1
|
Wei L, Han M, Wang Z, Wang Z, Ruan S, Chen Y. Detection of foodborne methicillin-resistant Staphylococcus aureus via fluorescence-encoded microsphere and Argonaute-mediated decoding. Food Chem 2024; 460:140615. [PMID: 39126941 DOI: 10.1016/j.foodchem.2024.140615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Molecular diagnosis of foodborne methicillin-resistant Staphylococcus aureus (MRSA) is crucial for controlling its dissemination and ensuring food safety. However, existing genetic methods are limited by susceptibility to aerosol contamination and restricted to single-gene detection. Herein, a fluorescent biosensor employing fluorescence-encoded microspheres and Argonaute-mediated decoding is developed, enabling ultrasensitive, accurate, and duplex detection of MRSA genes. This assay utilizes a target-triggered polymerization/nicking reaction to cyclically produce specific guide DNA, guiding Argonaute protein to site-specifically cleave the molecular beacon on the microsphere, thereby decoding a fluorescent signal. Notably, the fluorescence-encoded microsphere, designed via on-tetrahedron rolling circle amplification, achieves high fluorescence loadings in a unit area. This biosensor demonstrates simultaneous detection of two unamplified MRSA genes, mecA and femA, at concentrations as low as 0.63 fM and 0.48 fM, respectively. Moreover, the method exhibited excellent recoveries in milk, egg, and pork samples ranging from 73% to 112%, highlighting its practicability in real scenarios.
Collapse
Affiliation(s)
- Luyu Wei
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Minjie Han
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhilong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhipan Wang
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Shilong Ruan
- Daye Public Inspection and Test Center, Daye 435100, Hubei, China
| | - Yiping Chen
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
2
|
Xu J, Jin D, Wang Z. Target Recognition Triggered Split DNAzyme based Colorimetric Assay for Direct and Sensitive Methicillin-Resistance Analysis of Staphylococcus aureus. J Microbiol Biotechnol 2024; 34:1322-1327. [PMID: 38881169 PMCID: PMC11239412 DOI: 10.4014/jmb.2404.04012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/18/2024]
Abstract
The accurate and rapid detection of methicillin-resistant Staphylococcus aureus (MRSA) holds significant clinical importance. This work presents a new method for detecting methicillin-resistant Staphylococcus aureus (S. aureus) in clinical samples. The method uses an aptamer-based colorimetric assay that combines a recognizing probe to identify the target and split DNAzyme to amplify the signal, resulting in a highly sensitive and direct analysis of methicillin-resistance. The identification of the PBP2a protein on the membrane of S. aureus in clinical samples leads to the allosterism of the recognizing probe, and thus provides a template for the proximity ligation of split DNAzyme. The proximity ligation of split DNAzyme forms an intact DNAzyme to identify the loop section in the L probe and generates a nicking site to release the loop sequence ("3" and "4" fragments). The "3" and "4" fragments forms an intact sequence to induce the catalytic hairpin assembly, exposing the G-rich section. The released the G-rich sequence of LR probe induces the formation of G-quadruplex-hemin DNAzyme as a colorimetric signal readout. The absorption intensity demonstrated a strong linear association with the logarithm of the S. aureus concentration across a wide range of 5 orders of magnitude dynamic range under the optimized experimental parameters. The limit of detection was calculated to be 23 CFU/ml and the method showed high selectivity for MRSA.
