sci Eng 2021; 7:3874-3885. [PMID: 34292712 DOI: 10.1021/acsbiomaterials.1c00580] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An impedance sensing platform-combined conducting nanocomposite layer was fabricated to develop an effective and rapid method for detection of coronavirus infection (COVID-19) specific spike receptor binding domain (RBD) protein, a precious antigen marker of COVID-19 disease. Coronavirus infection has spread globally and swiftly with major impacts on health, economy, and quality of life of communities. Fast and reliable detection of COVID-19 is a very significant issue for the effective treatment of this bad illness. For this aim, first, an Epoxy functional group-substituted thiophene monomer was synthesized and electrodeposited on a single-use indium tin oxide (ITO) platform in the presence of acetylene black by employing a cyclic voltammetry technique; thus, a conducting nanocomposite (C-NC) layer with high conductivity was obtained. This composite was electrodeposited for the first time on the ITO surface to generate a facile and cost-effective impedimetric biosensor. In addition, this composite provided proper attachment points for antibody binding and also supported the biosensor construction. The immuno-specific biointeractions between anti-RBD and RBD proteins hampered the electron transfer between the ITO substrate surface and electrolyte, and this reaction caused variations in impedance signals, and these signals were proportional to the immobilized RBD antigen amounts. The as-prepared immunosensor showed a wide linear dynamic range (0.0012-120 pg/mL), an ultra-low detection limit of 0.58 fg/mL with added superiorities of great selectivity, suitable repeatability, multiple reusability, and excellent reproducibility.
Collapse
Affiliation(s)
- Elif Burcu Aydın
- Scientific and Technological Research Center, Tekirdağ Namık Kemal University, Tekirdağ 59030, Turkey
| | - Muhammet Aydın
- Scientific and Technological Research Center, Tekirdağ Namık Kemal University, Tekirdağ 59030, Turkey
| | - Mustafa Kemal Sezgintürk
- Bioengineering Department, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey
| |
Collapse
|
8
|
Aydın EB, Sezgintürk MK. Fabrication of Electrochemical Immunosensor for Detection of Interleukin 8 Biomarker via Layer‐by‐layer Self‐assembly Process on Cost‐effective Fluorine Tin Oxide Electrode. ELECTROANAL 2021. [DOI: 10.1002/elan.202060603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Elif Burcu Aydın
- Tekirdağ Namık Kemal University Scientific and Technological Research Center Tekirdağ Turkey
| | - Mustafa Kemal Sezgintürk
- Çanakkale Onsekiz Mart University Faculty of Engineering Bioengineering Department Çanakkale Turkey
| |
Collapse
|
9
|
Aydin EB, Aydin M, Sezgintürk MK. A Label-free Electrochemical Immunosensor for Highly Sensitive Detection of TNF α, Based on Star Polymer-modified disposable ITO Electrode. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916999200409111759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Biomarkers are very important disease-related biomolecules which should be
analyzed sensitive and selective in related physiological fluids or tissues. Tumor necrosis factor-α is a
type of cytokine which plays vitlly important roles in different methabolic pathways such as cell death,
survival, differentiation, proliferation and migration, and infectious and inflammatory diseases including
rheumatoid arthritis, diabetes.
Objective:
In this study, it was aimed to develop a reliable tool based on star-shaped poly(glycidyl
methacrylate) polymer coated disposable indium tin oxide electrode for determination of Tumor necrosis
factor-α, an important disease biomarker.
Methods:
Star shaped polymer was used as an interface material for anti- Tumor necrosis factor α antibodies
immobilization. The antibodies were immobilized covalently onto polymer coated indium tin
oxide electrode. Electrochemical impedance spectroscopy and cyclic voltammetry techniques were
used for all electrochemical measurements.
Results:
The suggested immunosensor exhibited a linear range between 0.02 and 4 pg/mL Tumor necrosis
factor-α, and the detection limit was found as 6 fg/mL. Scanning electron microscopy and atomic
force microscopy were used for electrode surface characterization. In addition, the suggested immunosensor
was used for Tumor necrosis factor-α sensing in human serum samples. The results displayed
recoveries between 97.07 and 100.19%. Moreover, this immunosensor had a simple fabrication
procedure and a long storage-stability.
