1
|
Qiao J, Zhao Z, Li Y, Lu M, Man S, Ye S, Zhang Q, Ma L. Recent advances of food safety detection by nucleic acid isothermal amplification integrated with CRISPR/Cas. Crit Rev Food Sci Nutr 2024; 64:12061-12082. [PMID: 37691410 DOI: 10.1080/10408398.2023.2246558] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Food safety problems have become one of the most important public health issues worldwide. Therefore, the development of rapid, effective and robust detection is of great importance. Amongst a range of methods, nucleic acid isothermal amplification (NAIA) plays a great role in food safety detection. However, the widespread application remains limited due to a few shortcomings. CRISPR/Cas system has emerged as a powerful tool in nucleic acid detection, which could be readily integrated with NAIA to improve the detection sensitivity, specificity, adaptability versatility and dependability. However, currently there was a lack of a comprehensive summary regarding the integration of NAIA and CRISPR/Cas in the field of food safety detection. In this review, the recent advances in food safety detection based on CRISPR/Cas-integrated NAIA were comprehensively reviewed. To begin with, the development of NAIA was summarized. Then, the types and working principles of CRISPR/Cas were introduced. The applications of the integration of NAIA and CRISPR/Cas for food safety were mainly introduced and objectively discussed. Lastly, current challenges and future opportunities were proposed. In summary, this technology is expected to become an important approach for food safety detection, leading to a safer and more reliable food industry.
Collapse
Affiliation(s)
- Jiali Qiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Zhiying Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Yaru Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Minghui Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Shengying Ye
- Pharmacy Department, The 983th Hospital of the Joint Logistics Support Force of the, Chinese People's Liberation Army, Tianjin, China
| | - Qiang Zhang
- Branch of Tianjin Third Central Hospital, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
2
|
Sun Y, Wen T, Zhang P, Wang M, Xu Y. Recent Advances in the CRISPR/Cas-Based Nucleic Acid Biosensor for Food Analysis: A Review. Foods 2024; 13:3222. [PMID: 39456285 PMCID: PMC11507162 DOI: 10.3390/foods13203222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Food safety is a major public health issue of global concern. In recent years, the CRISPR/Cas system has shown promise in the field of molecular detection. The system has been coupled with various nucleic acid amplification methods and combined with different signal output systems to develop a new generation of CRISPR/Cas-based nucleic acid biosensor technology. This review describes the design concept of the CRISPR/Cas-based nucleic acid biosensor and its application in food analysis. A detailed overview of different CRISPR/Cas systems, signal amplification methods, and signal output strategies is provided. CRISPR/Cas-based nucleic acid biosensors have the advantages of high sensitivity, strong specificity, and timeliness, achieving fast analysis of a variety of targets, including bacteria, toxins, metal ions, pesticides, veterinary drugs, and adulteration, promoting the development of rapid food safety detection technology. At the end, we also provide our outlook for the future development of CRISPR/Cas-based nucleic acid biosensors.
Collapse
Affiliation(s)
| | | | | | | | - Yuancong Xu
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; (Y.S.); (T.W.); (P.Z.); (M.W.)
| |
Collapse
|
3
|
Li X, Liu M, Men D, Duan Y, Deng L, Zhou S, Hou J, Hou C, Huo D. Rapid, portable, and sensitive detection of CaMV35S by RPA-CRISPR/Cas12a-G4 colorimetric assays with high accuracy deep learning object recognition and classification. Talanta 2024; 278:126441. [PMID: 38924982 DOI: 10.1016/j.talanta.2024.126441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Fast, sensitive, and portable detection of genetic modification contributes to agricultural security and food safety. Here, we developed RPA-CRISPR/Cas12a-G-quadruplex colorimetric assays that can combine with intelligent recognition by deep learning algorithms to achieve sensitive, rapid, and portable detection of the CaMV35S promoter. When the crRNA-Cas12a complex recognizes the RPA amplification product, Cas12 cleaves the G-quadruplex, causing the G4-Hemin complex to lose its peroxide mimetic enzyme function and be unable to catalyze the conversion of ABTS2- to ABTS, allowing CaMV35S concentration to be determined based on ABTS absorbance. By utilizing the RPA-CRISPR/Cas12a-G4 assay, we achieved a CaMV35S limit of detection down to 10 aM and a 0.01 % genetic modification sample in 45 min. Deep learning algorithms are designed for highly accurate classification of color results. Yolov5 objective finding and Resnet classification algorithms have been trained to identify trace (0.01 %) CaMV35S more accurately than naked eye colorimetry. We also coupled deep learning algorithms with a smartphone app to achieve portable and rapid photo identification. Overall, our findings enable low cost ($0.43), high accuracy, and intelligent detection of the CaMV35S promoter.
Collapse
Affiliation(s)
- Xuheng Li
- Key Laboratory for Biological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Meilin Liu
- Key Laboratory for Biological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Dianhui Men
- Key Laboratory for Biological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Yi Duan
- Key Laboratory for Biological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Liyuan Deng
- Key Laboratory for Biological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Shiying Zhou
- Key Laboratory for Biological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Jingzhou Hou
- Key Laboratory for Biological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing, 401331, PR China.
| | - Changjun Hou
- Key Laboratory for Biological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| | - Danqun Huo
- Key Laboratory for Biological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
4
|
Ding L, Wang X, Chen X, Xu X, Wei W, Yang L, Ji Y, Wu J, Xu J, Peng C. Development of a novel Cas13a/Cas12a-mediated 'one-pot' dual detection assay for genetically modified crops. J Adv Res 2024:S2090-1232(24)00311-4. [PMID: 39084403 DOI: 10.1016/j.jare.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/10/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024] Open
Abstract
INTRODUCTION Genetically modified (GM) crops have been widely cultivated across the world and the development of rapid, ultrasensitive, visual multiplex detection platforms that are suitable for field deployment is critical for GM organism regulation. OBJECTIVE In this study, we developed a novel one-pot system, termed MR-DCA (Multiplex RPA and Dual CRISPR assay), for the simultaneous detection of CaMV35S and NOS genetic targets in GM crops. This innovative approach combined Multiplex RPA (recombinase polymerase amplification) with the Dual CRISPR (clustered regularly interspaced short palindromic repeat) assay technique, to provide a streamlined and efficient method for GM crop detection. METHODS The RPA reaction used for amplification CaMV35S and NOS targets was contained in the tube base, while the dual CRISPR enzymes were placed in the tube cap. Following centrifugation, the dual CRISPR (Cas13a/Cas12a) detection system was initiated. Fluorescence visualization was used to measure CaMV35S through the FAM channel and NOS through the HEX channel. When using lateral flow strips, CaMV35S was detected using rabbit anti-digoxin (blue line), whilst NOS was identified using anti-mouse FITC (red line). Line intensity was quantified using Image J and depicted graphically. RESULTS Detection of the targets was completed in 35 min, with a limit of detection as low as 20 copies. In addition, two analysis systems were developed and they performed well in the MR-DCA assay. In an analysis of 24 blind samples from GM crops with a wide genomic range, MR-DCA gave consistent results with the quantitative PCR method, which indicated high accuracy, applicability and semi-quantitative ability. CONCLUSION The development of MR-DCA represents a significant advancement in the field of GM detection, offering a rapid, sensitive and portable method for multiple target detection that can be used in resource-limited environments.
Collapse
Affiliation(s)
- Lin Ding
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaofu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaoyun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaoli Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lei Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yi Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Junfeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Cheng Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
5
|
Xu Y, Zhang Q, Li Y, Pang X, Cheng N. A 3D-Printed Integrated Handheld Biosensor for the Detection of Vibrio parahaemolyticus. Foods 2024; 13:1775. [PMID: 38891003 PMCID: PMC11171811 DOI: 10.3390/foods13111775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) is one of the important seafood-borne pathogens that cause a serious gastrointestinal disorder in humans. Recently, biosensors have attracted serious attention for precisely detecting and tracking risk factors in foods. However, a major consideration when fabricating biosensors is to match the low cost of portable devices to broaden its application. In this study, a 3D-printed integrated handheld biosensor (IHB) that combines RPA-CRISPR/Cas12a, a lateral flow strip (LFS), and a handheld device was developed for the ultrasensitive detection of V. parahaemolyticus. Using the preamplification of RPA on tlh gene of V. parahaemolyticus, a specific duplex DNA product was obtained to activate the trans-cleavage activity of CRISPR/Cas12a, which was then utilized to cleave the ssDNA probe. The ssDNA probe was then detected by the LFS, which was negatively correlated with the content of amplified RPA products of the tlh gene. The IHB showed high selectivity and excellent sensitivity for V. parahaemolyticus detection, and the limit of detection was 4.9 CFU/mL. The IHB also demonstrated great promise for the screening of V. parahaemolyticus in samples and had the potential to be applied to the rapid screening of other pathogen risks for seafood and marine environmental safety.
Collapse
Affiliation(s)
- Yuancong Xu
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China;
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China;
| | - Qian Zhang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China;
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.L.); (X.P.)
| | - Yunyi Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.L.); (X.P.)
| | - Xiaoxu Pang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.L.); (X.P.)
| | - Nan Cheng
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China;
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.L.); (X.P.)
| |
Collapse
|
6
|
Han X, Lu M, Zhang Y, Liu X, Zhang Q, Bai X, Man S, Zhao L, Ma L. A Thermostable Cas12b-Powered Bioassay Coupled with Loop-Mediated Isothermal Amplification in a Customized "One-Pot" Vessel for Visual, Rapid, Sensitive, and On-Site Detection of Genetically Modified Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11195-11204. [PMID: 38564697 DOI: 10.1021/acs.jafc.4c01028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Genetically modified crops (GMCs) have been discussed due to unknown safety, and thus, it is imperative to develop an effective detection technology. CRISPR/Cas is deemed a burgeoning technology for nucleic acid detection. Herein, we developed a novel detection method for the first time, which combined thermostable Cas12b with loop-mediated isothermal amplification (LAMP), to detect genetically modified (GM) soybeans in a customized one-pot vessel. In our method, LAMP-specific primers were used to amplify the cauliflower mosaic virus 35S promoter (CaMV35S) of the GM soybean samples. The corresponding amplicons activated the trans-cleavage activity of Cas12b, which resulted in the change of fluorescence intensity. The proposed bioassay was capable of detecting synthetic plasmid DNA samples down to 10 copies/μL, and as few as 0.05% transgenic contents could be detected in less than 40 min. This work presented an original detection method for GMCs, which performed rapid, on-site, and deployable detection.