Collapse
Affiliation(s)
- Jin Xu
- Department of Anesthesiology, People’s Hospital of Chongqing Liang Jiang New Area, Chongqing 401121, P.R. China
| | - Dandan Jin
- Department of Anesthesiology, People’s Hospital of Chongqing Liang Jiang New Area, Chongqing 401121, P.R. China
| | - Zhengwei Wang
- Department of Anesthesiology, People’s Hospital of Chongqing Liang Jiang New Area, Chongqing 401121, P.R. China
| |
Collapse
|
3
|
Ertuğrul Uygun HD, Odaci D. Impedimetric Single Carbon Fiber Electrode for Ultrasensitive Detection of Staphylococcus aureus Pathogen DNAs in Breast Milk by CRISPR Technology. ACS OMEGA 2024; 9:25172-25180. [PMID: 38882121 PMCID: PMC11170623 DOI: 10.1021/acsomega.4c02738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
This study introduces a novel biosensing approach for the detection of pathogen DNA in breast milk utilizing single carbon fiber electrodes (SCFE) enhanced with MXene nanomaterial layers. The primary innovation lies in the modification of SCFE with MXenes to increase the electrode's surface area, followed by surface activation for the immobilization of dCas9-sgRNA complexes. This modification aims to leverage the unique properties of MXenes and the selective binding capability of the CRISPR technology for efficient and specific pathogen detection. Electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) analyses were employed to characterize the electrode modifications and the immobilization process, demonstrating the successful enhancement of biosensor performance. This study further optimized the chronoimpedimetric detection method to achieve rapid, sensitive, and selective detection of Staphylococcus aureus (SAu) DNA in breast milk, with a notable detection time of 60 s in real samples. The biosensor demonstrated high selectivity and sensitivity, with a linear detection range between 50 and 6000 fM and a limit of detection (LOD) of 14.5 fM. The reproducibility and stability of the biosensor were also confirmed through multiple tests, showing promising potential for clinical and public health applications.
Collapse
Affiliation(s)
- Hilmiye Deniz Ertuğrul Uygun
- Center for Fabrication and Application of Electronic Materials, Dokuz Eylül University, Buca, İzmir 35220, Türkiye
- Faculty of Science, Department of Biochemistry, Ege University, Bornova, İzmir 35040, Türkiye
| | - Dilek Odaci
- Faculty of Science, Department of Biochemistry, Ege University, Bornova, İzmir 35040, Türkiye
| |
Collapse
|
4
|
Du Y, Xiu N. Exonuclease-III Assisted the Target Recycling Coupling with Hybridization Chain Reaction for Sensitive mecA Gene Analysis by Using PGM. Appl Biochem Biotechnol 2024:10.1007/s12010-024-04862-1. [PMID: 38401042 DOI: 10.1007/s12010-024-04862-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
In the field of neonatal infections nursing, methicillin-resistant Staphylococcus aureus (MRSA) is a major bacterial pathogen. Here, we present a portable biosensor for MRSA detection that is both highly sensitive and portable, owing to its implementation on the personal glucose meter (PGM) platform. The H probe was fixed on the magnetic bead for mecA gene analysis. A blunt 3' terminus appeared in the MBs-H probe when the mecA gene was present. Exonuclease-III (Exo-III) recognized the blunt terminus and cleaved it, freeing the mecA gene and so facilitating target recycling. In the meantime, the remaining H probe-initiated hybridization chain reaction (HCR) led to the desired signal amplification. Portable quantitative detection of mecA gene is possible because PGM can read the quantity of invertase tagged on HCR product. After optimizing several experimental parameters, such as the concentration of Exo-III and incubation time, the constructed sensor is extremely sensitive, with a detection limit of 2 CFU/mL. The results from this sensitive PGM-based sensor are in agreement with those obtained from plate counting methods, suggesting that it can be used to accurately assess the MRSA content in artificial clinical samples. In addition, the PGM sensor can significantly cut down on time spent compared to plate counting techniques. The manufactured sensor provides a promising option for accurate identification of pathogenic bacteria.
Collapse
Affiliation(s)
- Yan Du
- Department of Neonatology, The First Hospital of China Medical University, Shenyang City, Liaoning Province, 110000, China
| | - Ning Xiu
- Department of Neonatology, The First Hospital of China Medical University, Shenyang City, Liaoning Province, 110000, China.
