1
|
Xu L, Wu C, Lay Yap P, Losic D, Zhu J, Yang Y, Qiao S, Ma L, Zhang Y, Wang H. Recent advances of silk fibroin materials: From molecular modification and matrix enhancement to possible encapsulation-related functional food applications. Food Chem 2024; 438:137964. [PMID: 37976879 DOI: 10.1016/j.foodchem.2023.137964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Silk fibroin materials are emergingly explored for food applications due to their inherent properties including safe oral consumption, biocompatibility, gelatinization, antioxidant performance, and mechanical properties. However, silk fibroin possesses drawbacks like brittleness owing to its inherent specific composition and structure, which limit their applications in this field. This review discusses current progress about molecular modification methods on silk fibroin such as extraction, blending, self-assembly, enzymatic catalysis, etc., to address these limitations and improve their physical/chemical properties. It also summarizes matrix enhancement strategies including freeze drying, spray drying, electrospinning/electrospraying, microfluidic spinning/wheel spinning, desolvation and supercritical fluid, to generate nano-, submicron-, micron-, or bulk-scale materials. It finally highlights the food applications of silk fibroin materials, including nutraceutical improvement, emulsions, enzyme immobilization and 3D/4D printing. This review also provides insights on potential opportunities (like safe modification, toxicity risk evaluation, and digestion conditions) and possibilities (like digital additive manufacturing) in functional food industry.
Collapse
Affiliation(s)
- Liang Xu
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China
| | - Chaoyang Wu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Pei Lay Yap
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia; ARC Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Dusan Losic
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia; ARC Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Juncheng Zhu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yuxin Yang
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Shihao Qiao
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China.
| | - Hongxia Wang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China.
| |
Collapse
|
2
|
Deng Y, Zhang C, Lv L, Wang K, Liu F, Zhou Y, Peng Z, Wang B. In situ detection of silk fibroin using a dual recognition strategy with a flexible pressure immunosensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1185-1195. [PMID: 38305686 DOI: 10.1039/d3ay01967e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Silk is a symbol of ancient Chinese civilization that has made an indelible contribution to the development of world civilization. However, because ancient artifacts are often contaminated or degraded, it is difficult to detect the presence of silk therein, and the true origin of silk thus remains a mystery. Therefore, this work presents a flexible pressure immunosensor that was designed based on 3D polypyrrole (PPy) foams for the trace detection of silk fibroin at archaeological sites. Initially, silk fibroin (SF) was conjugated with antibody-functionalized copper oxide nanoparticles (CuO NPs) and carboxylated magnetic beads (MBs) to form a sandwich immune complex. Then, the sandwich immune complex was added to hydrogen peroxide (H2O2) by magnetic separation to catalyse the generation of oxygen (O2), which converted the antigen-antibody specific recognition signal to gas pressure. As the pressure within the device increases, the 3D PPy foam, as the sensing layer resistance was 150 Ω, undergoes extrusion and deformation. This deformation leads to alterations in the foam resistance. The flexible pressure immunosensor can sensitively monitor the change in electrical resistance in the system and quantitatively detect silk fibroin. With optimization, the flexible pressure immunosensor demonstrates a dynamic range of operation spanning from 10 ng mL-1 to 100 μg mL-1, exhibiting a remarkable detection limit of 10.58 ng mL-1 specifically for silk fibroin. Notably, this immunosensor surpasses enzyme-linked immunosorbent assay (ELISA) in terms of superior reproducibility, specificity, and accuracy. Therefore, this application provides a new method and technical support for silk detection.
Collapse
Affiliation(s)
- Yefeng Deng
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Chao Zhang
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Lianpeng Lv
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Kun Wang
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Feng Liu
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yang Zhou
- Key Scientific Research Base of Textile Conservation, State Administration for Cultural Heritage, China National Silk Museum, Hangzhou 310002, China
| | - Zhiqin Peng
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Bing Wang
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
3
|
Zhao Y, Shao J, Jin Z, Zheng W, Yao J, Ma W. Plasmon-enhanced electroreduction activity of Au-AgPd Janus nanoparticles for ochratoxin a detection. Food Chem 2023; 412:135526. [PMID: 36731235 DOI: 10.1016/j.foodchem.2023.135526] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
Ochratoxin A (OTA) was a dangerous biological toxin, and would easily contaminate food and induced food safety problems. The development of electrochemical aptasensors by designing strong and anti-interfere electroactive labels could improve the sensitivity and accuracy of OTA detection. In this contribution, novel electroactive Au-AgPd Janus NPs were firstly synthesized and exhibited electroreduction signal at -0.4 V, owing to the reduction process of Pd2+. The electroreduction signal was amplified 1.5 times under local surface plasmon resonance (LSPR) excitation, which could improve the sensitivity of OTA detection. Plasmon-enhanced electroreduction principle of Au-AgPd Janus NPs was verified, which endowed electrochemical aptasensor with high accuracy and anti-interference ability for OTA detection. Au-AgPd Janus NPs served as electrochemical beacon achieved sensitive and accurate OTA detection with the limit of detection (LOD) of 0.98 pM. This work opens up new directions for the construction of electroactive heterostructures for the sensitive and accurate biotoxins electroanalytical applications.