Collapse
Affiliation(s)
- Xiao Han
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Minghui Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yaru Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinru Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qiang Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Branch of Tianjin Third Central Hospital, Tianjin 300457, China
| | - Xue Bai
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Liangjuan Zhao
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin 300387, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
7
|
Wang Y, Yang F, Fu Y, He X, Tian H, Yang L, Wu M, Cao J, Liu J. A point-of-care testing platform for on-site identification of genetically modified crops. LAB ON A CHIP 2024; 24:2622-2632. [PMID: 38644672 DOI: 10.1039/d4lc00040d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Genetically modified (GM) food is still highly controversial nowadays. Due to the disparate policies and attitudes worldwide, demands for a rapid, cost-effective and user-friendly GM crop identification method are increasingly significant for import administration, market supervision, etc. However, as the most-recognized methods, nucleic acid-based identification approaches require bulky instruments, long turn-around times and trained personnel, which are only suitable in laboratories. To fulfil the urgent needs of on-site testing, we develop a point-of-care testing platform that is able to identify 12 types of GM crops in less than 40 minutes without using laboratory settings. Our system integrates sample pre-treatment modules in a microfluidic chip, performs DNA amplification via a battery-powered portable kit, and presents results via eye-recognized colorimetric change. A paraffin-based reflow method and a slip plate-based fluid switch are developed to encapsulate and release amplification primers in individual microwells on demand, thus enabling identification of varied targets simultaneously. Our system offers an efficient, affordable and convenient tool for GM crop identification, thus it will not only benefit customs and market administration bureaus, but also satisfy demands of numerous consumers.
Collapse
Affiliation(s)
- Yangyang Wang
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China.
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Furui Yang
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China.
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Yingyi Fu
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China.
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Xin He
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China.
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Haowei Tian
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China.
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Lili Yang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Mengxi Wu
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China.
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Jijuan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Junshan Liu
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China.
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning, 116024, China
| |
Collapse
|
8
|
Sun X, Lei R, Zhang H, Chen W, Jia Q, Guo X, Zhang Y, Wu P, Wang X. Rapid and sensitive detection of two fungal pathogens in soybeans using the recombinase polymerase amplification/CRISPR-Cas12a method for potential on-site disease diagnosis. PEST MANAGEMENT SCIENCE 2024; 80:1168-1181. [PMID: 37874890 DOI: 10.1002/ps.7847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 10/08/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Diaporthe aspalathi and Diaporthe caulivora are two of the fungal pathogens causing soybean stem canker (SSC) in soybean, which is one of the most widespread diseases in soybean growing regions and can cause 100% loss of yield. Current methods for the detection of fungal pathogens, including morphological identification and molecular detection, are mostly limited by the need for professional laboratories and staff. To develop a detection method for potential on-site diagnosis for two of the fungal pathogens causing SSC, we designed a rapid assay combining recombinase polymerase amplification (RPA) and CRISPR-Cas12a-based diagnostics to specifically detect D. aspalathi and D. caulivora. RESULTS The translation elongation factor 1-alpha gene was employed as the target gene to evaluate the specificity and sensitivity of this assay. The RPA/CRISPR-Cas12a system has excellent specificity to distinguish D. aspalathi and D. caulivora from closely related species. The sensitivities of RPA/CRISPR-Cas12a-based fluorescence detection and lateral flow assay for D. aspalathi and D. caulivora are 14.5 copies and 24.6 copies, respectively. This assay can detect hyphae in inoculated soybean stems at 12 days after inoculation and has a recovery as high as 86% for hyphae-spiked soybean seed powder. The total time from DNA extraction to detection was not more than 60 min. CONCLUSION The method developed for rapid detection of plant pathogens includes DNA extraction with magnetic beads or rapid DNA extraction, isothermal nucleic acid amplification at 39 °C, CRISPR-Cas12a cleavage reaction at 37 °C, and lateral flow assay or endpoint fluorescence visualization at room temperature. The RPA and CRISPR-Cas12a reagents can be preloaded in the microcentrifuge tube to simplify the procedures in the field. Both RPA and CRISPR-Cas12a reaction can be realized on a portable incubator, and the results are visualized using lateral flow strips or portable flashlight. This method requires minimal equipment and operator training, and has promising applications for rapid on-site disease screening, port inspection, or controlling fungal pathogen transmission in crop. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiwen Sun
- Chinese Academy of Inspection and Quarantine, Beijing, China
- Shenyang Agricultural University, Shenyang, China
| | - Rong Lei
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | | | - Wujian Chen
- Technical Center of Hangzhou Customs, Hangzhou, China
| | - Qianwen Jia
- School of Life and Health, Dalian University, Dalian, China
| | - Xing Guo
- School of Life and Health, Dalian University, Dalian, China
| | - Yongjiang Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Pinshan Wu
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Xinyi Wang
- School of Life and Health, Dalian University, Dalian, China
| |
Collapse
|
9
|
Fu X, Sun J, Yu B, Ye Y, Sheng L, Ji J, Zheng J, Fan M, Shao J, Sun X. Investigating enzyme kinetics and fluorescence sensing strategy of CRISPR/Cas12a for foodborne pathogenic bacteria. Anal Chim Acta 2024; 1290:342203. [PMID: 38246741 DOI: 10.1016/j.aca.2024.342203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/10/2023] [Accepted: 01/01/2024] [Indexed: 01/23/2024]
Abstract
Foodborne pathogenic bacteria are widespread in various foods, whose cross-contamination and re-contamination are critical influences on food safety. Rapid, accurate, and sensitive detection of foodborne pathogenic bacteria remains a topic of concern. CRISPR/Cas12a can recognize double-stranded DNA directly, showing great potential in nucleic acid detection. However, few studies have investigated the cleavage properties of CRISPR/Cas12a. In this study, the trans-cleavage properties of LbCas12a and AsCas12a were investigated to construct the detection methods for foodborne pathogenic bacteria. The highly sensitive fluorescent strategies for foodborne pathogens were constructed by analyzing the cleavage rates and properties of substrates at different substrate concentrations. Cas12a was activated in the presence of foodborne pathogenic target sequence was present, resulting in the cleavage of a single-stranded reporter ssDNA co-labelled by fluorescein quencher and fluorescein. The sensitivity and specificity of the Cas12a fluorescent strategy was investigated with Salmonella and Staphylococcus aureus as examples. The results showed that AsCas12a was slightly more capable of trans-cleavage than LbCas12a. The detection limits of AsCas12a for Salmonella and Staphylococcus aureus were 24.9 CFU mL-1 and 1.50 CFU mL-1, respectively. In all the seven bacteria, Staphylococcus aureus and Salmonella were accurately discriminated. The study provided a basis for constructing and improving the CRISPR/Cas12a fluorescence strategies. The AsCas12a-based detection strategy is expected to be a promising method for field detection.
Collapse
Affiliation(s)
- XuRan Fu
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, PR China
| | - JiaDi Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, PR China.
| | - Bingqian Yu
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, PR China
| | - Lina Sheng
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, PR China
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, PR China
| | - Jiayu Zheng
- Product Quality Comprehensive Inspection and Testing Center, Baoying, Jiangsu, 225800, PR China
| | - Minghong Fan
- Product Quality Comprehensive Inspection and Testing Center, Baoying, Jiangsu, 225800, PR China
| | - Jingdong Shao
- Comprehensive Technology Center of Zhangjiagang Customs, Zhangjiagang, Jiangsu, 215600, PR China
| | - XiuLan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, PR China.
| |
Collapse
|
10
|
Park DH, Haizan I, Ahn MJ, Choi MY, Kim MJ, Choi JH. One-Pot CRISPR-Cas12a-Based Viral DNA Detection via HRP-Enriched Extended ssDNA-Modified Au@Fe 3O 4 Nanoparticles. BIOSENSORS 2024; 14:26. [PMID: 38248403 PMCID: PMC10812942 DOI: 10.3390/bios14010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024]
Abstract
In the context of virus outbreaks, the need for early and accurate diagnosis has become increasingly urgent. In addition to being crucial for effective disease control, timely and precise detection of viral infections is also necessary for the implementation of essential public health measures, especially during pandemics. Among these measures, point-of-care testing (POCT) stands out as a powerful approach with the potential to revolutionize the landscape of viral diagnosis. In this study, we developed a one-pot clustered regularly interspaced short palindromic repeats (CRISPR)-Cas12a-based viral DNA detection system tailored for POCT; this method utilizes multi-enzyme-modified Au@Fe3O4 nanoparticles. As an alternative to nucleic acid amplification, our method uses single-stranded DNA elongation to facilitate multi-enzyme modification; this guarantees heightened sensitivity and expedites the diagnostic process. We achieved a satisfactory limit of detection of 0.25 nM, demonstrating the remarkable sensitivity of the method without the need for sophisticated equipment. The incorporation of Au@Fe3O4 magnetic nanoparticles facilitates sample separation, further streamlining the workflow and reinforcing the simplicity of our method. This integrated approach offers a practical solution for sensitive viral DNA detection in POCT scenarios, advancing the field of rapid and accurate diagnostics.
Collapse
Affiliation(s)
- Dong Hyeok Park
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea; (D.H.P.); (M.Y.C.); (M.J.K.)
| | - Izzati Haizan
- Department of Bioprocess Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea;
| | - Min Ju Ahn
- Department of Biotechnology, Jeonbuk National University, 79 Gobongro, Iksan-si 54596, Jeollabuk-do, Republic of Korea;
| | - Min Yu Choi
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea; (D.H.P.); (M.Y.C.); (M.J.K.)
| | - Min Jung Kim
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea; (D.H.P.); (M.Y.C.); (M.J.K.)
| | - Jin-Ha Choi
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea; (D.H.P.); (M.Y.C.); (M.J.K.)