| |
Collapse
|
5
|
Tovar-Lopez FJ. Recent Progress in Micro- and Nanotechnology-Enabled Sensors for Biomedical and Environmental Challenges. SENSORS (BASEL, SWITZERLAND) 2023; 23:5406. [PMID: 37420577 DOI: 10.3390/s23125406] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 07/09/2023]
Abstract
Micro- and nanotechnology-enabled sensors have made remarkable advancements in the fields of biomedicine and the environment, enabling the sensitive and selective detection and quantification of diverse analytes. In biomedicine, these sensors have facilitated disease diagnosis, drug discovery, and point-of-care devices. In environmental monitoring, they have played a crucial role in assessing air, water, and soil quality, as well as ensured food safety. Despite notable progress, numerous challenges persist. This review article addresses recent developments in micro- and nanotechnology-enabled sensors for biomedical and environmental challenges, focusing on enhancing basic sensing techniques through micro/nanotechnology. Additionally, it explores the applications of these sensors in addressing current challenges in both biomedical and environmental domains. The article concludes by emphasizing the need for further research to expand the detection capabilities of sensors/devices, enhance sensitivity and selectivity, integrate wireless communication and energy-harvesting technologies, and optimize sample preparation, material selection, and automated components for sensor design, fabrication, and characterization.
Collapse
|
6
|
Lei W, Jia L, Wang Z, Liang Z, Aizhen Z, Liu Y, Tian Y, Zhao L, Chen Y, Shi G, Yang Z, Yang Y, Xu X. CC chemokines family in fibrosis and aging: From mechanisms to therapy. Ageing Res Rev 2023; 87:101900. [PMID: 36871782 DOI: 10.1016/j.arr.2023.101900] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Fibrosis is a universal aging-related pathological process in the different organ, but is actually a self-repair excessive response. To date, it still remains a large unmet therapeutic need to restore injured tissue architecture without detrimental side effects, due to the limited clinical success in the treatment of fibrotic disease. Although specific organ fibrosis and the associated triggers have distinct pathophysiological and clinical manifestations, they often share involved cascades and common traits, including inflammatory stimuli, endothelial cell injury, and macrophage recruitment. These pathological processes can be widely controlled by a kind of cytokines, namely chemokines. Chemokines act as a potent chemoattractant to regulate cell trafficking, angiogenesis, and extracellular matrix (ECM). Based on the position and number of N-terminal cysteine residues, chemokines are divided into four groups: the CXC group, the CX3C group, the (X)C group, and the CC group. The CC chemokine classes (28 members) is the most numerous and diverse subfamily of the four chemokine groups. In this Review, we summarized the latest advances in the understanding of the importance of CC chemokine in the pathogenesis of fibrosis and aging and discussed potential clinical therapeutic strategies and perspectives aimed at resolving excessive scarring formation.
Collapse
Affiliation(s)
- Wangrui Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Liyuan Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, 430064, China
| | - Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou 450052, China
| | - Zhao Aizhen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yanqing Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Ye Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Lin Zhao
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yawu Chen
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Guangyong Shi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zhi Yang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xuezeng Xu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
7
|
Jha NG, Dkhar DS, Singh SK, Malode SJ, Shetti NP, Chandra P. Engineered Biosensors for Diagnosing Multidrug Resistance in Microbial and Malignant Cells. BIOSENSORS 2023; 13:235. [PMID: 36832001 PMCID: PMC9954051 DOI: 10.3390/bios13020235] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/17/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
To curtail pathogens or tumors, antimicrobial or antineoplastic drugs have been developed. These drugs target microbial/cancer growth and survival, thereby improving the host's health. In attempts to evade the detrimental effects of such drugs, these cells have evolved several mechanisms over time. Some variants of the cells have developed resistances against multiple drugs or antimicrobial agents. Such microorganisms or cancer cells are said to exhibit multidrug resistance (MDR). The drug resistance status of a cell can be determined by analyzing several genotypic and phenotypic changes, which are brought about by significant physiological and biochemical alterations. Owing to their resilient nature, treatment and management of MDR cases in clinics is arduous and requires a meticulous approach. Currently, techniques such as plating and culturing, biopsy, gene sequencing, and magnetic resonance imaging are prevalent in clinical practices for determining drug resistance status. However, the major drawbacks of using these methods lie in their time-consuming nature and the problem of translating them into point-of-care or mass-detection tools. To overcome the shortcomings of conventional techniques, biosensors with a low detection limit have been engineered to provide quick and reliable results conveniently. These devices are highly versatile in terms of analyte range and quantities that can be detected to report drug resistance in a given sample. A brief introduction to MDR, along with a detailed insight into recent biosensor design trends and use for identifying multidrug-resistant microorganisms and tumors, is presented in this review.