Conclusion:
A new biosensor based on a Star shaped polymer for the ultra sensitive determination of a
biomarker Tumor necrosis factor-α was developed. The biosensor presented excellent repeatability and
reproducubility, and also wide calibration range for Tumor necrosis factor- α.
Collapse
Affiliation(s)
- Elif Burcu Aydin
- Scientific and Technological Research Center, Namik Kemal University, Tekirdag,Turkey
| | - Muhammet Aydin
- Scientific and Technological Research Center, Namik Kemal University, Tekirdag,Turkey
| | - Mustafa Kemal Sezgintürk
- Bioengineering Department, Faculty of Engineering, Canakkale Onsekiz Mart University, Canakkale,Turkey
| |
Collapse
|
10
|
Aydın EB, Aydın M, Yuzer A, Ince M, Ocakoğlu K, Sezgintürk MK. Detection of Kallikrein-Related Peptidase 4 with a Label-free Electrochemical Impedance Biosensor Based on a Zinc(II) Phthalocyanine Tetracarboxylic Acid-Functionalized Disposable Indium Tin Oxide Electrode. ACS Biomater Sci Eng 2021; 7:1192-1201. [DOI: 10.1021/acsbiomaterials.0c01602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Elif Burcu Aydın
- Scientific and Technological Research Center, Tekirdağ Namık Kemal University, Tekirdağ 59030, Turkey
| | - Muhammet Aydın
- Scientific and Technological Research Center, Tekirdağ Namık Kemal University, Tekirdağ 59030, Turkey
| | - Abdulcelil Yuzer
- Department of Natural and Mathematical Sciences, Faculty of Engineering, Tarsus University, Mersin 33400, Turkey
| | - Mine Ince
- Department of Natural and Mathematical Sciences, Faculty of Engineering, Tarsus University, Mersin 33400, Turkey
| | - Kasim Ocakoğlu
- Department of Natural and Mathematical Sciences, Faculty of Engineering, Tarsus University, Mersin 33400, Turkey
| | - Mustafa Kemal Sezgintürk
- Bioengineering Department, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey
| |
Collapse
|
11
|
Preparation of electroconductive film based on self-assembled aminothiophene/poly(γ-glutamate) nanoparticles and its application in biosensor. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04816-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Fabrication of electrochemical immunosensor based on acid-substituted poly(pyrrole) polymer modified disposable ITO electrode for sensitive detection of CCR4 cancer biomarker in human serum. Talanta 2021; 222:121487. [DOI: 10.1016/j.talanta.2020.121487] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
|
13
|
Aydın EB, Sezgintürk MK. Ultrasensitive detection of interleukin 1α using 3-phosphonopropionic acid modified FTO surface as an effective platform for disposable biosensor fabrication. Bioelectrochemistry 2020; 138:107698. [PMID: 33254051 DOI: 10.1016/j.bioelechem.2020.107698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/21/2020] [Accepted: 10/31/2020] [Indexed: 01/09/2023]
Abstract
In this study, we utilized a carboxyalkylphosphonic acid covered fluorine doped tin oxide (FTO) as an electrode material for fabrication of Interleukin 1α (IL-1α) immunosensor. For this aim, anti-IL-1α antibodies were attached on the 3-phosphonopropionic acid (PHP) modified FTO surface covalently. Electrochemical (electrochemical impedance spectroscopy and cyclic voltammetry) and morphological (scanning electron microscopy and atomic force microscopy) characterizations were performed to monitor the successful fabrication of immunoelectrodes. After incubation of anti-IL-1α antibody immobilized FTO electrodes in IL-1α antigen solutions, increases were seen in impedimetric responses. IL-1α antigen was determined in a linear detection range from 0.02 to 2 pg/mL by EIS. The detection limit of the suggested immunosensor was 6 fg/mL. The applicability of the designed biosensor was tested by using human serum and saliva samples and acceptable results were obtained. In addition, high sensitivity, good specificity, low detection limit made the proposed immunosensor a potential technique for IL-1α antigen determination in routine clinical analysis.