- Department of Bioprocess Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea;
| |
Collapse
|
11
|
Lee SY, Kim U, Kim Y, Lee SJ, Park EY, Oh SW. Enhanced detection of Listeria monocytogenes using tetraethylenepentamine-functionalized magnetic nanoparticles and LAMP-CRISPR/Cas12a-based biosensor. Anal Chim Acta 2023; 1281:341905. [PMID: 38783743 DOI: 10.1016/j.aca.2023.341905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 05/25/2024]
Abstract
BACKGROUND Listeria monocytogenes is a pathogenic bacterium that can lead to severe illnesses, especially among vulnerable populations. Therefore, the development of rapid and sensitive detection methods is vital to prevent and manage foodborne diseases. In this study, we used tetraethylenepentamine (TEPA)-functionalized magnetic nanoparticles (MNPs) and a loop-mediated isothermal amplification (LAMP)-based CRISPR/Cas12a-based biosensor to concentrate and detect, respectively, L. monocytogenes. LAMP enables DNA amplification at a constant temperature, providing a highly suitable approach for point-of-care testing (POCT). The ability of CRISPR/Cas12a to cleave ssDNA reporter, coupled with TEPA-functionalized MNPs effective attachment to negatively charged bacteria, forms a promising biosensor. RESULTS The LAMP assay was meticulously developed by selecting specific primers and designing crRNA sequences targeting a specific region within the hly gene of L. monocytogenes. We selected primer and refined the amplification conditions by systematically exploring a temperature range from 59 °C to 69 °C, ensuring the attainment of optimal performance. This process was complemented by systematic optimization of LAMP-CRISPR/Cas12a system parameters. In particular, we successfully established the optimal ssDNA reporter concentrations (0-1.2 μM) and Cas12a-mediated trans-cleavage times (0-20 min), crucial components that underpin the effectiveness of the LAMP-CRISPR/Cas12a-based biosensor. For optimizing parameters in capturing L. monocytogenes using TEPA-functionalized MNPs, capture efficiency was significantly enhanced through adjustments in TEPA-functionalized MNPs concentration, incubation times, and magnetic separation duration. Large-volume (20 mL) magnetic separation exhibited a 10-fold sensitivity improvement over conventional methods. Utilizing TEPA-functionalized MNPs, the LAMP-CRISPR/Cas12a-based biosensor achieved detection limits of 100 CFU mL-1 in pure cultures and 100 CFU g-1 in enoki mushrooms. SIGNIFICANCE The integration of this novel technique with the LAMP-CRISPR/Cas12a-based biosensor enhances the accuracy and sensitivity of L. monocytogenes detection in foods, and it can be a promising biosensor for POCT. The 10-fold increase in sensitivity compared to conventional methods makes this approach a groundbreaking advancement in pathogenic bacteria detection for food safety and public health.
Collapse
Affiliation(s)
- So-Young Lee
- Department of Food and Nutrition, Kookmin University, Seoul, 136-702, Republic of Korea
| | - Unji Kim
- Department of Food and Nutrition, Kookmin University, Seoul, 136-702, Republic of Korea
| | - Younggyu Kim
- Lumimac, Inc, B1, 4, Dongnam-ro 2 gil, Songpa-gu, Seoul, Republic of Korea
| | - Seung Jae Lee
- Lumimac, Inc, B1, 4, Dongnam-ro 2 gil, Songpa-gu, Seoul, Republic of Korea
| | - Eun Young Park
- Lumimac, Inc, B1, 4, Dongnam-ro 2 gil, Songpa-gu, Seoul, Republic of Korea
| | - Se-Wook Oh
- Department of Food and Nutrition, Kookmin University, Seoul, 136-702, Republic of Korea.
| |
Collapse
|
12
|
Zhu Y, Liu J, Liu S, Zhu X, Wu J, Zhou Q, He J, Wang H, Gao W. CRISPR/Cas12a-assisted visible fluorescence for pseudo dual nucleic acid detection based on an integrated chip. Anal Chim Acta 2023; 1280:341860. [PMID: 37858552 DOI: 10.1016/j.aca.2023.341860] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND A false negative result is one of the major problems in nucleic acid detection. Failure to screen positive samples for pathogens or viruses poses a risk to public health. This situation will lead to more serious consequences for infectious pathogens or viruses. At present, the common solution is to introduce exogenous or endogenous internal control. Because it amplifies and is detected separately from the target gene, it cannot avoid false negative results caused by DNA extraction failure or reagent inactivation. There is an urgent need for a simple and reliable method to solve the false negative problem of nucleic acid detection. RESULTS We established a chip and an on-chip detection method for the integrated detection of target genes and internal control using the CRISPR system in LAMP amplification products. The chip is processed from a low-cost PMMA board and has three chambers and some channels. After adding the sample, the chip only needs to be rotated twice, and the sample enters three chambers successively depending on its gravity for dual LAMP reaction and CRISPR detections. With a portable LED blue light exciter, visual fluorescence detection is realized. Whether the detection result is positive, negative, or invalid can be determined according to the fluorescence in the CRISPR chamber for target gene and CRISPR chamber for internal control. In this study, the detection of Salmonella enterica in Fenneropenaeus chinensis was taken as an example. The results showed good specificity and sensitivity. It could detect as low as 15 copies/μL of Salmonella enterica. SIGNIFICANCE The on-chip detection solves the problem of aerosol contamination and false negative results. It has the advantages of high sensitivity, high specificity, high accuracy, and low cost. This research will advance the development of nucleic acid detection technology, providing a new and reliable strategy for POCT detection of pathogenic bacteria and viruses.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jianlin Liu
- Department of Information Technology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Shanna Liu
- Department of Information Technology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Xinjian Zhu
- Department of Information Technology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Jian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China.
| | - Qingli Zhou
- Department of Information Technology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China.
| | - Jinsong He
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Huanying Wang
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, 310012, China
| | - Wenwen Gao
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, 310012, China
| |
Collapse
|
13
|
Zhao F, Hu Y, Fan Z, Huang B, Wei L, Xie Y, Huang Y, Mei S, Wang L, Wang L, Ai B, Fang J, Liang C, Xu F, Tan W, Guo F. Rapid and sensitive one-tube detection of mpox virus using RPA-coupled CRISPR-Cas12 assay. CELL REPORTS METHODS 2023; 3:100620. [PMID: 37848032 PMCID: PMC10626268 DOI: 10.1016/j.crmeth.2023.100620] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/19/2023] [Accepted: 09/26/2023] [Indexed: 10/19/2023]
Abstract
Mpox is caused by a zoonotic virus belonging to the Orthopoxvirus genus and the Poxviridae family. In this study, we develop a recombinase polymerase amplification (RPA)-coupled CRISPR-Cas12a detection assay for the mpox virus. We design and test a series of CRISPR-derived RNAs(crRNAs) targeting the conserved D6R and E9L genes for orthopoxvirus and the unique N3R and N4R genes for mpox viruses. D6R crRNA-1 exhibits the most robust activity in detecting orthopoxviruses, and N4R crRNA-2 is able to distinguish the mpox virus from other orthopoxviruses. The Cas12a/crRNA assay alone presents a detection limit of 108 copies of viral DNA, whereas coupling RPA increases the detection limit to 1-10 copies. The one-tube RPA-Cas12a assay can, therefore, detect viral DNA as low as 1 copy within 30 min and holds the promise of providing point-of-care detection for mpox viral infection.
Collapse
Affiliation(s)
- Fei Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Yamei Hu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Zhangling Fan
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Baoying Huang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Liang Wei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Yu Xie
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Yu Huang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Shan Mei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Liming Wang
- Department of Medical Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Lingwa Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Bin Ai
- Department of Medical Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Jugao Fang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | - Fengwen Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China.
| | - Wenjie Tan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China.
| | - Fei Guo
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China.
| |
Collapse
|
14
|
Song W, Zhang C, Lin H, Zhang T, Liu H, Huang X. Portable rotary PCR system for real-time detection of Pseudomonas aeruginosa in milk. LAB ON A CHIP 2023; 23:4592-4599. [PMID: 37772426 DOI: 10.1039/d3lc00401e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The rapid quantitative detection of Pseudomonas aeruginosa in milk is of great significance to food safety. Quantitative real-time polymerase chain reaction (qPCR) technology is a good choice to meet this requirement. A good qPCR system should show the advantages of being low cost, having low-power consumption, having potential for miniaturization and be portable. However, most of the time-domain-based qPCR systems reported to date do not meet these requirements. In this study, we propose a novel real-time rotary PCR reaction system (RRP) that meets all the abovementioned specifications, and contains four modules: a heating control module, a disposable PCR capillary tube, a mechanical control module, and a photoelectric detection module. The volume of our homemade-PCR capillary tube is only 3 μL. The total manufacturing cost is cheaper than $200, and the capillary tube is about 1.4 cents. The size parameter of the RRP is less than 300 mm × 150 mm × 150 mm, using low mobile power sources to operate. All the features mean that the RRP meets the advantages of low sample volumes, enhanced thermal conductivity and being portable. Through conducting the experimental quantitative detection of Pseudomonas aeruginosa in milk and theoretical simulations by COMSOL, we prove the feasibility of this rotary PCR real-time detection system, which has broad application prospects in the rapid detection of bacteria and food safety.
Collapse
Affiliation(s)
- Weidu Song
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China.
| | - Chuanhao Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China.
| | - Huichao Lin
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China.
| | - Taiyi Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China.
| | - Haixia Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China.
| | - Xiaowen Huang
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China.
| |
Collapse
|
15
|
Yang Y, Wang F, Xue B, Zhou X. Field-deployable assay based on CRISPR-Cas13a coupled with RT-RPA in one tube for the detection of SARS-CoV-2 in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132077. [PMID: 37473568 DOI: 10.1016/j.jhazmat.2023.132077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
CRISPR-based nucleic acid detection is easy to implement, field deployable, and always coupled with isothermal amplification to improve the sensitivity. However, the conventional detection requires two separate steps, which can cause long-lasting amplicon aerosol contaminants, hence leading to false-positive results. To address this problem, we proposed a one-tube assay based on CRISPR-Cas13a coupled with reverse transcription-recombinase polymerase amplification to avoid aerosol pollution. The one-tube assay could be completed within 40 min with a sensitivity of up to 180 copies of RNA per reaction, and exhibited no cross reactivity with two related coronaviruses. Our technology showed reproducibility with relative standard deviation of 4.6% responding to 1 fM nucleic acid for three times. It could be used to detect SARS-CoV-2 nucleic acids in raw wastewater with a limit of detection of 103 copies/mL. We also validated the practicability of this technique for viral detection in environmental water samples by detecting SARS-CoV-2 in wastewater, which were not detectable by RT-qPCR technology, showing resistance of this technology to wastewater matrix. It is anticipated that the robustness and high sensitivity will significantly promote the development of a point-of-care method in environmental virus monitoring.
