1
|
Cicek Ozkan B, Guner M. Adjustable dielectric and bioactivity characteristics of chitosan-based composites via crosslinking approach and incorporation of graphene. Int J Biol Macromol 2024; 270:132125. [PMID: 38750849 DOI: 10.1016/j.ijbiomac.2024.132125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
This study explores the structural, electrical, dielectric, and bioactivity properties of chitosan (CS) composites incorporating graphene (G) nanoparticles. Characterization techniques, including Field Emission Scanning Electron Microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), dielectric spectroscopy, and in vitro testing in SBF, were employed to investigate the effects of G content and crosslinking. The XPS peak at 289.89 eV for CS-G10 indicates CC and CH bonds, suggesting significant interactions between chitosan's hydroxyl groups and graphene's carbon atoms, ensuring structural homogeneity. Dielectric constant (ε') gradually increased with G loading (0 %, 1 %, 5 %, and 10 %) for uncrosslinked composites, reaching 17.94, 18.92, 28.28, and 41.1, respectively. Crosslinked composites exhibited reduced ε' values (15.71, 15.42, 14.14, and 27.03) compared to non-crosslinked ones, with marginal increases post-percolation threshold (5 wt% G filling). XRD analysis revealed shifts in characteristic peaks of CS after SBF treatment, with new peaks at 28.9° and 48.5° indicating hydroxyapatite presence, confirming composite bioactivity. CS-G10/GA showed the highest bioactivity, suggesting promise for biomedical applications.
Collapse
Affiliation(s)
- Betul Cicek Ozkan
- Department of Metallurgical and Materials Engineering, Technology Faculty, Fırat University, 23119 Elazığ, Turkey.
| | - Melek Guner
- Department of Metallurgical and Materials Engineering, Technology Faculty, Fırat University, 23119 Elazığ, Turkey; Central Laboratory, Application, and Research Center, Batman University, 72070 Batman, Turkey
| |
Collapse
|
2
|
Wu H, Wen Q, Luan X, Yang W, Guo L, Wei G. Facile Synthesis of Fe-Doped, Algae Residue-Derived Carbon Aerogels for Electrochemical Dopamine Biosensors. SENSORS (BASEL, SWITZERLAND) 2024; 24:2787. [PMID: 38732893 PMCID: PMC11086316 DOI: 10.3390/s24092787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
An abnormal level of dopamine (DA), a kind of neurotransmitter, correlates with a series of diseases, including Parkinson's disease, Willis-Ekbom disease, attention deficit hyperactivity disorder, and schizophrenia. Hence, it is imperative to achieve a precise, rapid detection method in clinical medicine. In this study, we synthesized nanocomposite carbon aerogels (CAs) doped with iron and iron carbide, based on algae residue-derived biomass materials, using Fe(NO3)3 as the iron source. The modified glassy carbon electrode (GCE) for DA detection, denoted as CAs-Fe/GCE, was prepared through surface modification with this composite material. X-ray photoelectron spectroscopy and X-ray diffraction characterization confirmed the successful doping of iron into the as-prepared CAs. Additionally, the electrochemical behavior of DA on the modified electrode surface was investigated and the results demonstrate that the addition of the CAs-Fe promoted the electron transfer rate, thereby enhancing their sensing performance. The fabricated electrochemical DA biosensor exhibits an accurate detection of DA in the concentration within the range of 0.01~200 µM, with a detection limit of 0.0033 µM. Furthermore, the proposed biosensor is validated in real samples, showing its high applicability for the detection of DA in beverages.
Collapse
Affiliation(s)
- Hao Wu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China; (H.W.); (Q.W.); (W.Y.)
| | - Qin Wen
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China; (H.W.); (Q.W.); (W.Y.)
| | - Xin Luan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China;
| | - Weiwei Yang
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China; (H.W.); (Q.W.); (W.Y.)
| | - Lei Guo
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China; (H.W.); (Q.W.); (W.Y.)