Collapse
Affiliation(s)
- Niharika G. Jha
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India
| | - Daphika S. Dkhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India
| | - Sumit K. Singh
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India
| | - Shweta J. Malode
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
| | - Nagaraj P. Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
- University Center for Research & Development (UCRD), Chandigarh University, Mohali 140413, Panjab, India
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
8
|
Saxena S, Punjabi K, Ahamad N, Singh S, Bendale P, Banerjee R. Nanotechnology Approaches for Rapid Detection and Theranostics of Antimicrobial Resistant Bacterial Infections. ACS Biomater Sci Eng 2022; 8:2232-2257. [PMID: 35546526 DOI: 10.1021/acsbiomaterials.1c01516] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
As declared by WHO, antimicrobial resistance (AMR) is a high priority issue with a pressing need to develop impactful technologies to curb it. The rampant and inappropriate use of antibiotics due to the lack of adequate and timely diagnosis is a leading cause behind AMR evolution. Unfortunately, populations with poor economic status and those residing in densely populated areas are the most affected ones, frequently leading to emergence of AMR pathogens. Classical approaches for AMR diagnostics like phenotypic methods, biochemical assays, and molecular techniques are cumbersome and resource-intensive and involve a long turnaround time to yield confirmatory results. In contrast, recent emergence of nanotechnology-assisted approaches helps to overcome challenges in classical approaches and offer simpler, more sensitive, faster, and more affordable solutions for AMR diagnostics. Nanomaterial platforms (metallic, quantum-dot, carbon-based, upconversion, etc.), nanoparticle-based rapid point-of-care platforms, nano-biosensors (optical, mechanical, electrochemical), microfluidic-assisted devices, and importantly, nanotheranostic devices for diagnostics with treatment of AMR infections are examples of rapidly growing nanotechnology approaches used for AMR management. This review comprehensively summarizes the past 10 years of research progress on nanotechnology approaches for AMR diagnostics and for estimating antimicrobial susceptibility against commonly used antibiotics. This review also highlights several bottlenecks in nanotechnology approaches that need to be addressed prior to considering their translation to clinics.
Collapse
Affiliation(s)
- Survanshu Saxena
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Kapil Punjabi
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Nadim Ahamad
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Subhasini Singh
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Prachi Bendale
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Rinti Banerjee
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
9
|
Development of a Self-Viscosity and Temperature-Compensated Technique for Highly Stable and Highly Sensitive Bead-Based Diffusometry. BIOSENSORS 2022; 12:bios12060362. [PMID: 35735510 PMCID: PMC9221091 DOI: 10.3390/bios12060362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022]
Abstract
Brownian motion, which is a natural phenomenon, has attracted numerous researchers and received extensive studies over the past decades. The effort contributes to the discovery of optical diffusometry, which is commonly used for micro/nano particle sizing. However, the analysis uncertainty caused by the coupling relationship among particle diameter, temperature, and fluid viscosity usually poses a barrier to precise measurement. Preventing random background noise becomes the key to achieving a high level of accuracy in diffusometry detection. Recently, Janus particles have become known as an ideal tool for resolving the rotational Brownian motion. Followed by our previous study, the rotational Brownian motion and the translational Brownian motion can be separately measured using the Janus particles. Accordingly, a simple self-viscosity and temperature-compensated technique based on the delicate removal of temperature and fluid viscosity variations through particle tracking was first proposed in this study. Consequently, the translational Brownian motion was expressed in terms of particle trajectory, whereas the rotational Brownian motion was expressed in terms of the blinking signal from the Janus particles. The algorithm was verified simulatively and experimentally in temperature (10 °C to 40 °C) and viscosity-controlled (1 mPa·s to 5 mPa·s) fields. In an evaluation of biosensing for a target protein, IFN-γ, the limit of detection of the proposed self-compensated diffusometry reached 0.45 pg/mL, whereas its uncertainties of viscosity and temperature were 96 and 15-fold lower than the pure the rotational Brownian motion counterpart, respectively. The results indicated the low-uncertainty and high-accuracy biosensing capability resulting from the self-viscosity and temperature-compensated technique. This research will provide a potential alternative to future similar bead-based immunosensing, which requires ultra-high stability and sensitivity.