Collapse
Affiliation(s)
- Yihan Yang
- State Key Joint Laboratory of ESPC, Center for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing 100084, China
| | - Fan Wang
- State Key Joint Laboratory of ESPC, Center for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing 100084, China
| | - Boyuan Xue
- State Key Joint Laboratory of ESPC, Center for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, Center for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
16
|
Ji S, Wang X, Wang Y, Sun Y, Su Y, Lv X, Song X. Advances in Cas12a-Based Amplification-Free Nucleic Acid Detection. CRISPR J 2023; 6:405-418. [PMID: 37751223 DOI: 10.1089/crispr.2023.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
In biomedicine, rapid and sensitive nucleic acid detection technology plays an important role in the early detection of infectious diseases. However, most traditional nucleic acid detection methods require the amplification of nucleic acids, resulting in problems such as long detection time, complex operation, and false-positive results. In recent years, clustered regularly interspaced short palindromic repeats (CRISPR) systems have been widely used in nucleic acid detection, especially the CRISPR-Cas12a system, which can trans cleave single-stranded DNA and can realize the detection of DNA targets. But, amplification of nucleic acids is still required to further improve detection sensitivity, which makes Cas12a-based amplification-free nucleic acid detection methods a great challenge. This article reviews the recent progress of Cas12a-based amplification-free detection methods for nucleic acids. These detection methods apply electrochemical detection methods, fluorescence detection methods, noble metal nanomaterial detection methods, and lateral flow assay. Under various optimization strategies, unamplified nucleic acids have the same sensitivity as amplified nucleic acids. At the same time, the article discusses the advantages and disadvantages of each method and further discusses the current challenges such as off-target effects and the ability to achieve high-throughput detection. Amplification-free nucleic acid detection technology based on CRISPR-Cas12a has great potential in the biomedical field.
Collapse
Affiliation(s)
- Shixin Ji
- School of Life Sciences, Changchun Normal University, Changchun, China; and Jilin Business and Technology College, Changchun, China
| | - Xueli Wang
- School of Grain, Jilin Business and Technology College, Changchun, China
| | - Yangkun Wang
- School of Life Sciences, Changchun Normal University, Changchun, China; and Jilin Business and Technology College, Changchun, China
| | - Yingqi Sun
- School of Life Sciences, Changchun Normal University, Changchun, China; and Jilin Business and Technology College, Changchun, China
| | - Yingying Su
- School of Life Sciences, Changchun Normal University, Changchun, China; and Jilin Business and Technology College, Changchun, China
| | - Xiaosong Lv
- School of Life Sciences, Changchun Normal University, Changchun, China; and Jilin Business and Technology College, Changchun, China
| | - Xiangwei Song
- School of Life Sciences, Changchun Normal University, Changchun, China; and Jilin Business and Technology College, Changchun, China
| |
Collapse
|
17
|
Tanny T, Sallam M, Soda N, Nguyen NT, Alam M, Shiddiky MJA. CRISPR/Cas-Based Diagnostics in Agricultural Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11765-11788. [PMID: 37506507 DOI: 10.1021/acs.jafc.3c00913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Pests and disease-causing pathogens frequently impede agricultural production. An early and efficient diagnostic tool is crucial for effective disease management. Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated protein (Cas) have recently been harnessed to develop diagnostic tools. The CRISPR/Cas system, composed of the Cas endonuclease and guide RNA, enables precise identification and cleavage of the target nucleic acids. The inherent sensitivity, high specificity, and rapid assay time of the CRISPR/Cas system make it an effective alternative for diagnosing plant pathogens and identifying genetically modified crops. Furthermore, its potential for multiplexing and suitability for point-of-care testing at the field level provide advantages over traditional diagnostic systems such as RT-PCR, LAMP, and NGS. In this review, we discuss the recent developments in CRISPR/Cas based diagnostics and their implications in various agricultural applications. We have also emphasized the major challenges with possible solutions and provided insights into future perspectives and potential applications of the CRISPR/Cas system in agriculture.
Collapse
Affiliation(s)
- Tanzena Tanny
- School of Environment and Science (ESC), Griffith University, Nathan, QLD 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan, QLD 4111, Australia
| | - Mohamed Sallam
- School of Environment and Science (ESC), Griffith University, Nathan, QLD 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan, QLD 4111, Australia
| | - Narshone Soda
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan, QLD 4111, Australia
| | - Mobashwer Alam
- Queensland Alliance for Agriculture & Food Innovation, The University of Queensland, Mayers Road, Nambour, QLD 4560, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science (ESC), Griffith University, Nathan, QLD 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan, QLD 4111, Australia
- Rural Health Research Institute, Charles Sturt University, Orange, NSW 2800, Australia
| |
Collapse
|
18
|
Pan P, Xing Y, Zhang D, Wang J, Liu C, Wu D, Wang X. A review on the identification of transgenic oilseeds and oils. J Food Sci 2023; 88:3189-3203. [PMID: 37458291 DOI: 10.1111/1750-3841.16705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 08/05/2023]
Abstract
Transgenic technology can increase the quantity and quality of vegetable oils worldwide. However, people are skeptical about the safety of transgenic oil-bearing crops and the oils they produce. In order to protect consumers' rights and avoid transgenic oils being adulterated or labeled as nontransgenic oils, the transgenic detection technology of oilseeds and oils needs careful consideration. This paper first summarized the current research status of transgenic technologies implemented at oil-bearing crops. Then, an inspection process was proposed to detect a large number of samples to be the subject rapidly, and various inspection strategies for transgenic oilseeds and oils were summarized according to the process sequence. The detection indicators included oil content, fatty acid, triglyceride, tocopherol, and nucleic acid. The detection technologies involved chromatography, spectroscopy, nuclear magnetic resonance, and polymerase chain reaction. It is hoped that this article can provide crucial technical reference and support for staff engaging in the supervision of transgenic food and for researchers developing fast and efficient monitoring methods in the future.
Collapse
Affiliation(s)
- Pengyuan Pan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, China
| | - Yihang Xing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, China
| | - Dingwen Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, China
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, China
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, China
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, China
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, China
| |
Collapse
|
19
|
Zhai S, Yang Y, Wu Y, Li J, Li Y, Wu G, Liang J, Gao H. A visual CRISPR/dCas9-mediated enzyme-linked immunosorbent assay for nucleic acid detection with single-base specificity. Talanta 2023; 257:124318. [PMID: 36796171 DOI: 10.1016/j.talanta.2023.124318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Specific and economical nucleic acid detection is crucial for molecular diagnoses in resource-limited settings. Various facile readout approaches have been developed for nucleic acid detection, but they have limited specificity. Herein, nuclease-dead Cas9 (dCas9)/sgRNA was used as an excellent DNA recognition probe system to develop a visual clustered regularly interspaced short palindromic repeats (CRISPR)/dCas9-mediated enzyme-linked immunosorbent assay (ELISA) for specific and sensitive detection of cauliflwer mosaic virus 35s (CaMV35S) promoter in genetically modified (GM) crops. In this work, the CaMV35S promoter was amplified with biotinylated primers, and then precisely bound with dCas9 in the presence of sgRNA. The formed complex was captured by antibody-coated microplate and bound to a streptavidin-labeled horseradish peroxidase probe for the visual detection. Under the optimal conditions, dCas9-ELISA could detect CaMV35s promoter as low as 12.5 copies μL-1. Moreover, the proposed method was capable to distinguish the target sequence with single-base specificity. Coupled with one-step extraction and recombinase polymerase amplification, dCas9-ELISA can identify actual GM rice seeds within 1.5 h from sampling to results without expensive equipment and technical expertise. Therefore, the proposed method offers a specific, sensitive, rapid and cost-effective detection platform for molecular diagnoses.
Collapse
Affiliation(s)
- Shanshan Zhai
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yao Yang
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yuhua Wu
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jun Li
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yunjing Li
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Gang Wu
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jingang Liang
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing, 100176, China.
| | - Hongfei Gao
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
20
|
Lu B, Guo Z, Zhong K, Osire T, Sun Y, Jiang L. State of the art in CRISPR/Cas system-based signal conversion and amplification applied in the field of food analysis. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
21
|
Microfluidics: the propellant of CRISPR-based nucleic acid detection. Trends Biotechnol 2023; 41:557-574. [PMID: 35989112 DOI: 10.1016/j.tibtech.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022]
Abstract
Since the discovery of collateral cleavage activity, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas systems have become the new generation of nucleic acid detection tools. However, their widespread application remains limited. A pre-amplification step is required to improve the sensitivity of CRISPR systems, complicating the operating procedure and limiting quantitative precision. In addition, nonspecific collateral cleavage activity makes it difficult to realize multiplex detection in a one-pot CRISPR reaction with a single Cas protein. Microfluidics, which can transfer nucleic acid analysis process to a chip, has the advantages of miniaturization, integration, and automation. Microfluidics coupled with CRISPR systems improves the detection ability of CRISPR, enabling fast, high-throughput, integrated, multiplex, and digital detection, which results in the further popularization of CRISPR for a range of scenarios.
Collapse
|
22
|
Morales-Moreno MD, Valdés-Galindo EG, Reza MM, Fiordelisio T, Peon J, Hernandez-Garcia A. Multiplex gRNAs Synergically Enhance Detection of SARS-CoV-2 by CRISPR-Cas12a. CRISPR J 2023; 6:116-126. [PMID: 36944123 DOI: 10.1089/crispr.2022.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) diagnostic methods have a large potential to effectively detect SARS-CoV-2 with sensitivity and specificity nearing 100%, comparable to quantitative polymerase chain reaction. Yet, there is room for improvement. Commonly, one guide CRISPR RNA (gRNA) is used to detect the virus DNA and activate Cas collateral activity, which cleaves a reporter probe. In this study, we demonstrated that using 2-3 gRNAs in parallel can create a synergistic effect, resulting in a 4.5 × faster cleaving rate of the probe and increased sensitivity compared to using individual gRNAs. The synergy is due to the simultaneous activation of CRISPR-Cas12a and the improved performance of each gRNA. This approach was able to detect as few as 10 viral copies of the N-gene of SARS-CoV-2 RNA after a preamplification step using reverse transcription loop-mediated isothermal amplification. The method was able to accurately detect 100% of positive and negative clinical samples in ∼25 min using a fluorescence plate reader and ∼45 min with lateral flow strips.