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China;
| |
Collapse
|
3
|
Rahman A, Kafi MA, Beak G, Saha SK, Roy KJ, Habib A, Faruqe T, Siddique MP, Islam MS, Hossain KS, Choi JW. Green Synthesized Chitosan Nanoparticles for Controlling Multidrug-Resistant mecA- and blaZ-Positive Staphylococcus aureus and aadA1-Positive Escherichia coli. Int J Mol Sci 2024; 25:4746. [PMID: 38731965 PMCID: PMC11083359 DOI: 10.3390/ijms25094746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Antimicrobial resistance has recently been considered an emerging catastrophe globally. The public health and environmental threats were aggravated by the injudicious use of antibiotics in animal farming, aquaculture, and croup fields, etc. Consequently, failure of antibiotic therapies is common because of the emergence of multidrug-resistant (MDR) bacteria in the environment. Thus, the reduction in antibiotic spillage in the environment could be an important step for overcoming this situation. Bear in mind, this research was focused on the green synthesis of chitosan nanoparticles (ChiNPs) using Citrus lemon (Assam lemon) extract as a cross-linker and application in controlling MDR bacteria to reduce the antibiotic spillage in that sector. For evaluating antibacterial activity, Staphylococcus aureus and Escherichia coli were isolated from environmental specimens, and their multidrug-resistant pattern were identified both phenotypically by disk diffusion and genotypically by detecting methicillin- (mecA), penicillin- (blaZ), and streptomycin (aadA1)-resistance encoding genes. The inhibitory zone's diameter was employed as a parameter for determining the antibacterial effect against MDR bacteria revealing 30 ± 0.4 mm, 34 ± 0.2 mm, and 36 ± 0.8 mm zones of inhibition against methicillin- (mecA) and penicillin (blaZ)-resistant S. aureus, and streptomycin (aadA1)-resistant E. coli, respectively. The minimum inhibitory concentration at 0.31 mg/mL and minimum bactericidal concentration at 0.62 mg/mL of yielded ChiNPs were used as the broad-spectrum application against MDR bacteria. Finally, the biocompatibility of ChiNPs was confirmed by showing a negligible decrease in BHK-21 cell viability at doses less than 2 MIC, suggesting their potential for future application in antibiotic-free farming practices.
Collapse
Affiliation(s)
- Aminur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (S.K.S.); (K.J.R.); (A.H.); (M.P.S.); (M.S.I.)
| | - Md Abdul Kafi
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (S.K.S.); (K.J.R.); (A.H.); (M.P.S.); (M.S.I.)
| | - Geunyoung Beak
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea;
| | - Sanjay Kumar Saha
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (S.K.S.); (K.J.R.); (A.H.); (M.P.S.); (M.S.I.)
| | - Kumar Jyotirmoy Roy
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (S.K.S.); (K.J.R.); (A.H.); (M.P.S.); (M.S.I.)
| | - Ahsan Habib
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (S.K.S.); (K.J.R.); (A.H.); (M.P.S.); (M.S.I.)
| | - Tania Faruqe
- Experimental Physics Division, Atomic Energy Centre, Dhaka 1000, Bangladesh;
| | - Mahbubul Pratik Siddique
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (S.K.S.); (K.J.R.); (A.H.); (M.P.S.); (M.S.I.)
| | - Md. Shafiqul Islam
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (S.K.S.); (K.J.R.); (A.H.); (M.P.S.); (M.S.I.)
| | | | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea;
| |
Collapse
|
4
|
Andreica BI, Anisiei A, Iftime MM, Ababei RV, Ochiuz L, Vasincu D, Vasilache IA, Volovat C, Boboc D, Poroch V, Eva L, Agop M, Scripcariu DV, Volovat SR. Theoretical-Experimental Approach of Chitosan/Quaternized Chitosan Nanofibers' Behavior in Wound Exudate Media. Pharmaceutics 2023; 15:2722. [PMID: 38140063 PMCID: PMC10748138 DOI: 10.3390/pharmaceutics15122722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 12/24/2023] Open
Abstract
This study aimed to investigate the behavior of chitosan/quaternized chitosan fibers in media mimicking wound exudates to understand their capacities as wound dressing. Fiber analysis of the fibers using dynamic vapor sorption proved their ability to adsorb moisture up to 60% and then to desorb it as a function of humidity, indicating their outstanding breathability. Dissolution analyses showed that quaternized chitosan leached from the fibers in water and PBS, whereas only small portions of chitosan were solubilized in water. In media containing lysozyme, the fibers degraded with a rate determined by their composition and pH, reaching a mass loss of up to 47% in media of physiologic pH. Notably, in media mimicking the wound exudate during healing, they adsorbed moisture even when their mass loss due to biodegradation was high, whereas they were completely degraded in the media of normal tissues, indicating bioabsorbable dressing capacities. A mathematical model was constructed, which characterized the degradation rate and morphology changes of chitosan/quaternized chitosan fibers through analyses of dynamics in scale space, using the Theory of Scale Relativity. The model was validated using experimental data, making it possible to generalize it to the degradation of other biopolymeric systems that address wound healing.