Collapse
Affiliation(s)
- Elif Burcu Aydın
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ Turkey.
| | - Mustafa Kemal Sezgintürk
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Çanakkale, Turkey
| |
Collapse
|
14
|
Aydın EB, Aydın M, Sezgintürk MK. Electrochemical Immunosensor for Detection of CCR4 Cancer Biomarker in Human Serum: An Alternative Strategy for Modification of Disposable ITO Electrode. Macromol Biosci 2020; 21:e2000267. [PMID: 33108068 DOI: 10.1002/mabi.202000267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/14/2020] [Indexed: 11/12/2022]
Abstract
Herein, a new strategy for the fabrication of a sensitive immunosensor capable of determination of CC Chemokine receptor 4 (CCR4) in complex serum samples is developed through the polymer modification on the disposable indium tin oxide electrode. Anti-CCR4 antibodies, which are utilized as sensing biomolecules, are covalently attached on the succinimide groups of polypyrrole polymer (PPyr-CSsg). The constructed immunosensor illustrates promising performances for the quantification of CCR4 antigen, with a linear detection range of 0.024-12 pg mL-1 and a low detection limit of 7.3 fg mL-1 , calculated at a signal-to-noise ratio of 3. In addition, the impedimetric immunosensor displays a very successful analytical performance in terms of sensitivity, selectivity, repeatability, reproducibility, and long-term stability as well as successful applicability for the accurate quantification of CCR4 in human serum samples. The constructed immunosensor is successfully used for quantification of CCR4 antigen in human serums. In addition, the immunosensor displays only 27.54% loss in its initial signal after nine weeks storage at 4 °C. Moreover, the fabricated immunosensor is economical, highly sensitive, and selective for CCR4 antigen detection, and suitable for potential application in clinical diagnosis.
Collapse
Affiliation(s)
- Elif Burcu Aydın
- Scientific and Technological Research Center, Tekirdağ Namık Kemal University, Tekirdağ, 59100, Turkey
| | - Muhammet Aydın
- Scientific and Technological Research Center, Tekirdağ Namık Kemal University, Tekirdağ, 59100, Turkey
| | - Mustafa Kemal Sezgintürk
- Faculty of Engineering, Bioengineering Department, Çanakkale Onsekiz Mart University, Çanakkale, 17020, Turkey
| |
Collapse
|
15
|
Aydın EB, Aydın M, Sezgintürk MK. A label-free immunosensor for sensitive detection of RACK 1 cancer biomarker based on conjugated polymer modified ITO electrode. J Pharm Biomed Anal 2020; 190:113517. [PMID: 32784093 DOI: 10.1016/j.jpba.2020.113517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 11/19/2022]
Abstract
A new flexible biosensor based on conjugated polymer functionalized indium tin oxide (ITO) sheet was fabricated for Receptor for Activated C Kinase 1 (RACK 1) determination. Poly(3-thiophene acetic acid) (P(Thi-Ac)) was used as an immobilization matrix for construction of RACK 1 immunosensor. This polymer had a great number of carboxyl groups on its end site and these carboxyl ends provided anchoring points to the anti-RACK 1 antibodies. Anti-RACK 1 antibodies were covalently attached on the ITO electrode and recognized the RACK 1 antigens. Electrochemical characterizations were made by employing electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. Additionally, single frequency impedance method (SFI) was applied to follow the specific biointeraction between antibody and antigen. As a result of specific biointeraction, the designed immunosensor exhibited a wide linear detection range between 0.01 pg/mL and 2 pg/mL RACK 1 with a detection limit of 3.1 fg/mL. Scanning electron microscopy and atomic force microscopy analyses were employed for electrode surface morphology investigation. The designed RACK 1 biosensor had good repeatability (5.73 %, RSD), excellent reproducibility (2.5 %, RSD), long storage-stability and reusable property. In addition, the fabricated RACK 1 biosensor was applied to determine RACK 1 concentration in human serums and the recovery was ranging from 98.79%-100.22%. This work illustrated a new tool to construct a sensitive and low-cost disposable biosensor for applications in clinical monitoring.