Collapse
Affiliation(s)
- Melissa D Morales-Moreno
- Laboratory of Biomolecular Engineering and Bionanotechnology, Department of Chemistry of Biomacromolecules, Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, Ciudad de Mexico, Mexico
| | - Erick G Valdés-Galindo
- Laboratory of Biomolecular Engineering and Bionanotechnology, Department of Chemistry of Biomacromolecules, Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, Ciudad de Mexico, Mexico
| | - Mariana M Reza
- Department of Physical Chemistry, Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, Ciudad de Mexico, Mexico
| | - Tatiana Fiordelisio
- Laboratorio de Neuroendocrinología Comparada, Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Faculty of Sciences, National Autonomous University of Mexico, Ciudad Universitaria, Ciudad de Mexico, Mexico
| | - Jorge Peon
- Department of Physical Chemistry, Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, Ciudad de Mexico, Mexico
| | - Armando Hernandez-Garcia
- Laboratory of Biomolecular Engineering and Bionanotechnology, Department of Chemistry of Biomacromolecules, Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, Ciudad de Mexico, Mexico
| |
Collapse
|
23
|
Yang Y, Wang D, Lü P, Ma S, Chen K. Research progress on nucleic acid detection and genome editing of CRISPR/Cas12 system. Mol Biol Rep 2023; 50:3723-3738. [PMID: 36648696 PMCID: PMC9843688 DOI: 10.1007/s11033-023-08240-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023]
Abstract
PURPOSE This work characterizes the applications of CRISPR/Cas12 system, including nucleic acid detection, animal, plant and microbial genome editing. METHODS The literature on CRISPR/Cas12 system was collected and reviewed. RESULTS CRISPR/Cas system is an acquired immune system derived from bacteria and archaea, which has become the most popular technology around the world because of its outstanding contribution in genome editing. Type V CRISPR/Cas systems are distinguished by a single RNA-guided RuvC nuclease domain with single effector molecule. Cas12a, the first reported type V CRISPR/Cas system, targets double-stranded DNA (dsDNA) adjacent to PAM sequences and trans-cleaves single-stranded DNA (ssDNA). We present the applications of CRISPR/Cas12 system for nucleic acid detection and genome editing in animals, plants and microorganisms. Furthermore, this review also summarizes the applications of other Cas12 proteins, such as Cas12b, Cas12c, Cas12d, and so on, which further widen the application prospects of CRISPR/Cas12 system. CONCLUSIONS Knowledge of the applications of CRISPR/Cas12 system is necessary for improving the understanding of the functional diversity of CRISPR/Cas12 system and also provides significant references for further research and utilization of CRISPR/Cas12 in other new fields.
Collapse
Affiliation(s)
- Yanhua Yang
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, People's Republic of China.
| | - Dandan Wang
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Peng Lü
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Shangshang Ma
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| |
Collapse
|
24
|
Liu FX, Cui JQ, Wu Z, Yao S. Recent progress in nucleic acid detection with CRISPR. LAB ON A CHIP 2023; 23:1467-1492. [PMID: 36723235 DOI: 10.1039/d2lc00928e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Recent advances in CRISPR-based biotechnologies have greatly expanded our capabilities to repurpose CRISPR for the development of molecular diagnostic systems. The key attribute that allows CRISPR to be widely utilized is its programmable and highly specific nature. In this review, we first illustrate the principle of the class 2 CRISPR nucleases for molecular diagnostics which originates from their immunologic defence systems. Next, we present the CRISPR-based schemes in the application of diagnostics with amplification-assisted or amplification-free strategies. By highlighting some of the recent advances we interpret how general bioengineering methodologies can be integrated with CRISPR. Finally, we discuss the challenges and exciting prospects for future CRISPR-based biosensing development. We hope that this review will guide the reader to systematically learn the start-of-the-art development of CRISPR-mediated nucleic acid detection and understand how to apply the CRISPR nucleases with different design concepts to more general applications in diagnostics and beyond.
Collapse
Affiliation(s)
- Frank X Liu
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Johnson Q Cui
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Zhihao Wu
- IIP-Advanced Materials, Interdisciplinary Program Office (IPO), Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Shuhuai Yao
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
25
|
CRISPR-Cas assisted diagnostics: A broad application biosensing approach. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
26
|
Wang M, Wang H, Li K, Li X, Wang X, Wang Z. Review of CRISPR/Cas Systems on Detection of Nucleotide Sequences. Foods 2023; 12:foods12030477. [PMID: 36766007 PMCID: PMC9913930 DOI: 10.3390/foods12030477] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Nowadays, with the rapid development of biotechnology, the CRISPR/Cas technology in particular has produced many new traits and products. Therefore, rapid and high-resolution detection methods for biotechnology products are urgently needed, which is extremely important for safety regulation. Recently, in addition to being gene editing tools, CRISPR/Cas systems have also been used in detection of various targets. CRISPR/Cas systems can be successfully used to detect nucleic acids, proteins, metal ions and others in combination with a variety of technologies, with great application prospects in the future. However, there are still some challenges need to be addressed. In this review, we will list some detection methods of genetically modified (GM) crops, gene-edited crops and single-nucleotide polymorphisms (SNPs) based on CRISPR/Cas systems, hoping to bring some inspiration or ideas to readers.
Collapse
Affiliation(s)
- Mengyu Wang
- Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Ministry of Agriculture and Rural Affairs, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haoqian Wang
- Development Center for Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176, China
| | - Kai Li
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoman Li
- Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Ministry of Agriculture and Rural Affairs, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xujing Wang
- Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Ministry of Agriculture and Rural Affairs, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhixing Wang
- Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Ministry of Agriculture and Rural Affairs, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence:
| |
Collapse
|
27
|
Long W, Yang J, Zhao Q, Pan Y, Luan X, He B, Han X, Wang Y, Song Y. Metal-Organic Framework-DNA Bio-Barcodes Amplified CRISPR/Cas12a Assay for Ultrasensitive Detection of Protein Biomarkers. Anal Chem 2023; 95:1618-1626. [PMID: 36541937 DOI: 10.1021/acs.analchem.2c04737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CRISPR/Cas12a shows excellent potential in disease diagnostics. However, insensitive signal conversion strategies hindered its application in detecting protein biomarkers. Here, we report a metal-organic framework (MOF)-based DNA bio-barcode integrated with the CRISPR/Cas12a system for ultrasensitive detection of protein biomarkers. In this work, zirconium-based MOF nanoparticles were comodified with antibodies and bio-barcode phosphorylated DNA as an efficient signal converter, which not only recognized the protein biomarker to form the sandwich complex but also released the bio-barcode DNA activators after MOF dissociation to activate the trans-cleavage activity of Cas12a. Due to the obvious advantages, including numerous loaded oligonucleotides, a convenient release process, and the nontoxic release reagent, this MOF-DNA bio-barcode strategy could amplify the CRISPR/Cas12a system to achieve simple and highly sensitive detection of tumor protein biomarkers with detection limits of 0.03 pg/mL (PSA) and 0.1 pg/mL (CEA), respectively. Furthermore, this platform could detect PSA directly in clinical serum samples, offering a powerful tool for early disease diagnosis.
Collapse
Affiliation(s)
- Wenxiu Long
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China.,College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210093, China
| | - Jingjing Yang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210093, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiao Zhao
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China.,College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210093, China
| | - Yongchun Pan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210093, China
| | - Xiaowei Luan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210093, China
| | - Bangshun He
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xin Han
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuzhen Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210093, China
| |
Collapse
|
28
|
Guo Z, Tan X, Yuan H, Zhang L, Wu J, Yang Z, Qu K, Wan Y. Bis-enzyme cascade CRISPR-Cas12a platform for miRNA detection. Talanta 2023; 252:123837. [DOI: 10.1016/j.talanta.2022.123837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/23/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
|
29
|
Chen S, Sun Y, Fan F, Chen S, Zhang Y, Zhang Y, Meng X, Lin JM. Present status of microfluidic PCR chip in nucleic acid detection and future perspective. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Kua JM, Azizi MMF, Abdul Talib MA, Lau HY. Adoption of analytical technologies for verification of authenticity of halal foods - a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1906-1932. [PMID: 36252206 DOI: 10.1080/19440049.2022.2134591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Halal authentication has become essential in the food industry to ensure food is free from any prohibited ingredients according to Islamic law. Diversification of food origin and adulteration issues have raised concerns among Muslim consumers. Therefore, verification of food constituents and their quality is paramount. From conventional methods based on physical and chemical properties, various diagnostic methods have emerged relying on protein or DNA measurements. Protein-based methods that have been used in halal detection including electrophoresis, chromatographic-based methods, molecular spectroscopy and immunoassays. Polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) are DNA-based techniques that possess better accuracy and sensitivity. Biosensors are miniatured devices that operate by converting biochemical signals into a measurable quantity. CRISPR-Cas is one of the latest novel emerging nucleic acid detection tools in halal food analysis as well as quantification of stable isotopes method for identification of animal species. Within this context, this review provides an overview of the various techniques in halal detection along with their advantages and limitations. The future trend and growth of detection technologies are also discussed in this review.
Collapse
Affiliation(s)
- Jay Mie Kua
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Mohd Afendy Abdul Talib
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), Persiaran MARDI-UPM, Serdang, Selangor, Malaysia
| | - Han Yih Lau
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), Persiaran MARDI-UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
31
|
Xie Y, Li H, Chen F, Udayakumar S, Arora K, Chen H, Lan Y, Hu Q, Zhou X, Guo X, Xiu L, Yin K. Clustered Regularly Interspaced short palindromic repeats-Based Microfluidic System in Infectious Diseases Diagnosis: Current Status, Challenges, and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204172. [PMID: 36257813 PMCID: PMC9731715 DOI: 10.1002/advs.202204172] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/16/2022] [Indexed: 06/02/2023]
Abstract
Mitigating the spread of global infectious diseases requires rapid and accurate diagnostic tools. Conventional diagnostic techniques for infectious diseases typically require sophisticated equipment and are time consuming. Emerging clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) detection systems have shown remarkable potential as next-generation diagnostic tools to achieve rapid, sensitive, specific, and field-deployable diagnoses of infectious diseases, based on state-of-the-art microfluidic platforms. Therefore, a review of recent advances in CRISPR-based microfluidic systems for infectious diseases diagnosis is urgently required. This review highlights the mechanisms of CRISPR/Cas biosensing and cutting-edge microfluidic devices including paper, digital, and integrated wearable platforms. Strategies to simplify sample pretreatment, improve diagnostic performance, and achieve integrated detection are discussed. Current challenges and future perspectives contributing to the development of more effective CRISPR-based microfluidic diagnostic systems are also proposed.