Collapse
|
10
|
Gao W, Li B, Ling L, Zhang L, Yu S. MALDI-TOF MS method for differentiation of methicillin-sensitive and methicillin-resistant Staphylococcus aureus using (E)-Propyl α-cyano-4-Hydroxyl cinnamylate. Talanta 2022; 244:123405. [PMID: 35349841 DOI: 10.1016/j.talanta.2022.123405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 01/02/2023]
Abstract
Differentiating methicillin-sensitive and methicillin-resistant Staphylococcus aureus (MRSA and MSSA) is crucial for clinical diagnosis and anti-microbial treatment. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) is an efficient tool for identifying pathogenic microorganisms at the bacterial species level. Here, we found that MRSA and MSSA can be differentiated by MALDI-TOF MS by employing (E)-propylα-cyano-4-hydroxyl cinnamylate (CHCA-C3) as the matrix, which shows great performance for proteins/peptides, especially hydrophobic proteins. The results show that the mass spectra profile of standard MRSA (ATCC 43300) is significantly different from the profiles of standard MSSA strains (ATCC 25923 and 29213) when using CHCA-C3 as the matrix compared to traditional matrix. The mass profiles had great reproducibility and were scarcely influenced by the growth medium. Due to the enhanced discrimination ability of CHCA-C3, we collected the mass spectra of 62 clinical S. aureus strains and selected four representative peaks for principal component analysis, which showed great differentiation. Our results suggest that employing a suitable matrix could enhance the discrimination ability of antibiotic-resistant bacteria by MALDI-TOF MS.
Collapse
Affiliation(s)
- Wenjing Gao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Bin Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ling Ling
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Li Zhang
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Shaoning Yu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
11
|
Das D, Chen WL, Chuang HS. Rapid and Sensitive Pathogen Detection by DNA Amplification Using Janus Particle-Enabled Rotational Diffusometry. Anal Chem 2021; 93:13945-13951. [PMID: 34618421 DOI: 10.1021/acs.analchem.1c03209] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rapid and sensitive detection of infectious bacteria is in all-time high demand to prevent the further spread of the infection and allow early medical intervention. In this study, we use rotational diffusometry (RD), a natural phenomenon characterized by Janus particles, to detect pathogens like Escherichia coli by performing amplification of specific genes. This biosensing method is used to measure the change in viscosity of the fluid in the presence and absence of DNA in the solution by capturing images of modified microbeads at 10 Hz by a CCD camera followed by cross-correlation algorithm analysis. Using rotational diffusometry, we have achieved E. coli detection with 50 pg/μL DNA with a measurement time of 30 s and a sample volume of 2 μL. This sensitivity was achieved with 30 thermal cycles for three different amplicons, viz., 84, 147, and 246 bp. Meanwhile, in the case of 10 and 20 thermal cycles, the detection sensitivity was achieved with 0.1 and 1 ng/μL DNA concentrations for a 246 bp amplicon. Compared with conventional PCR, this technique appears to improve the detection time, thereby reaching a turnaround time of less than 60 min. Other studies showed a successful identification of DNA amplification up to 10 thermal cycles with different sizes of amplicons. The effect of DNA concentration, amplicon size, and the number of thermal cycles on the detection of E. coli was examined in detail and represented in the form of three maps. These maps show the clear difference and the advantages of RD method in comparison with conventional PCR. This unconventional and rapid biosensing method can be used further for downstream application of nucleic acid amplification-based pathogen detection and early disease control.