Collapse
Affiliation(s)
- Bianca-Iustina Andreica
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania; (B.-I.A.); (A.A.); (M.-M.I.)
| | - Alexandru Anisiei
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania; (B.-I.A.); (A.A.); (M.-M.I.)
| | - Manuela-Maria Iftime
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania; (B.-I.A.); (A.A.); (M.-M.I.)
| | - Razvan-Vasile Ababei
- Laboratory of Applied Meteorology and Climatology, A Building, Physics, Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania, RECENT AIR, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania;
| | - Lacramioara Ochiuz
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Decebal Vasincu
- Department of Biophysics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania;
| | - Ingrid-Andrada Vasilache
- Department of Obstetrics and Gynecology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Constantin Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania; (D.B.); (S.R.V.)
| | - Diana Boboc
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania; (D.B.); (S.R.V.)
| | - Vladimir Poroch
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania;
| | - Lucian Eva
- “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 2 Ateneului Street, 700309 Iasi, Romania;
| | - Maricel Agop
- Department of Physics, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania;
- Romanian Scientists Academy, 050094 Bucharest, Romania
| | - Dragos-Viorel Scripcariu
- Department of Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania;
| | - Simona Ruxandra Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania; (D.B.); (S.R.V.)
| |
Collapse
|
5
|
Iqbal Y, Ahmed I, Irfan MF, Chatha SAS, Zubair M, Ullah A. Recent advances in chitosan-based materials; The synthesis, modifications and biomedical applications. Carbohydr Polym 2023; 321:121318. [PMID: 37739510 DOI: 10.1016/j.carbpol.2023.121318] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/24/2023]
Abstract
The attention to polymer-based biomaterials, for instance, chitosan and its derivatives, as well as the techniques for using them in numerous scientific domains, is continuously rising. Chitosan is a decomposable naturally occurring polymeric material that is mostly obtained from seafood waste. Because of its special ecofriendly, biocompatible, non- toxic nature as well as antimicrobial properties, chitosan-based materials have received a lot of interest in the field of biomedical applications. The reactivity of chitosan is mainly because of the amino and hydroxyl groups in its composition, which makes it further fascinating for various uses, including biosensing, textile finishing, antimicrobial wound dressing, tissue engineering, bioimaging, gene, DNA and drug delivery and as a coating material for medical implants. This study is an overview of the different types of chitosan-based materials which now a days have been fabricated by applying different techniques and modifications that include etherification, esterification, crosslinking, graft copolymerization and o-acetylation etc. for hydroxyl groups' processes and acetylation, quaternization, Schiff's base reaction, and grafting for amino groups' reactions. Furthermore, this overview summarizes the literature from recent years related to the important applications of chitosan-based materials (i.e., thin films, nanocomposites or nanoparticles, sponges and hydrogels) in different biomedical applications.
Collapse
Affiliation(s)
- Yasir Iqbal
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; Department of Chemistry, Government College University Faisalabad, 38000, Pakistan
| | - Iqbal Ahmed
- Department of Chemistry, Government College University Faisalabad, 38000, Pakistan
| | - Muhammad Faisal Irfan
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | | | - Muhammad Zubair
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Aman Ullah
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| |
Collapse
|
6
|
Khandelwal G, Deswal S, Dahiya R. Triboelectric Nanogenerators as Power Sources for Chemical Sensors and Biosensors. ACS OMEGA 2022; 7:44573-44590. [PMID: 36530315 PMCID: PMC9753505 DOI: 10.1021/acsomega.2c06335] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
The recent advances of portable sensors in flexible and wearable form factors are drawing increasing attention worldwide owing to their requirement applications ranging from health monitoring to environment monitoring. While portability is critical for these applications, real-time data gathering also requires a reliable power supply-which is largely met with batteries. Besides the need for regular charging, the use of toxic chemicals in batteries makes it difficult to rely on them, and as a result different types of energy harvesters have been explored in recent years. Among these, triboelectric nanogenerators (TENGs) provide a promising platform for harnessing ambient energy and converting it into usable electric signals. The ease of fabrication and possibility to develop TENGs with a diverse range of easily available materials also make them attractive. This review focuses on the TENG technology and its efficient use as a power source for various types of chemical sensors and biosensors. The paper describes the underlying mechanism, various modes of working of TENGs, and representative examples of their utilization as power sources for sensing a multitude of analytes. The challenges associated with their adoption for commercial solutions are also discussed to stimulate further advances and innovations.