Collapse
Affiliation(s)
- Yi Xie
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Huimin Li
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Fumin Chen
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Srisruthi Udayakumar
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02139USA
| | - Khyati Arora
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02139USA
| | - Hui Chen
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02139USA
| | - Yang Lan
- Centre for Nature‐Inspired EngineeringDepartment of Chemical EngineeringUniversity College LondonLondonWC1E 7JEUK
| | - Qinqin Hu
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Xiaonong Zhou
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Xiaokui Guo
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Leshan Xiu
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Kun Yin
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| |
Collapse
|
32
|
Zhang T, Zhao W, Chen X, Zhang X, Zhu J, Li S, Wu C, Tian Z, Sui G. Fully Automated CRISPR-LAMP Platform for SARS-CoV-2 Delta and Omicron Variants. Anal Chem 2022; 94:15472-15480. [PMID: 36282886 DOI: 10.1021/acs.analchem.2c03607] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Integrated clustered regularly interspaced short palindromic repeat (CRISPR)-loop-mediated amplification (LAMP) technology is of great importance in CRISPR-based diagnostic systems, which urgently needs to be developed to improve diagnostic accuracy. A labor-free, contamination-free, and fully automated droplet manipulation platform for the CRISPR-LAMP technology has not been developed before. Herein, we propose a fully automated CRISPR-LAMP platform, which can precisely manipulate the CRISPR-LAMP droplet and perform combined reactions with high sensitivity and specificity. SARS-CoV-2 Spike T478K, D614G, P681R, and P681H mutations, typical point mutations of B.1.617.2 (Delta) and Omicron variants, are monitored with this platform with a detection limit of 102 copies/μL. Allele discrimination between the mutants and wild type is significant with the designed one/two-mismatch CRISPR RNA (crRNA) at a limit of 102 copies/μL. Chemically synthesized and modified crRNAs greatly increase the CRISPR-LAMP signal, which advance the wide application. Combined with the previously developed RdRp CRISPR-LAMP assay, clinical results showed that Spike T478K and P681H can discriminate the mutant type form the wild type with 70% (49.66-85.50%, 95% confidence interval) and 78% (57.27-90.62%, 95% confidence interval) sensitivity, respectively, and 100% specificity (51.68-100%, 95% confidence interval), and the RdRp target can detect SARS-CoV-2 strains with 85% sensitivity (65.39-95.14%, 95% confidence interval) and 100% specificity (51.68-100%, 95% confidence interval). We believe that this automatic digital microfluid (DMF) system can advance the integrated CRISPR-LAMP technology with higher stability, sensitivity, and practicability, also for other CRISPR-associated diagnostic platforms.
Collapse
Affiliation(s)
- Tong Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200433, P. R. China
| | - Wang Zhao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200433, P. R. China
| | - Xi Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200433, P. R. China
| | - Xinlian Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200433, P. R. China
| | - Jinhui Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200433, P. R. China
| | - Shenwei Li
- Shanghai International Travel Healthcare Center (Shanghai Customs Port Clinic), 2090 Jinqiao Road, Shanghai 200433, P. R. China
| | - Chuanyong Wu
- Shanghai Hengxin BioTechnology, 1688 North Guo Quan Road, Bldg A8, Rm 801, Shanghai 200438, P. R. China
| | - Zhengan Tian
- Shanghai International Travel Healthcare Center (Shanghai Customs Port Clinic), 2090 Jinqiao Road, Shanghai 200433, P. R. China
| | - Guodong Sui
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200433, P. R. China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, P. R. China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing 210044, P. R. China
| |
Collapse
|
33
|
Recent advances on CRISPR/Cas system-enabled portable detection devices for on-site agri-food safety assay. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Liu J, Wu D, Chen J, Jia S, Chen J, Wu Y, Li G. CRISPR-Cas systems mediated biosensing and applications in food safety detection. Crit Rev Food Sci Nutr 2022; 64:2960-2985. [PMID: 36218189 DOI: 10.1080/10408398.2022.2128300] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food safety, closely related to economic development of food industry and public health, has become a global concern and gained increasing attention worldwide. Effective detection technology is of great importance to guarantee food safety. Although several classical detection methods have been developed, they have some limitations in portability, selectivity, and sensitivity. The emerging CRISPR-Cas systems, uniquely integrating target recognition specificity, signal transduction, and efficient signal amplification abilities, possess superior specificity and sensitivity, showing huge potential to address aforementioned challenges and develop next-generation techniques for food safety detection. In this review, we focus on recent progress of CRISPR-Cas mediated biosensing and their applications in food safety monitoring. The properties and principles of commonly used CRISPR-Cas systems are highlighted. Notably, the frequently coupled nucleic acid amplification strategies to enhance their selectivity and sensitivity, especially isothermal amplification methods, as well as various signal output modes are also systematically summarized. Meanwhile, the application of CRISPR-Cas systems-based biosensors in food safety detection including foodborne virus, foodborne bacteria, food fraud, genetically modified organisms (GMOs), toxins, heavy metal ions, antibiotic residues, and pesticide residues is comprehensively described. Furthermore, the current challenges and future prospects in this field are tentatively discussed.
Collapse
Affiliation(s)
- Jianghua Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Jiahui Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Shijie Jia
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Jian Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Yongning Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
35
|
Ma X, Xu J, Zhou F, Ye J, Yang D, Wang H, Wang P, Li M. Recent advances in PCR-free nucleic acid detection for SARS-COV-2. Front Bioeng Biotechnol 2022; 10:999358. [PMID: 36277389 PMCID: PMC9585218 DOI: 10.3389/fbioe.2022.999358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
As the outbreak of Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory disease coronavirus 2 (SARS-COV-2), fast, accurate, and economic detection of viral infection has become crucial for stopping the spread. Polymerase chain reaction (PCR) of viral nucleic acids has been the gold standard method for SARS-COV-2 detection, which, however, generally requires sophisticated facilities and laboratory space, and is time consuming. This review presents recent advances in PCR-free nucleic acid detection methods for SARS-CoV-2, including emerging methods of isothermal amplification, nucleic acid enzymes, electrochemistry and CRISPR.
Collapse
Affiliation(s)
| | | | | | | | | | - Hua Wang
- Department of Laboratory Medicine, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pengfei Wang
- Department of Laboratory Medicine, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Min Li
- Department of Laboratory Medicine, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
36
|
Huang T, Zhang R, Li J. CRISPR-Cas-based techniques for pathogen detection: Retrospect, recent advances, and future perspectives. J Adv Res 2022:S2090-1232(22)00240-5. [PMID: 36367481 PMCID: PMC10403697 DOI: 10.1016/j.jare.2022.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/16/2022] [Accepted: 10/22/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Early detection of pathogen-associated diseases are critical for effective treatment. Rapid, specific, sensitive, and cost-effective diagnostic technologies continue to be challenging to develop. The current gold standard for pathogen detection, polymerase chain reaction technology, has limitations such as long operational cycles, high cost, and high technician and instrumentation requirements. AIM OF REVIEW This review examines and highlights the technical advancements of CRISPR-Cas in pathogen detection and provides an outlook for future development, multi-application scenarios, and clinical translation. KEY SCIENTIFIC CONCEPTS OF REVIEW Approaches enabling clinical detection of pathogen nucleic acids that are highly sensitive, specific, cheap, and portable are necessary. CRISPR-Cas9 specificity in targeting nucleic acids and "collateral cleavage" activity of CRISPR-Cas12/Cas13/Cas14 show significant promise in nucleic acid detection technology. These methods have a high specificity, versatility, and rapid detection cycle. In this paper, CRISPR-Cas-based detection methods are discussed in depth. Although CRISPR-Cas-mediated pathogen diagnostic solutions face challenges, their powerful capabilities will pave the way for ideal diagnostic tools.
Collapse
|
37
|
Wang M, Liu X, Yang J, Wang Z, Wang H, Wang X. CRISPR/Cas12a-based biosensing platform for the on-site detection of single-base mutants in gene-edited rice. FRONTIERS IN PLANT SCIENCE 2022; 13:944295. [PMID: 36161021 PMCID: PMC9490305 DOI: 10.3389/fpls.2022.944295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
At present, with the accelerated development of the global biotechnology industry, novel transgenic technologies represented by gene editing are developing rapidly. A large number of gene-edited products featuring one or a few base indels have been commercialized. These have led to great challenges in the use of traditional nucleic acid detection technology and in safety regulation for genetically modified organisms (GMOs). In this study, we developed a portable clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins 12a-based (CRISPR/Cas12a-based) biosensing platform named Cas12aFVD (fast visual detection) that can be coupled with recombinase polymerase amplification (RPA) for on-site detection of mutants in gene-edited rice in one tube. The detection procedure can be accomplished in 40 min with a visible result, which can be observed by the naked eye under blue light (470-490 nm). By accurate recognition of targets based on Cas12a/CRISPR RNA (crRNA), Cas12aFVD exhibits excellent performance for the detection of two- and three-base deletions, one-base substitution, and one-base insertion mutants with a limit of detection (LOD) of 12 copies/μl showing great potential for mutant detection, especially single-base mutants. The Cas12aFVD biosensing platform is independent of laboratory conditions, making it a promising and pioneering platform for the detection of gene-edited products.
Collapse
Affiliation(s)
- Mengyu Wang
- Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Ministry of Agriculture and Rural Affairs, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaojing Liu
- Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Ministry of Agriculture and Rural Affairs, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiangtao Yang
- Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Ministry of Agriculture and Rural Affairs, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhixing Wang
- Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Ministry of Agriculture and Rural Affairs, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haoqian Wang
- Development Center for Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xujing Wang
- Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Ministry of Agriculture and Rural Affairs, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
38
|
Li Y, Man S, Ye S, Liu G, Ma L. CRISPR-Cas-based detection for food safety problems: Current status, challenges, and opportunities. Compr Rev Food Sci Food Saf 2022; 21:3770-3798. [PMID: 35796408 DOI: 10.1111/1541-4337.13000] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022]
Abstract
Food safety is one of the biggest public issues occurring around the world. Microbiological, chemical, and physical hazards can lead to food safety issues, which may occur at all stages of the supply chain. In order to tackle food safety issues and safeguard consumer health, rapid, accurate, specific, and field-deployable detection methods meeting diverse requirements are one of the imperative measures for food safety assurance. CRISPR-Cas system, a newly emerging technology, has been successfully repurposed in biosensing and has demonstrated huge potential to establish conceptually novel detection methods with high sensitivity and specificity. This review focuses on CRISPR-Cas-based detection and its current status and huge potential specifically for food safety inspection. We firstly illustrate the pending problems in food safety and summarize the popular detection methods. We then describe the potential applications of CRISPR-Cas-based detection in food safety inspection. Finally, the challenges and futuristic opportunities are proposed and discussed. Generally speaking, the current food safety detection methods are still unsatisfactory in some ways such as being time-consuming, displaying unmet sensitivity and specificity standards, and there is a comparative paucity of multiplexed testing and POCT. Recent studies have shown that CRISPR-Cas-based biosensing is an innovative and fast-expanding technology, which could make up for the shortcomings of the existing methods or even replace them. To sum up, the implementation of CRISPR-Cas and the integration of CRISPR-Cas with other techniques is promising and desirable, which is expected to provide "customized" and "smart" detection methods for food safety inspection in the coming future.