Collapse
Affiliation(s)
- Elif Burcu Aydın
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey
| | - Muhammet Aydın
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey
| | - Mustafa Kemal Sezgintürk
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Çanakkale, Turkey.
| |
Collapse
|
16
|
El Jaouhari A, Wang Y, Zhang B, Liu X, Zhu J. Effect of surface properties on the electrochemical response of cynarin by electro-synthesized functionalized-polybithiophene/MWCNT/GNP. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111067. [PMID: 32994030 DOI: 10.1016/j.msec.2020.111067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 11/26/2022]
Abstract
Cynarin is one of the biologically active functional components present a wide range of pharmacological applications. Herein, we reported the fabrication and surface properties investigation of a new highly sensitive electrochemical sensor for the detection of cynarin. The electrochemical sensors were fabricated in several steps; the first being the synthesis of bi-thiophene derivatives-based monomers 3,3'-bithiophen (M1); 2-methoxy-5-carbaldehyde-[3,3'-bithiophene] (M2) and 2-((2-methoxy-[3,3'-bithiophen]-5-yl)methylene)malononitrile) (M3) followed by electrochemical polymerization on a glassy carbon electrode after which multi-walled carbon nanotube (MWCNT) and gold nanoparticles (GNP's) were electrodeposited layer-by-layer on the polymer coating to obtain multilayer electrochemical sensors. The morphological properties of the formed polymers were evaluated using SEM analysis and the apparent contact angles to preview the changes in surface properties after the functionalization of monomers and therefore their effects on the detection of cynarin. Analytical parameters such as the accumulation time and pH of the PBS solution which influence the sensitivity of the electrochemical sensors were optimized. Under the optimal conditions the GCE/P3/MWCNT/GNP's showed a wide range of analyte concentrations (1 to 100 μM and 0.01 to 1 μM) and detection limit of 0.0095 using pulse differential voltammetry. In addition, the electrochemical sensors showed good reproducibility, stability and selectivity and they were used successfully for the determination of cynarin in real solutions.
Collapse
Affiliation(s)
- Abdelhadi El Jaouhari
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Yong Wang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Bowen Zhang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Xiuhua Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Jinhua Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
17
|
Abstract
In recent years, advances in immunosensor device fabrication have significantly expanded the use of this technology in a broad range of applications including clinical diagnosis, food analysis, quality control, environmental studies and industrial monitoring. The most important aspect in fabrication is to obtain a design that provides a low detection limit. The utilization of nanomaterials as a label, catalyst and biosensing transducer is, perhaps, the most popular approach in ultrasensitive devices. This chapter reviews recent advances in immunosensor fabrication and summarizes the most recent studies. Strategies employed to significantly improve sensitivity and specificity of immunosensor technology and the advantages and limitations thereof are explored.
Collapse
Affiliation(s)
- Muhammet Aydin
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey.
| | - Elif Burcu Aydin
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey
| | - Mustafa Kemal Sezgintürk
- Bioengineering Department, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
18
|
Aydın EB. Highly sensitive impedimetric immunosensor for determination of interleukin 6 as a cancer biomarker by using conjugated polymer containing epoxy side groups modified disposable ITO electrode. Talanta 2020; 215:120909. [DOI: 10.1016/j.talanta.2020.120909] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 12/25/2022]
|
19
|
Aydın EB, Aydın M, Sezgintürk MK. The development of an ultra-sensitive electrochemical immunosensor using a PPyr-NHS functionalized disposable ITO sheet for the detection of interleukin 6 in real human serums. NEW J CHEM 2020. [DOI: 10.1039/d0nj03183f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A label-free biosensor based on poly(pyrrole N-hydroxy succinimide) polymer modified ITO electrode was developed for sensitive detection of interleukin 6 antigen. Under optimized conditions, it had a wide detection range (0.03–22.5 pg mL−1).