Collapse
Affiliation(s)
- Gaurav Khandelwal
- Bendable
Electronics and Sensing Technologies Group, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Swati Deswal
- Bendable
Electronics and Sensing Technologies Group, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Ravinder Dahiya
- Bendable Electronics
and Sustainable Technologies Group, Electrical and Computer
Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
7
|
Song H, Wang F, Zhao Y, Gao R, He Y, Yan Q, Chen X, Pfefferle LD, Xu S, Sheng Y. Spatially-directed magnetic molecularly imprinted polymers with good anti-interference for simultaneous enrichment and detection of dual disease-related bio-indicators. NANOSCALE 2022; 14:11343-11352. [PMID: 35894543 DOI: 10.1039/d2nr03356a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As the changes of biomarkers directly reflect the occurrence of degenerative diseases, accurate detection of biomarkers is of great significance for disease diagnosis and control. However, single index detection has high uncertainties to accurately reflect the pathological characteristics because of the complexity of the human internal environment and the extremely trace concentration of indicators. To this end, a method for simultaneous detection of dual-biomarkers based on anti-interference magnetic molecularly imprinted polymers (D-mag-MIPs) is thereby proposed, and successfully applied in human urine analysis for the detection of Parkinson's disease bio-indicators 4-dihydroxyphenylacetic acid (DOPAC) and dopamine (DA). In this work, carboxyl functionalized ferric oxide served as a magnetic core, laying a solid foundation for batch detection. Hyperbranched polyethylenimine, whose abundant amino groups can provide multiple interaction forces to templates with high affinity, is employed as a functional monomer. Relative to single-template MIPs, D-mag-MIPs achieve the detection of dual bio-indicators in a one-time test, reducing the false positive result probability and enhancing the detection accuracy. The proposed methodology has been evaluated to exhibit good anti-interference, satisfactory precision, low detection limits, wide linear ranges and fast batch detection for DA and DOPAC. This work thus offers an alternative and efficient pathway for convenient batch detection of dual bio-indicators from biofluids at once.
Collapse
Affiliation(s)
- Huijia Song
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Feng Wang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Yayun Zhao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Ruixia Gao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Yulian He
- University of Michigan-Shanghai Jiaotong University Joint Institute, Shanghai 200240, China
| | - Qing Yan
- School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiaoyi Chen
- School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Lisa D Pfefferle
- Department of Chemical & Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, USA
| | - Silong Xu
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Ying Sheng
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| |
Collapse
|
8
|
Khandelwal G, Dahiya R. Self-Powered Active Sensing Based on Triboelectric Generators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200724. [PMID: 35445458 DOI: 10.1002/adma.202200724] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The demand for portable and wearable chemical or biosensors and their expeditious development in recent years has created a scientific challenge in terms of their continuous powering. As a result, mechanical energy harvesters such as piezoelectric and triboelectric generators (TEGs) have been explored recently either as sensors or harvesters to store charge in small, but long-life, energy-storage devices to power the sensors. The use of energy harvesters as sensors is particularly interesting, as with such multifunctional operations it is possible to reduce the number devices needed in a system, which also helps overcome the integration complexities. In this regard, TEGs are promising, particularly for energy autonomous chemical and biological sensors, as they can be developed with a wide variety of materials, and their mechanical energy to electricity conversion can be modulated by various analytes. This review focuses on this interesting dimension of TEGs and presents various self-powered active chemical and biological sensors. A brief discussion about the development of TEG-based physical, magnetic, and optical sensors is also included. The influence of environmental factors, various figures of merit, and the significance of TEG design are explained in context with the active sensing. Finally, the key applications, challenges, and future perspective of chemical and biological detection via TEGs are discussed with a view to drive further advances in the field of self-powered sensors.
Collapse
Affiliation(s)
- Gaurav Khandelwal
- Bendable Electronics and Sensing Technologies (BEST) Group, James Watt South Building, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ravinder Dahiya
- Bendable Electronics and Sensing Technologies (BEST) Group, James Watt South Building, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
9
|
Review—Recent Progress in Graphene Based Modified Electrodes for Electrochemical Detection of Dopamine. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Graphene and its derivatives have been widely used for the electrochemical detection of dopamine (DA) neurotransmitter, thanks to its high surface area and excellent conductivity. Modified graphene and graphene-based nanocomposites have shown improved catalytic activity towards DA detection. Various modification approaches have been taken, including heteroatom doping and association with other nanomaterials. This review summarizes and highlights the recent advances in graphene-based electrodes for the electrochemical detection of DA. It also aims to provide an overview of the advantages of using polymer as a linker platform to form graphene-based nanocomposites applied to electrochemical DA sensors.
Collapse
|
10
|
Chen S, Chen W, Wang Y, Wang X, Ding Y, Zhao D, Liu J. Facile one-pot method of AuNPs/PEDOT/CNT composites for simultaneous detection of dopamine with a high concentration of ascorbic acid and uric acid. RSC Adv 2022; 12:15038-15045. [PMID: 35702427 PMCID: PMC9115873 DOI: 10.1039/d2ra01262f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/29/2022] [Indexed: 11/21/2022] Open
Abstract
In this research, a facile one-pot method was used to synthesize gold/poly-3,4-ethylene-dioxythiophene/carbon nanotube (AuNPs/PEDOT/CNTs) composite material. The composite material was investigated by Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Then the synthesized nanocomposite material was dropped on a bare glassy carbon electrode (GCE) to improve the detection performance of dopamine with a high concentration of ascorbic acid and uric acid. The electrochemical behavior of AuNPs/PEDOT/CNTs/GCE was studied by Cyclic Voltammetry (CV), Differential Pulse Voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Under optimum conditions, AuNPs/PEDOT/CNTs/GCE showed a good linear response in the concentration range from 9.14 to 29.704 μM with a detection limit (LOD) and sensitivity of 0.283 μM and 1.557 μA μM-1, respectively. This sensor was applied to detect practical samples with good average recovery. It also exhibited good reproducibility and stability.