Collapse
Affiliation(s)
- Yaru Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Shengying Ye
- Pharmacy Department, The 983th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Tianjin, China
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
39
|
Ultrasensitive fluorescent biosensor for detecting CaMV 35S promoter with proximity extension mediated multiple cascade strand displacement amplification and CRISPR/Cpf 1. Anal Chim Acta 2022; 1215:339973. [DOI: 10.1016/j.aca.2022.339973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/05/2022] [Accepted: 05/20/2022] [Indexed: 11/22/2022]
|
40
|
Mu K, Ren X, Yang H, Zhang T, Yan W, Yuan F, Wu J, Kang Z, Han D, Deng R, Zeng Q. CRISPR-Cas12a-Based Diagnostics of Wheat Fungal Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7240-7247. [PMID: 35578739 DOI: 10.1021/acs.jafc.1c08391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fusarium head blight (FHB) of wheat, mainly caused by Fusarium graminearum (F. graminearum) infection, reduces crop yield and contaminates grain with mycotoxins. We report a clustered regularly interspaced short palindromic repeats (CRISPR)-Cas12a-based nucleic acid assay for an early and rapid diagnosis of wheat FHB. Guide RNA (gRNA) was screened for highly specific recognition of polymerase chain reaction (PCR) amplicon of the internal transcribed spacer (ITS) region and the transcription elongation factor 1α (EF1α) of F. graminearum. The trans-activation of Cas12a protein cleaves the single-stranded DNA probes with the terminal fluorophore and quencher groups, thus allowing us to report the presence of ITS and EF1α of F. graminearum. Owing to the dual recognition process through PCR primers and gRNA hybridization, the approach realized specific discrimination of F. graminearum from other pathogenic fungi. It also allowed us to detect as low as 1 fg/μL total DNA from F. graminearum, which is sufficient to diagnose a 4 day F. graminearum infection. CRISPR-Cas12a-based nucleic acid assay promises the molecular diagnosis of crop diseases and broadens the application of CRISPR tools.
Collapse
Affiliation(s)
- Keqing Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xiaojun Ren
- Department of Chemistry and Biology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Hao Yang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Ting Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Weiyi Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Fengping Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
41
|
Cao G, Dong J, Chen X, Lu P, Xiong Y, Peng L, Li J, Huo D, Hou C. Simultaneous detection of CaMV35S and T-nos utilizing CRISPR/Cas12a and Cas13a with multiplex-PCR (MPT-Cas12a/13a). Chem Commun (Camb) 2022; 58:6328-6331. [PMID: 35527517 DOI: 10.1039/d2cc01300b] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Here, we established a strategy (MPT-Cas12a/13a) that combined CRISPR/Cas12a and Cas13a for simultaneously detecting CaMV35S and T-nos based on multiplex PCR (M-PCR) and transcription. It realized a simultaneous detection mode with different signals in the same space. The MPT-Cas12a/13a had excellent sensitivity with the limit of detection as low as 11 copies of T-nos and 13 copies of CaMV35S and it had outstanding specificity and anti-interference ability in actual sample analysis. Therefore, it is a potential candidate in the detection of GM crops.
Collapse
Affiliation(s)
- Gaihua Cao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Jiangbo Dong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Xiaolong Chen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Peng Lu
- Chongqing University Three Gorges Hospital, Chongqing, 404000, P. R. China
| | - Yifan Xiong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Lan Peng
- Chongqing Medical and Pharmaceutical College Basic Department, Chongqing, 401331, P. R. China
| | - Jiawei Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China. .,Chongqing University Three Gorges Hospital, Chongqing, 404000, P. R. China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China. .,Chongqing Key laboratory of Bio-perception & intelligent information Processing, School of microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| |
Collapse
|
42
|
Habimana JDD, Huang R, Muhoza B, Kalisa YN, Han X, Deng W, Li Z. Mechanistic insights of CRISPR/Cas nucleases for programmable targeting and early-stage diagnosis: A review. Biosens Bioelectron 2022; 203:114033. [DOI: 10.1016/j.bios.2022.114033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/21/2022]
|
43
|
Shin J, Miller M, Wang YC. Recent advances in CRISPR-based systems for the detection of foodborne pathogens. Compr Rev Food Sci Food Saf 2022; 21:3010-3029. [PMID: 35483732 DOI: 10.1111/1541-4337.12956] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022]
Abstract
There has long been a need for more advanced forms of pathogen detection in the food industry. Though in its infancy, biosensing based on clustered regularly interspaced short palindromic repeats (CRISPR) has the potential to solve many problems that cannot be addressed using conventional methods. In this review, we briefly introduce and classify the various CRISPR/Cas protein effectors that have thus far been used in biosensors. We then assess the current state of CRISPR technology in food-safety contexts; describe how each Cas effector is utilized in foodborne-pathogen detection; and discuss the limitations of the current technology, as well as how it might usefully be applied in other areas of the food industry. We conclude that, if the limitations of existing CRISPR/Cas-based detection methods are overcome, they can be deployed on a wide scale and produce a range of positive food-safety outcomes.
Collapse
Affiliation(s)
- Jiyong Shin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Michael Miller
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yi-Cheng Wang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Center for Digital Agriculture, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
44
|
Mao Z, Chen R, Wang X, Zhou Z, Peng Y, Li S, Han D, Li S, Wang Y, Han T, Liang J, Ren S, Gao Z. CRISPR/Cas12a-based technology: A powerful tool for biosensing in food safety. Trends Food Sci Technol 2022; 122:211-222. [PMID: 35250172 PMCID: PMC8885088 DOI: 10.1016/j.tifs.2022.02.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND In the context of the current pandemic caused by the novel coronavirus, molecular detection is not limited to the clinical laboratory, but also faces the challenge of the complex and variable real-time detection fields. A series of novel coronavirus events were detected in the process of food cold chain packaging and transportation, making the application of molecular diagnosis in food processing, packaging, transportation, and other links urgent. There is an urgent need for a rapid detection technology that can adapt to the diversity and complexity of food safety. SCOPE AND APPROACH This review introduces a new molecular diagnostic technology-biosensor analysis technology based on CRISPR-Cas12a. Systematic clarification of its development process and detection principles. It summarizes and systematically organizes its applications in viruses, food-borne pathogenic bacteria, small molecule detection, etc. In the past four years, which provides a brand-new and comprehensive solution for food detection. Finally, this article puts forward the challenges and the prospects for food safety. KEY FINDINGS AND CONCLUSIONS The novel coronavirus hazards infiltrated every step of the food industry, from processing to packaging to transportation. The biosensor analytical technology based on CRISPR-Cas12a has great potential in the qualitative and quantitative analysis of infectious pathogens. CRISPR-Cas12a can effectively identify the presence of the specific nucleic acid targets and the small changes in sequences, which is particularly important for nucleic acid identification and pathogen detection. In addition, the CRISPR-Cas12a method can be adjusted and reconfigured within days to detect other viruses, providing equipment for nucleic acid diagnostics in the field of food safety. The future work will focus on the development of portable microfluidic devices for multiple detection. Shao et al. employed physical separation methods to separate Cas proteins in different microfluidic channels to achieve multiple detection, and each channel simultaneously detected different targets by adding crRNA with different spacer sequences. Although CRISPR-Cas12a technology has outstanding advantages in detection, there are several technical barriers in the transformation from emerging technologies to practical applications. The newly developed CRISPR-Cas12a-based applications and methods promote the development of numerous diagnostic and detection solutions, and have great potential in medical diagnosis, environmental monitoring, and especially food detection.
Collapse
Affiliation(s)
- Zefeng Mao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China,State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Ruipeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China,State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xiaojuan Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China,State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Zixuan Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Dianpeng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Sen Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Yu Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Tie Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Jun Liang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China,Corresponding author
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China,Corresponding author
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China,Corresponding author
| |
Collapse
|
45
|
Hua X, Fan J, Yang L, Wang J, Wen Y, Su L, Zhang X. Rapid detection of miRNA via development of consecutive adenines (polyA)-based electrochemical biosensors. Biosens Bioelectron 2022; 198:113830. [PMID: 34861526 DOI: 10.1016/j.bios.2021.113830] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022]
Abstract
Herein, we report rapid electrochemical detection of miRNA let-7a based on a DNA probe consisting of a polyA and Fc-co-labeled harpin structure (the polyA-H probe). The polyA-H probe could be facilely immobilized on Au surfaces through the interactions between polyA and Au, followed by its pre-hybridization with a single strand (S1). The probe's surface density could be optimized for minimizing steric hindrance via changing the polyA block length. The target let-7a could be rapidly amplified via loop-mediated isothermal amplification (LAMP) with four simplified primers, followed by inducing the formation of dimeric i-motif (DIM) structure via H+-induced rapid folding of two C-rich sequences of motif strand 1 and strand 2. It was found that, after introducing the as-formed DIM to hybridize the S1, the immobilized polyA20-H probe could rapidly revert to its hairpin structure, sending out a turn-on electrochemical signal of the Fc. The total time for detecting the let-7a was around 80 min, obviously less than that of most of electrochemical DNA sensors reported previously. The biosensor showed a linear relationship of the current response to the let-7a in the range of 10 fM to 50 nM with a limit of detection (LOD) of 5.1 fM. Our biosensors were further tested using human serum spiked with the let-7a and the extracts of the breast adenocarcinoma cells spiked with and without the let-7a, respectively. Satisfied results were obtained. This study shows a potential promising future of development of electrochemical biosensors for rapid detection of miRNAs in the application of clinical practice.
Collapse
Affiliation(s)
- Xiaoyu Hua
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Jingjing Fan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Lingzhi Yang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518037, PR China.
| | - Jun Wang
- Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, 430068, PR China
| | - Yongqiang Wen
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Lei Su
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518037, PR China.