Collapse
Affiliation(s)
- Dhrubajyoti Das
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Wei-Long Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Han-Sheng Chuang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
12
|
Papafilippou L, Claxton A, Dark P, Kostarelos K, Hadjidemetriou M. Nanotools for Sepsis Diagnosis and Treatment. Adv Healthc Mater 2021; 10:e2001378. [PMID: 33236524 PMCID: PMC11469323 DOI: 10.1002/adhm.202001378] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/07/2020] [Indexed: 12/12/2022]
Abstract
Sepsis is one of the leading causes of death worldwide with high mortality rates and a pathological complexity hindering early and accurate diagnosis. Today, laboratory culture tests are the epitome of pathogen recognition in sepsis. However, their consistency remains an issue of controversy with false negative results often observed. Clinically used blood markers, C reactive protein (CRP) and procalcitonin (PCT) are indicators of an acute-phase response and thus lack specificity, offering limited diagnostic efficacy. In addition to poor diagnosis, inefficient drug delivery and the increasing prevalence of antibiotic-resistant microorganisms constitute significant barriers in antibiotic stewardship and impede effective therapy. These challenges have prompted the exploration for alternative strategies that pursue accurate diagnosis and effective treatment. Nanomaterials are examined for both diagnostic and therapeutic purposes in sepsis. The nanoparticle (NP)-enabled capture of sepsis causative agents and/or sepsis biomarkers in biofluids can revolutionize sepsis diagnosis. From the therapeutic point of view, currently existing nanoscale drug delivery systems have proven to be excellent allies in targeted therapy, while many other nanotherapeutic applications are envisioned. Herein, the most relevant applications of nanomedicine for the diagnosis, prognosis, and treatment of sepsis is reviewed, providing a critical assessment of their potentiality for clinical translation.
Collapse
Affiliation(s)
- Lana Papafilippou
- Nanomedicine LabFaculty of BiologyMedicine and HealthAV Hill BuildingThe University of ManchesterManchesterM13 9PTUK
| | - Andrew Claxton
- Department of Critical CareSalford Royal Foundation TrustStott LaneSalfordM6 8HDUK
| | - Paul Dark
- Manchester NIHR Biomedical Research CentreDivision of InfectionImmunity and Respiratory MedicineUniversity of ManchesterManchesterM13 9PTUK
| | - Kostas Kostarelos
- Nanomedicine LabFaculty of BiologyMedicine and HealthAV Hill BuildingThe University of ManchesterManchesterM13 9PTUK
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)Campus UABBellaterraBarcelona08193Spain
| | - Marilena Hadjidemetriou
- Nanomedicine LabFaculty of BiologyMedicine and HealthAV Hill BuildingThe University of ManchesterManchesterM13 9PTUK
| |
Collapse
|
13
|
Kumar V, Guleria P. Application of DNA-Nanosensor for Environmental Monitoring: Recent Advances and Perspectives. CURRENT POLLUTION REPORTS 2020:1-21. [PMID: 33344145 PMCID: PMC7732738 DOI: 10.1007/s40726-020-00165-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/04/2020] [Indexed: 05/24/2023]
Abstract
PURPOSE OF REVIEW Environmental pollutants are threat to human beings. Pollutants can lead to human health and environment hazards. The purpose of this review is to summarize the work done on detection of environmental pollutants using DNA nanosensors and challenges in the areas that can be focused for safe environment. RECENT FINDINGS Most of the DNA-based nanosensors designed so far use DNA as recognition element. ssDNA, dsDNA, complementary mismatched DNA, aptamers, and G-quadruplex DNA are commonly used as probes in nanosensors. More and more DNA sequences are being designed that can specifically detect various pollutants even simultaneously in complex milk, wastewater, soil, blood, tap water, river, and pond water samples. The feasibility of direct detection, ease of designing, and analysis makes DNA nanosensors fit for future point-of-care applications. SUMMARY DNA nanosensors are easy to design and have good sensitivity. DNA component and nanomaterials can be designed in a controlled manner to detect various environmental pollutants. This review identifies the recent advances in DNA nanosensor designing and opportunities available to design nanosensors for unexplored pathogens, antibiotics, pesticides, GMO, heavy metals, and other toxic pollutant.