Collapse
Affiliation(s)
- Shaohua Chen
- Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University Hefei 230022 Anhui Province P. R. China
| | - Wenliang Chen
- Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University Hefei 230022 Anhui Province P. R. China
| | - Yihua Wang
- Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University Hefei 230022 Anhui Province P. R. China
| | - Xiufang Wang
- Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University Hefei 230022 Anhui Province P. R. China
| | - Yi Ding
- Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University Hefei 230022 Anhui Province P. R. China
| | - Donglin Zhao
- Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University Hefei 230022 Anhui Province P. R. China
| | - Jiyu Liu
- Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University Hefei 230022 Anhui Province P. R. China
| |
Collapse
|
11
|
Methyl orange-crosslinked polypyrrole hydrogel enabled N, O, S co-doped porous carbon for highly sensitive determination of three redox-active biomolecules. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Karrat A, Palacios-Santander JM, Amine A, Cubillana-Aguilera L. A novel magnetic molecularly imprinted polymer for selective extraction and determination of quercetin in plant samples. Anal Chim Acta 2022; 1203:339709. [DOI: 10.1016/j.aca.2022.339709] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023]
|
13
|
Manjakkal L, Yin L, Nathan A, Wang J, Dahiya R. Energy Autonomous Sweat-Based Wearable Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100899. [PMID: 34247412 PMCID: PMC11481680 DOI: 10.1002/adma.202100899] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/03/2021] [Indexed: 05/05/2023]
Abstract
The continuous operation of wearable electronics demands reliable sources of energy, currently met through Li-ion batteries and various energy harvesters. These solutions are being used out of necessity despite potential safety issues and unsustainable environmental impact. Safe and sustainable energy sources can boost the use of wearables systems in diverse applications such as health monitoring, prosthetics, and sports. In this regard, sweat- and sweat-equivalent-based studies have attracted tremendous attention through the demonstration of energy-generating biofuel cells, promising power densities as high as 3.5 mW cm-2 , storage using sweat-electrolyte-based supercapacitors with energy and power densities of 1.36 Wh kg-1 and 329.70 W kg-1 , respectively, and sweat-activated batteries with an impressive energy density of 67 Ah kg-1 . A combination of these energy generating, and storage devices can lead to fully energy-autonomous wearables capable of providing sustainable power in the µW to mW range, which is sufficient to operate both sensing and communication devices. Here, a comprehensive review covering these advances, addressing future challenges and potential solutions related to fully energy-autonomous wearables is presented, with emphasis on sweat-based energy storage and energy generation elements along with sweat-based sensors as applications.
Collapse
Affiliation(s)
- Libu Manjakkal
- Bendable Electronics and Sensing Technologies (BEST) GroupJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Lu Yin
- Department of NanoengineeringCentre of Wearable SensorsUniversity of CaliforniaSan DiegoCA92093USA
| | - Arokia Nathan
- Darwin CollegeUniversity of CambridgeSilver StreetCambridgeCB3 9EUUK
| | - Joseph Wang
- Department of NanoengineeringCentre of Wearable SensorsUniversity of CaliforniaSan DiegoCA92093USA
| | - Ravinder Dahiya
- Bendable Electronics and Sensing Technologies (BEST) GroupJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
14
|
Hanif A, Ghosh G, Meeseepong M, Haq Chouhdry H, Bag A, Chinnamani MV, Kumar S, Sultan MJ, Yadav A, Lee NE. A Composite Microfiber for Biodegradable Stretchable Electronics. MICROMACHINES 2021; 12:1036. [PMID: 34577680 PMCID: PMC8468109 DOI: 10.3390/mi12091036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022]
Abstract
Biodegradable stretchable electronics have demonstrated great potential for future applications in stretchable electronics and can be resorbed, dissolved, and disintegrated in the environment. Most biodegradable electronic devices have used flexible biodegradable materials, which have limited conformality in wearable and implantable devices. Here, we report a biodegradable, biocompatible, and stretchable composite microfiber of poly(glycerol sebacate) (PGS) and polyvinyl alcohol (PVA) for transient stretchable device applications. Compositing high-strength PVA with stretchable and biodegradable PGS with poor processability, formability, and mechanical strength overcomes the limits of pure PGS. As an application, the stretchable microfiber-based strain sensor developed by the incorporation of Au nanoparticles (AuNPs) into a composite microfiber showed stable current response under cyclic and dynamic stretching at 30% strain. The sensor also showed the ability to monitor the strain produced by tapping, bending, and stretching of the finger, knee, and esophagus. The biodegradable and stretchable composite materials of PGS with additive PVA have great potential for use in transient and environmentally friendly stretchable electronics with reduced environmental footprint.