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518037, PR China
| |
Collapse
|
46
|
Zhu X, Yang H, Wang M, Wu M, Khan MR, Luo A, Deng S, Busquets R, He G, Deng R. Label-Free Detection of Transgenic Crops Using an Isothermal Amplification Reporting CRISPR/Cas12 Assay. ACS Synth Biol 2022; 11:317-324. [PMID: 34915706 DOI: 10.1021/acssynbio.1c00428] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Current tools for detecting transgenic crops, such as polymerase chain reaction (PCR), require professional equipment and complex operation. Herein, we introduce a clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system to analyze transgenes by designing an isothermal amplification to serve as the amplified reporter, allowing an isothermal and label-free detection of transgenic crops. The use of Cas12a allowed direct and specific recognition of transgenes. To enhance the sensitivity of the assay, we used rolling circle amplification (RCA) to monitor the recognition of transgenes by designing the RCA primer as the cleavage substrate of Cas12a. The presence of transgenes can be detected by monitoring the G-quadruplex in RCA amplicon using a G-quadruplex binding dye, N-methyl mesoporphyrin IX (NMM). We termed the assay as isoCRISPR and showed that the assay allowed distinguishing transgenic corn cultivars ("Bt11" and "MON89034") from nontransgenic corn cultivars ("yellow", "shenyu", "xianyu", and "jingke"). The isoCRISPR assay will enrich the toolbox for transgenic crop identification and broaden the application of CRISPR/Cas in food authenticity and safety.
Collapse
Affiliation(s)
- Xiaoying Zhu
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Hao Yang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Mian Wang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Minghua Wu
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Aimin Luo
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Sha Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Rosa Busquets
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston Upon Thames KT1 2EE, United Kingdom
| | - Guiping He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| |
Collapse
|
47
|
Hu F, Liu Y, Zhao S, Zhang Z, Li X, Peng N, Jiang Z. A one-pot CRISPR/Cas13a-based contamination-free biosensor for low-cost and rapid nucleic acid diagnostics. Biosens Bioelectron 2022; 202:113994. [PMID: 35042129 PMCID: PMC8755463 DOI: 10.1016/j.bios.2022.113994] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 02/07/2023]
Abstract
The pandemic due to the outbreak of 2019 coronavirus disease (COVID-19) caused by novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has raised significant public health concerns. Rapid, affordable, and accurate diagnostic testing not only paves the way for the effective treatment of diseases, but also plays a crucial role in preventing the spreading of infectious diseases. Herein, a one-pot CRISPR/Cas13a-based visual biosensor was proposed and developed for the rapid and low-cost nucleic acid detection. By combining Cas13a cleavage and Recombinase Polymerase Amplification (RPA) in a one-pot reaction in a disposable tube-in-tube vessel, amplicon contamination could be completely avoided. The RPA reaction is carried out in the inner tube containing two hydrophobic holes at the bottom. After the completion of amplification reaction, the reaction solution enters the outer tube containing pre-stored Cas13a reagent under the action of centrifugation or shaking. Inner and outer tubes are combined to form an independent reaction pot to complete the nucleic acid detection without opening the lid. This newly developed nucleic acid detection method not only meets the need of rapid nucleic acid detection at home without the need for any specialized equipment, but also fulfils the requirement of rapid on-site nucleic acid detection with the aid of small automated instruments. In this study, CRISPR/Cas13a and CRISPR/Cas12a were used to verify the reliability of the developed one-pot nucleic acid detection method. The performance of the system was verified by detecting the DNA virus, i.e., African swine fever virus (ASFV) and the RNA virus, i.e., SARS-Cov-2. The results indicate that the proposed method possesses a limit of detection of 3 copy/μL. The negative and positive test results are consistent with the results of real-time fluorescence quantitative polymerase chain reaction (PCR), but the time required is shorter and the cost is lower. Thus, this study makes this method available in resource-limited areas for the purpose of large-scale screening and in case of epidemic outbreak.
Collapse
Affiliation(s)
- Fei Hu
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yanfei Liu
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Shuhao Zhao
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Zengming Zhang
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xichen Li
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Niancai Peng
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710054, China.
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
48
|
Fu X, Sun J, Ye Y, Zhang Y, Sun X. A rapid and ultrasensitive dual detection platform based on Cas12a for simultaneous detection of virulence and resistance genes of drug-resistant Salmonella. Biosens Bioelectron 2022; 195:113682. [PMID: 34624800 DOI: 10.1016/j.bios.2021.113682] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/16/2021] [Accepted: 09/26/2021] [Indexed: 12/26/2022]
Abstract
Accurate, sensitive, and rapid detection of Salmonella and determination of whether it carries drug resistance genes plays an important role in guiding the clinical medication of salmonellosis and laying a foundation for studying the mechanism of drug resistance transmission of Salmonella. Here, a novel nontransferable, ultrasensitive dual detection platform (Cas12a-Ddp) was developed. The round cap allowed for temporary storage of more Cas12a detection solution than flat cap, enabling one-pot assays and reducing aerosol contamination. The results were read out in dual mode by the microplate reader and UV visualization to achieve sensitive dual-target detection of the virulence genes and drug resistance genes of Salmonella simultaneously, with the possibility of onsite detection. Cas12a-Ddp was combined with multiple polymerase chain reactions and recombinase polymerase amplifications successively. An ultrasensitive dual detection limit of 1 CFU/mL was obtained without any cross-reaction within 40 min. This was an improvement of 1-2 orders of magnitude over the existing methods. Cas12a-Ddp overcame the influence of proteins and fat in liquid matrix foods. It was used for the detection of drug-resistant Salmonella in milk and skim milk powder, also with the dual detection limit of 1 CFU/mL and spiked recovery of 68.58%-158.49%. It was also used for the analysis of Salmonella resistance rate analysis. The Cas12a-Ddp provided a reliable, fast, sensitive, and practical multi-CRISPR detection platform.
Collapse
Affiliation(s)
- Xuran Fu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
| |
Collapse
|
49
|
Zhang T, Zhao W, Zhao W, Si Y, Chen N, Chen X, Zhang X, Fan L, Sui G. Universally Stable and Precise CRISPR-LAMP Detection Platform for Precise Multiple Respiratory Tract Virus Diagnosis Including Mutant SARS-CoV-2 Spike N501Y. Anal Chem 2021; 93:16184-16193. [PMID: 34818890 PMCID: PMC8672426 DOI: 10.1021/acs.analchem.1c04065] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/12/2021] [Indexed: 12/26/2022]
Abstract
Nowadays, rapid and accurate diagnosis of respiratory tract viruses is an urgent need to prevent another epidemic outbreak. To overcome this problem, we have developed a clustered, regularly interspaced short palindromic repeats (CRISPR) loop mediated amplification (LAMP) technology to detect influenza A virus, influenza B virus, respiratory syncytial A virus, respiratory syncytial B virus, and severe acute respiratory syndrome coronavirus 2, including variants of concern (B.1.1.7), which utilized CRISPR-associated protein 12a (Cas12a) to advance LAMP technology with the sensitivity increased 10 times. To reduce aerosol contamination in CRISPR-LAMP technology, an uracil-DNA-glycosylase-reverse transcription-LAMP system was also developed which can effectively remove dUTP-incorporated LAMP amplicons. In vitro Cas12a cleavage reaction with 28 crRNAs showed that there were no position constraints for Cas12a/CRISPR RNA (crRNA) recognition and cleavage in LAMP amplicons, and even the looped position of LAMP amplicons could be effectively recognized and cleaved. Wild-type or spike N501Y can be detected with a limit of detection of 10 copies/μL (wild-type) even at a 1% ratio level on the background (spike N501Y). Combining UDG-RT-LAMP technology, CRISPR-LAMP design, and mutation detection design, we developed a CRISPR-LAMP detection platform that can precisely diagnose pathogens with better stability and significantly improved point mutation detection efficiency.
Collapse
Affiliation(s)
- Tong Zhang
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3),
Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200433, P. R. China
| | - Wei Zhao
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3),
Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200433, P. R. China
| | - Wang Zhao
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3),
Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200433, P. R. China
| | - Yuying Si
- Department
of Clinical Laboratory, Shanghai East Hospital, School of Medicine, Tong Ji University, 150 Ji Mo Road, Shanghai 200120, P. R. China
| | - Nianzhen Chen
- Department
of Clinical Laboratory, Shanghai East Hospital, School of Medicine, Tong Ji University, 150 Ji Mo Road, Shanghai 200120, P. R. China
| | - Xi Chen
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3),
Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200433, P. R. China
| | - Xinlian Zhang
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3),
Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200433, P. R. China
| | - Lieying Fan
- Department
of Clinical Laboratory, Shanghai East Hospital, School of Medicine, Tong Ji University, 150 Ji Mo Road, Shanghai 200120, P. R. China
| | - Guodong Sui
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3),
Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200433, P. R. China
- Department
of Medical Microbiology and Parasitology, School of Basic Medical
Sciences, Fudan University, Shanghai 200032, P. R. China
- Jiangsu
Collaborative Innovation Center of Atmospheric Environment and Equipment
Technology (CICAEET), Nanjing University
of Information Science & Technology, Nanjing 210044, PR China
| |
Collapse
|
50
|
Wang SY, Du YC, Wang DX, Ma JY, Tang AN, Kong DM. Signal amplification and output of CRISPR/Cas-based biosensing systems: A review. Anal Chim Acta 2021; 1185:338882. [PMID: 34711321 DOI: 10.1016/j.aca.2021.338882] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/30/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated) proteins are powerful gene-editing tools because of their ability to accurately recognize and manipulate nucleic acids. Besides gene-editing function, they also show great promise in biosensing applications due to the superiority of easy design and precise targeting. To improve the performance of CRISPR/Cas-based biosensing systems, various nucleic acid-based signal amplification techniques are elaborately incorporated. The incorporation of these amplification techniques not only greatly increases the detection sensitivity and specificity, but also extends the detectable target range, as well as makes the use of various signal output modes possible. Therefore, summarizing the use of signal amplification techniques in sensing systems and elucidating their roles in improving sensing performance are very necessary for the development of more superior CRISPR/Cas-based biosensors for various applications. In this review, CRISPR/Cas-based biosensors are summarized from two aspects: the incorporation of signal amplification techniques in three kinds of CRISPR/Cas-based biosensing systems (Cas9, Cas12 and Cas13-based ones) and the signal output modes used by these biosensors. The challenges and prospects for the future development of CRISPR/Cas-based biosensors are also discussed.
Collapse
Affiliation(s)
- Si-Yuan Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Yi-Chen Du
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Dong-Xia Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Jia-Yi Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - An-Na Tang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|