Collapse
Affiliation(s)
- Vineet Kumar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University (LPU), Jalandhar – Delhi G.T. Road, Phagwara, Punjab 144411 India
| | - Praveen Guleria
- Department of Biotechnology, Faculty of Life Sciences, DAV University, Jalandhar, Punjab 144012 India
| |
Collapse
|
14
|
Developing Rapid Antimicrobial Susceptibility Testing for Motile/Non-Motile Bacteria Treated with Antibiotics Covering Five Bactericidal Mechanisms on the Basis of Bead-Based Optical Diffusometry. BIOSENSORS-BASEL 2020; 10:bios10110181. [PMID: 33228090 PMCID: PMC7699397 DOI: 10.3390/bios10110181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022]
Abstract
Rapid antimicrobial susceptibility testing (AST) is an effective measure in the treatment of infections and the prevention of bacterial drug resistance. However, diverse antibiotic types and bacterial characteristics have formed complicated barriers to rapid diagnosis. To counteract these limitations, we investigated the interactions between antibiotic-treated bacteria and functionalized microbeads in optical diffusometry. The conjugation with bacteria increased the effective microbead complex size, thereby resulting in a temporal diffusivity change. The yielded data were sorted and analyzed to delineate a pattern for the prediction of antimicrobial susceptibility. The outcome showed that a completed rapid AST based on the trend of microbead diffusivity could provide results within 3 h (2 h measurement + 1 h computation). In this research, we studied four bacterial strains, including Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Staphylococcus aureus, and six antibiotics. Despite the different inhibitory effects caused by various antibiotics, similar trends in diffusivity alteration for all susceptible and resistant cases in the last 40 min of the 2-h measurement period were deduced. In addition, the AST results obtained using optical diffusometry showed good agreement with those acquired from the commercial instrument and conventional culture methods. Finally, we conducted a single-blinded clinical test, and the sensitivity, specificity, and accuracy of the system reached 92.9%, 91.4%, and 91.8%, respectively. Overall, the developed optical diffusometry showcased rapid AST with a small sample volume (20 μL) and low initial bacterial count (105 CFU/mL). This technique provided a promising way to achieve early therapy against microbial diseases in the future.
Collapse
|
15
|
Chen WL, Chuang HS. Trace Biomolecule Detection with Functionalized Janus Particles by Rotational Diffusion. Anal Chem 2020; 92:12996-13003. [PMID: 32933244 DOI: 10.1021/acs.analchem.0c01733] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cytokines are small proteins secreted by cells in innate and adaptive immune systems. Abnormal cytokine secretion is often regarded as an early cue of dysregulation of homeostasis due to diseases or infections. Early detection allows early medical intervention. In this study, a natural phenomenon called rotational Brownian motion was characterized by Janus particles and its potential use in detection of trace biomolecules explored. Through the functionalization of the Janus particles with an antibody, the target cytokine, that is, tumor necrosis factor-α, was measured in terms of rotational diffusion. Rotational diffusion is highly sensitive to the particle volume change according to the Stokes-Einstein-Debye relation and can be quantified by blinking signal. Accordingly, 1 μm half-gold and half-fluorescent microbeads were conjugated with 200 nm nanobeads through sandwiched immunocomplexes. The light source, lead time for stabilization, and purification were investigated for optimization. Particle images can be captured with green light at 5 Hz within 300 s. Under such conditions, the functionalized Janus particles eventually achieved a limit of detection of 1 pg/mL. The rotational diffusometry realized by Janus particles was power-free and feasible for ultrasensitive detection, such as early disease detection.
Collapse
Affiliation(s)
- Wei-Long Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Han-Sheng Chuang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan.,Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
16
|
Li J, Zhang H, Zhao H, Chen L. Two New Co(II) Coordination Polymers: Photocatalytic Properties and Treatment Activity on Sepsis by Reducing TNF‐α and IL‐1β Releasing. ChemistrySelect 2020. [DOI: 10.1002/slct.202001746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jin‐Hong Li
- Department of Critical MedicineTraditional Chinese Medical Hospital of Huangdao District Qingdao, Shandong China
| | - Hui‐Xia Zhang
- Qingdao Huangdao Community Health Service Center Qingdao, Shandong China
| | - Hai‐Yun Zhao
- Outpatient Drug Exchange Room, Traditional Chinese Medical Hospital of Huangdao District Qingdao, Shandong China
| | - Li‐Yuan Chen
- Outpatient Drug Exchange Room, Traditional Chinese Medical Hospital of Huangdao District Qingdao, Shandong China
| |
Collapse
|