Collapse
Affiliation(s)
- Adeela Hanif
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Kyunggi-do, Korea; (A.H.); (G.G.); (A.B.); (M.V.C.); (S.K.); (M.J.S.); (A.Y.)
| | - Gargi Ghosh
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Kyunggi-do, Korea; (A.H.); (G.G.); (A.B.); (M.V.C.); (S.K.); (M.J.S.); (A.Y.)
| | - Montri Meeseepong
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Kyunggi-do, Korea; (M.M.); (H.H.C.)
| | - Hamna Haq Chouhdry
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Kyunggi-do, Korea; (M.M.); (H.H.C.)
| | - Atanu Bag
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Kyunggi-do, Korea; (A.H.); (G.G.); (A.B.); (M.V.C.); (S.K.); (M.J.S.); (A.Y.)
| | - M. V. Chinnamani
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Kyunggi-do, Korea; (A.H.); (G.G.); (A.B.); (M.V.C.); (S.K.); (M.J.S.); (A.Y.)
| | - Surjeet Kumar
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Kyunggi-do, Korea; (A.H.); (G.G.); (A.B.); (M.V.C.); (S.K.); (M.J.S.); (A.Y.)
| | - Muhammad Junaid Sultan
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Kyunggi-do, Korea; (A.H.); (G.G.); (A.B.); (M.V.C.); (S.K.); (M.J.S.); (A.Y.)
| | - Anupama Yadav
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Kyunggi-do, Korea; (A.H.); (G.G.); (A.B.); (M.V.C.); (S.K.); (M.J.S.); (A.Y.)
| | - Nae-Eung Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Kyunggi-do, Korea; (A.H.); (G.G.); (A.B.); (M.V.C.); (S.K.); (M.J.S.); (A.Y.)
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Kyunggi-do, Korea; (M.M.); (H.H.C.)
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Kyunggi-do, Korea
| |
Collapse
|
15
|
Lu XY, Zhang SF, Kong FY, Wang ZX, Li HY, Fang HL, Wang W. Facile synthesis of TiO2-ZnO-rGO nanocomposites for highly sensitive simultaneous determination of hydroquinone and catechol. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106246] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Hosseini E, Dervin S, Ganguly P, Dahiya R. Biodegradable Materials for Sustainable Health Monitoring Devices. ACS APPLIED BIO MATERIALS 2021; 4:163-194. [PMID: 33842859 PMCID: PMC8022537 DOI: 10.1021/acsabm.0c01139] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022]
Abstract
The recent advent of biodegradable materials has offered huge opportunity to transform healthcare technologies by enabling sensors that degrade naturally after use. The implantable electronic systems made from such materials eliminate the need for extraction or reoperation, minimize chronic inflammatory responses, and hence offer attractive propositions for future biomedical technology. The eco-friendly sensor systems developed from degradable materials could also help mitigate some of the major environmental issues by reducing the volume of electronic or medical waste produced and, in turn, the carbon footprint. With this background, herein we present a comprehensive overview of the structural and functional biodegradable materials that have been used for various biodegradable or bioresorbable electronic devices. The discussion focuses on the dissolution rates and degradation mechanisms of materials such as natural and synthetic polymers, organic or inorganic semiconductors, and hydrolyzable metals. The recent trend and examples of biodegradable or bioresorbable materials-based sensors for body monitoring, diagnostic, and medical therapeutic applications are also presented. Lastly, key technological challenges are discussed for clinical application of biodegradable sensors, particularly for implantable devices with wireless data and power transfer. Promising perspectives for the advancement of future generation of biodegradable sensor systems are also presented.