Collapse
Affiliation(s)
- Yuan Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Juanjuan Shao
- College of Science and Technology, Hebei Agricultural University, Cangzhou, Hebei 061100, China
| | - Zhao Jin
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wangwang Zheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jie Yao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Ma
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
4
|
Chen B, Wang Z, Wang J, Zheng H, Zhou J, Chen X, Wang B, Zhou Y, Peng Z. Ultrasensitive dual enhanced electrochemical immunosensor to detect ancient wool relics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:394-400. [PMID: 34981794 DOI: 10.1039/d1ay01514a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The identification of ancient wool is of great significance in archaeology; however, conventional methods are unwieldy or even ineffective when testing contaminated or severely degraded ancient samples. Therefore, it is highly desirable to develop an ultrasensitive detection method for ancient wool. In this study, an ultrasensitive electrochemical immunosensor is proposed and developed to detect ancient wool, where graphene oxide (GO), aldehyde-functionalized ionic liquid (AFIL) composites and gold nanoparticles (AuNPs) are synthesized as efficient signal amplifiers. With their large surface area and excellent electron transfer efficiency, the combination of GO-AFIL and AuNPs endows the immunosensor with excellent electrochemical properties. The fabricated immunosensor measures over a wide linear range of 0.01-100 ng mL-1 with a low detection limit of 0.9 ± 0.2 pg mL-1. Moreover, the immunosensor demonstrates excellent performance for detecting ancient wool. The identification of wool fabrics unearthed from Xinjiang, Tibet and Kazakhstan supports the historicity of prosperous sheepherding and wool trade in Central Asia during the Bronze Age.
Collapse
Affiliation(s)
- Boyi Chen
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Zhongyuan Wang
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Junsen Wang
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Hailing Zheng
- Key Scientific Research Base of Textile Conservation, State Administration for Cultural Heritage, China National Silk Museum, Hangzhou 310002, China.
| | - Junyi Zhou
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Xushi Chen
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Bing Wang
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yang Zhou
- Key Scientific Research Base of Textile Conservation, State Administration for Cultural Heritage, China National Silk Museum, Hangzhou 310002, China.
| | - Zhiqin Peng
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
5
|
Li Q, Zhu C, Deng B, Ma W, Zheng H, Zhou Y, Peng Z, Hu Z, Wang B. Development of Immunochromatographic Strip Assays Based on a Tailored Monoclonal Antibody for the on-Site Characterization of Ancient Silk. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1843173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Qingqing Li
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Chengyu Zhu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Bozhi Deng
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Weiwei Ma
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hailing Zheng
- Key Scientific Research Base of Textile Conservation, State Administration for Cultural Heritage, China National Silk Museum, Hangzhou, China
| | - Yang Zhou
- Key Scientific Research Base of Textile Conservation, State Administration for Cultural Heritage, China National Silk Museum, Hangzhou, China
| | - Zhiqin Peng
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhiwen Hu
- Institute of Conservation Materials, Zhejiang Sci-Tech University, Hangzhou, China
| | - Bing Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
6
|
Li J, Zheng H, He Y, Chen B, Liu L, Ouyang Y, Zhu C, Zhou Y, Sun J, Hu Z, Wang B. Ultrasensitive Electrochemical Immunosensor Reveals the Existence of Silk Products on the Maritime Silk Road. ACS Sens 2019; 4:3203-3209. [PMID: 31773952 DOI: 10.1021/acssensors.9b01638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Maritime Silk Road was the major trade route between eastern and western civilizations in the Middle Ages. However, hardly any silk products have been found along the transoceanic trade route. Thus, the extrasensitive detection of silk relic traces has tremendous importance in research regarding the Maritime Silk Road. In this study, an electrochemical immunosensor based on a tailored monoclonal antibody and gold nanoparticles using the layer-by-layer self-assembly method was devised. The fabricated immunosensor demonstrated preeminent performance in the analysis of silk fibroin, with a linear detection range of 0.01-100 ng mL-1 and a detection limit of 3.8 pg mL-1. In particular, the performance of the immunosensor was excellent in the analysis of ancient silk samples, especially in the qualitative and quantitative detection of soil samples extracted from Nanhai No. 1 shipwreck archeological sites. The proposed electrochemical immunosensor proves the existence of silk products on the Maritime Silk Road and demonstrates enormous potential for studying the formation and development of the ancient transoceanic trading route.
Collapse
Affiliation(s)
| | - Hailing Zheng
- Key Scientific Research Base of Textile Conservation, State Administration for Cultural Heritage, China National Silk Museum, Hangzhou 310002, China
| | | | | | | | | | | | - Yang Zhou
- Key Scientific Research Base of Textile Conservation, State Administration for Cultural Heritage, China National Silk Museum, Hangzhou 310002, China
| | - Jian Sun
- Conservation Center of Underwater Cultural Heritage, National Cultural Heritage Administration, Beijing 100192, China
| | | | | |
Collapse
|