Collapse
Affiliation(s)
- Elif Burcu Aydın
- Namık Kemal University
- Scientific and Technological Research Center
- Tekirdağ
- Turkey
| | - Muhammet Aydın
- Namık Kemal University
- Scientific and Technological Research Center
- Tekirdağ
- Turkey
| | | |
Collapse
|
20
|
Liu R, Ye X, Cui T. Recent Progress of Biomarker Detection Sensors. RESEARCH (WASHINGTON, D.C.) 2020; 2020:7949037. [PMID: 33123683 PMCID: PMC7585038 DOI: 10.34133/2020/7949037] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022]
Abstract
Early cancer diagnosis and treatment are crucial research fields of human health. One method that has proven efficient is biomarker detection which can provide real-time and accurate biological information for early diagnosis. This review presents several biomarker sensors based on electrochemistry, surface plasmon resonance (SPR), nanowires, other nanostructures, and, most recently, metamaterials which have also shown their mechanisms and prospects in application in recent years. Compared with previous reviews, electrochemistry-based biomarker sensors have been classified into three strategies according to their optimizing methods in this review. This makes it more convenient for researchers to find a specific fabrication method to improve the performance of their sensors. Besides that, as microfabrication technologies have improved and novel materials are explored, some novel biomarker sensors-such as nanowire-based and metamaterial-based biomarker sensors-have also been investigated and summarized in this review, which can exhibit ultrahigh resolution, sensitivity, and limit of detection (LoD) in a more complex detection environment. The purpose of this review is to understand the present by reviewing the past. Researchers can break through bottlenecks of existing biomarker sensors by reviewing previous works and finally meet the various complex detection needs for the early diagnosis of human cancer.
Collapse
Affiliation(s)
- Ruitao Liu
- State Key Lab Precise Measurement Technology & Instrument, Department of Precision Instruments, Tsinghua University, Beijing, China
| | - Xiongying Ye
- State Key Lab Precise Measurement Technology & Instrument, Department of Precision Instruments, Tsinghua University, Beijing, China
| | - Tianhong Cui
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
21
|
Valverde A, ben Hassine A, Serafín V, Muñoz‐San Martín C, Pedrero M, Garranzo‐Asensio M, Gamella M, Raouafi N, Barderas R, Yáñez‐Sedeño P, Campuzano S, Pingarrón JM. Dual Amperometric Immunosensor for Improving Cancer Metastasis Detection by the Simultaneous Determination of Extracellular and Soluble Circulating Fraction of Emerging Metastatic Biomarkers. ELECTROANAL 2019. [DOI: 10.1002/elan.201900506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alejandro Valverde
- Analytical Chemistry Dept., Faculty of ChemistryComplutense University of Madrid. E-28040 Madrid Spain
| | - Amira ben Hassine
- Analytical Chemistry Dept., Faculty of ChemistryComplutense University of Madrid. E-28040 Madrid Spain
- University of Tunis El ManarTunis Faculty of Science, Sensors and Biosensors Group, Laboratory of Analytical Chemistry and Electrochemistry 2092 Tunis El Manar Tunisia
| | - Verónica Serafín
- Analytical Chemistry Dept., Faculty of ChemistryComplutense University of Madrid. E-28040 Madrid Spain
| | - Cristina Muñoz‐San Martín
- Analytical Chemistry Dept., Faculty of ChemistryComplutense University of Madrid. E-28040 Madrid Spain
| | - María Pedrero
- Analytical Chemistry Dept., Faculty of ChemistryComplutense University of Madrid. E-28040 Madrid Spain
| | | | - Maria Gamella
- Analytical Chemistry Dept., Faculty of ChemistryComplutense University of Madrid. E-28040 Madrid Spain
| | - Noureddine Raouafi
- University of Tunis El ManarTunis Faculty of Science, Sensors and Biosensors Group, Laboratory of Analytical Chemistry and Electrochemistry 2092 Tunis El Manar Tunisia
| | - Rodrigo Barderas
- UFIECInstitute of Health Carlos III. E-28220 Majadahonda, Madrid Spain
| | - Paloma Yáñez‐Sedeño
- Analytical Chemistry Dept., Faculty of ChemistryComplutense University of Madrid. E-28040 Madrid Spain
| | - Susana Campuzano
- Analytical Chemistry Dept., Faculty of ChemistryComplutense University of Madrid. E-28040 Madrid Spain
| | - José M. Pingarrón
- Analytical Chemistry Dept., Faculty of ChemistryComplutense University of Madrid. E-28040 Madrid Spain
| |
Collapse
|