Collapse
Affiliation(s)
- Ensieh
S. Hosseini
- Bendable Electronics and
Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, U.K.
| | - Saoirse Dervin
- Bendable Electronics and
Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, U.K.
| | - Priyanka Ganguly
- Bendable Electronics and
Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, U.K.
| | - Ravinder Dahiya
- Bendable Electronics and
Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, U.K.
| |
Collapse
|
17
|
Niu Z, Rao H, Xue X, Luo M, Liu X, Xue Z, Lu X. A Fenton-like reaction system with analyte-activated catfish effect as an enhanced colorimetric and photothermal dopamine bioassay. Analyst 2021; 146:1689-1697. [PMID: 33443257 DOI: 10.1039/d0an01830a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fenton-like reaction systems have been proven to be efficient as powerful promoters in advanced oxidation processes (AOPs) due to their generated reactive oxygen species (ROS), such as ˙OH and ˙O2-, which can further oxidize a specific chromogenic substrate like 3,3',5,5'-tetramethylbenzidine (TMB) to generate sensitive color readout and thereby demonstrate more potential in the colorimetric analysis field. However, the inherent drawback of the low rate-limiting step of Fe3+/Fe2+ conversion in the Fenton-like reaction and its resultant inefficiency for H2O2 decomposition hinder its practical applications. We herein communicate an analyte-activated catfish effect based catalysis strategy to promote the Fenton-like reaction, in which dopamine, like a catfish, was added to activate the Fenton-like reaction. By definition, the conversion rate of Fe3+ to Fe2+ in the proposed Fenton-like reaction can be significantly accelerated through a specific DA-mediated electron transfer process which further promotes the reaction activity in the Fenton-like reaction to generate more ˙OH and ˙O2- radicals. As a result, the produced ˙OH and ˙O2- radicals in such a reaction system can significantly oxidize TMB indicator into its oxidation product (TMBox) and therefore indicate the corresponding target-dependent color and photothermal signal readout, enabling the successful fabrication of a more sensitive and stable colorimetric and photothermometric DA sensor. More significantly, this strategy can greatly advance the practical application of Fenton-like reactions in the fields of colorimetric and photothermometric bioassays.
Collapse
Affiliation(s)
- Zhengrong Niu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Hosseini ES, Bhattacharjee M, Manjakkal L, Dahiya R. Healing and monitoring of chronic wounds: advances in wearable technologies. Digit Health 2021. [DOI: 10.1016/b978-0-12-818914-6.00014-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
19
|
Bhattacharjee M, Middya S, Escobedo P, Chaudhuri J, Bandyopadhyay D, Dahiya R. Microdroplet based disposable sensor patch for detection of α-amylase in human blood serum. Biosens Bioelectron 2020; 165:112333. [DOI: 10.1016/j.bios.2020.112333] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/18/2022]
|
20
|
Wang M, Zhang Y, Cui M, Lu Y, Peng D, Cao X, Wu C, Zhou J, Feng Y, Liu W, Chen Z, Liu X, Wang T, Song P, Huang Y. Molecular-scale cage-confinement pyrolysis route to size-controlled molybdenum carbide nanoparticles for electrochemical sensor. Biosens Bioelectron 2020; 165:112373. [PMID: 32729505 DOI: 10.1016/j.bios.2020.112373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 02/01/2023]
Abstract
Herein, size-controllable molybdenum carbide nanoparticles (Mo2C NPs) encapsulated by N, P-codoped carbon shells which simultaneously wrapping on the surface of carbon nanotube (Mo2C@NPC/CNT) is synthesized through a molecular-scale cage-confinement pyrolysis route. Such confinement achieves a good coating and protection of Mo2C and the effective control over the size of Mo2C NPs ranging from 2.5 to 10 nm facilitates a rational investigation into their electrochemical sensor behavior at nanometer scales. The optimized structure consisting of Mo2C nanoparticles with size of ~5 nm showed an outstanding electrochemical response toward dopamine (DA) and acetaminophen (AC) with detection limits (S/N = 3) of 0.008 μM for AC and 0.01 μM for DA.
Collapse
Affiliation(s)
- Meiling Wang
- Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China; School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Yong Zhang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Mingzhu Cui
- School of Chemistry and Material Science, Shanxi Normal University, Linfen, Shanxi, 041004, China
| | - Yu Lu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Dongdong Peng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Xun Cao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Cao Wu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Jiadong Zhou
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Yu Feng
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, 150080, PR China
| | - Weifeng Liu
- Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | - Zhaofeng Chen
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Xuguang Liu
- Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China.
| | - Tian Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| | - Pin Song
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | - Yizhong Huang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| |
Collapse
|
21
|
Ejaz A, Han JH, Dahiya R. Influence of solvent molecular geometry on the growth of nanostructures. J Colloid Interface Sci 2020; 570:322-331. [PMID: 32171094 DOI: 10.1016/j.jcis.2020.02.117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 11/17/2022]
Abstract
Solvent properties such as surface tension, dielectric constant, and viscosity have been extensively studied over more than 150 years to understand their influence on the growth kinetics of nanostructures. Interestingly, these nanoparticles-based studies have missed the influence of solvent molecular geometry. Herein, by synthesizing ZnO nanorods on a highly conductive nitrogen incorporated graphene oxide (N-GO) substrate, we present the first study showing the influence of solvent molecular geometry on the growth mechanism of nanostructures. The solvents such as water (N-GO-ZnO-W) allow a large number of functional atoms along a, b and c-axis to coordinate in all possible directions with the metal ions of wurtzite hexagonal crystal system of ZnO and thus leads to lower aspect ratio nanorods. On the contrary, the unavailability of binding sites along a-axis for solvents such as ethanol (N-GO-ZnO-E) provides a size-limiting effect and leads to preferred growth along b and c-axis, thus generating ZnO nanorods with a higher aspect ratio. The study shows that the number of interacting atoms, carbon chain length and the solvent molecular geometry influence the aspect ratio and therefore a solvent could be used to tune the nanostructures morphology and hence the performance of devices based on them.
Collapse
Affiliation(s)
- Ammara Ejaz
- Bendable Electronics and Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ, UK; Nanocarbon Convergence Materials Lab (NCML), School of Chemical Engineering, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Jong H Han
- Nanocarbon Convergence Materials Lab (NCML), School of Chemical Engineering, Chonnam National University, Gwangju 500-757, Republic of Korea.
| | - Ravinder Dahiya
- Bendable Electronics and Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ, UK.
| |
Collapse
|
22
|
Manjakkal L, Dervin S, Dahiya R. Flexible potentiometric pH sensors for wearable systems. RSC Adv 2020; 10:8594-8617. [PMID: 35496561 PMCID: PMC9050124 DOI: 10.1039/d0ra00016g] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/30/2020] [Accepted: 02/15/2020] [Indexed: 12/21/2022] Open
Abstract
There is a growing demand for developing wearable sensors that can non-invasively detect the signs of chronic diseases early on to possibly enable self-health management. Among these the flexible and stretchable electrochemical pH sensors are particularly important as the pH levels influence most chemical and biological reactions in materials, life and environmental sciences. In this review, we discuss the most recent developments in wearable electrochemical potentiometric pH sensors, covering the key topics such as (i) suitability of potentiometric pH sensors in wearable systems; (ii) designs of flexible potentiometric pH sensors, which may vary with target applications; (iii) materials for various components of the sensor such as substrates, reference and sensitive electrode; (iv) applications of flexible potentiometric pH sensors, and (v) the challenges relating to flexible potentiometric pH sensors.
Collapse
Affiliation(s)
- Libu Manjakkal
- Bendable Electronics and Sensing Technologies (BEST) Group, School of Engineering, University of Glasgow G12 8QQ UK
| | - Saoirse Dervin
- Bendable Electronics and Sensing Technologies (BEST) Group, School of Engineering, University of Glasgow G12 8QQ UK
| | - Ravinder Dahiya
- Bendable Electronics and Sensing Technologies (BEST) Group, School of Engineering, University of Glasgow G12 8QQ UK
| |
Collapse
|
23
|
Hosseini E, Manjakkal L, Shakthivel D, Dahiya R. Glycine-Chitosan-Based Flexible Biodegradable Piezoelectric Pressure Sensor. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9008-9016. [PMID: 32011853 PMCID: PMC7146751 DOI: 10.1021/acsami.9b21052] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 02/03/2020] [Indexed: 05/20/2023]
Abstract
This paper presents flexible pressure sensors based on free-standing and biodegradable glycine-chitosan piezoelectric films. Fabricated by the self-assembly of biological molecules of glycine within a water-based chitosan solution, the piezoelectric films consist of a stable spherulite structure of β-glycine (size varying from a few millimeters to 1 cm) embedded in an amorphous chitosan polymer. The polymorphic phase of glycine crystals in chitosan, evaluated by X-ray diffraction, confirms formation of a pure ferroelectric phase of glycine (β-phase). Our results show that a simple solvent-casting method can be used to prepare a biodegradable β-glycine/chitosan-based piezoelectric film with sensitivity (∼2.82 ± 0.2 mV kPa-1) comparable to those of nondegradable commercial piezoelectric materials. The measured capacitance of the β-glycine/chitosan film is in the range from 0.26 to 0.12 nF at a frequency range from 100 Hz to 1 MHz, and its dielectric constant and loss factor are 7.7 and 0.18, respectively, in the high impedance range under ambient conditions. The results suggest that the glycine-chitosan composite is a promising new biobased piezoelectric material for biodegradable sensors for applications in wearable biomedical diagnostics.
Collapse
Affiliation(s)
- Ensieh
S. Hosseini
- Bendable Electronics and
Sensing Technologies Group, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Libu Manjakkal
- Bendable Electronics and
Sensing Technologies Group, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Dhayalan Shakthivel
- Bendable Electronics and
Sensing Technologies Group, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Ravinder Dahiya
- Bendable Electronics and
Sensing Technologies Group, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|