1
|
Zhang Q, Zhai T, Guo Y, Weng Y, Zhou N, Lin H, Tan H, Lu K, Zhou Y. Faraday cage-type photocurrent polarity switching photoelectrochemical sensing platform for highly selective and sensitive detection of Vibrio parahaemolyticus. Food Chem 2025; 475:143275. [PMID: 39952181 DOI: 10.1016/j.foodchem.2025.143275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
Highly selective and sensitive detection of foodborne pathogens is crucial for ensuring food safety. In this work, a photoelectrochemical (PEC) aptasensing platform was developed for the selective and sensitive detection of Vibrio parahaemolyticus (VP), adopting Faraday cage-type construction mode. When VP was present in the sample, the aptamer for VP (Apt) assembled on the Apt/Bi2S3/ITO electrode captured VP, which bound GO@Cu2O-Apt to the electrode surface. The graphene oxide (GO) in GO@Cu2O-Apt has a large surface area and good conductivity, on the surface of which a large amount of Cu2O that can switch the polarity of the Bi2S3 photocurrent was loaded, resulting in a highly selective and sensitive detection of VP with a detection limit of 1.0 CFU/mL. By adjusting the Apt, the platform can be used for the detection of other foodborne pathogens, offering broad application potential in foodborne pathogen detection.
Collapse
Affiliation(s)
- Qingqing Zhang
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China.
| | - Tingting Zhai
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China; College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou 310035, PR China
| | - Yuxin Guo
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, PR China
| | - Yifan Weng
- Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Nan Zhou
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Han Lin
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Hao Tan
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Kangning Lu
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Yiyi Zhou
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| |
Collapse
|
2
|
Elumalai PNN, Thimmarayappa CC, Talebi S, Subramaniam RT, Kasi R, Iwamoto M, Gnana Kumar G, Periasamy V. Evaluation of a same-metal PCB-based three-electrode system via impedance studies using potassium ferricyanide. RSC Adv 2024; 14:35035-35046. [PMID: 39497772 PMCID: PMC11533208 DOI: 10.1039/d4ra06876a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/28/2024] [Indexed: 11/07/2024] Open
Abstract
We report for the first time the successful acquisition of electrochemical impedance spectroscopy data using an unconventional same-metal PCB-based three-electrode system. Conventional three-electrode systems primarily require expensive and bulky electrodes, and a high volume of analytes to conduct electrochemical impedance spectroscopy studies. The miniaturized PCB-based three-electrode system used in this work requires only trace amounts of analytes in the order of 10-20 μL owing to the design of the electrode sensor. Prominent standard redox probe potassium ferricyanide was used for impedance spectroscopic characterization studies. The results obtained were in congruence with existing literature; additionally the PCB-based three-electrode system demonstrated significantly higher repeatability, reproducibility, and consistency across different models of electrochemical instrumentations. Interestingly, the electrochemical impedance spectroscopy data of the PCB-3T sensor exhibited a consistent semi-circular impedance curve on a Nyquist plot and two distinct phase change regions on a Bode plot indicative of a simplified Randles cell model with an excellent circuit fit. Additionally this model provides an accurate impedance model for analysing trace analytes of potassium ferricyanide. Based on the circuit fitting model, potassium ferricyanide samples of varying concentrations at 1 mM, 5 mM, 10 mM, 15 mM and 20 mM demonstrated characteristic EIS charge transfer resistance corresponding to 435, 300, 233, 72 and 55 kΩ, respectively, and solution resistance of 260, 254, 218, 169 and 157 Ω, respectively. Therefore, the proposed novel same-metal three-electrode sensor can be employed in effective analysis and detection of samples with high accuracy and high sensitivity for trace amounts of analytes.
Collapse
Affiliation(s)
| | - Chethan C Thimmarayappa
- Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, Universiti Malaya 50603 Kuala Lumpur Malaysia
| | - Sara Talebi
- eProfiler Solutions Malaysia Sdn Bhd, Universiti Malaya Suite 3.5, Level 3, UM Innovation Incubator Complex 50603 Kuala Lumpur Malaysia
| | - Ramesh T Subramaniam
- Centre for Ionics Universiti Malaya (CIUM), Department of Physics, Faculty of Science, Universiti Malaya 50603 Kuala Lumpur Malaysia
| | - Ramesh Kasi
- Centre for Ionics Universiti Malaya (CIUM), Department of Physics, Faculty of Science, Universiti Malaya 50603 Kuala Lumpur Malaysia
| | | | - Georgepeter Gnana Kumar
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University Madurai 625021 Tamil Nadu India
| | - Vengadesh Periasamy
- Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, Universiti Malaya 50603 Kuala Lumpur Malaysia
- eProfiler Solutions Malaysia Sdn Bhd, Universiti Malaya Suite 3.5, Level 3, UM Innovation Incubator Complex 50603 Kuala Lumpur Malaysia
| |
Collapse
|
3
|
Abedi R, Raoof JB, Mohseni M, Bagheri Hashkavayi A. Sandwich-type electrochemical aptasensor based on hemin-graphite oxide as a signal label and rGO/MWCNTs/chitosan/carbon quantum dot modified electrode for sensitive detection of Acinetobacter baumannii bacteria. Anal Chim Acta 2024; 1303:342491. [PMID: 38609258 DOI: 10.1016/j.aca.2024.342491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
Acinetobacter baumannii (A. baumannii) is a pathogenic bacterium that causes severe infections and its rapid and reliable diagnosis is essential for effective control and treatment. In this study, we present an electrochemical aptasensor based on a signal amplification strategy for the detection of A. baumannii, the high specificity and affinity of the aptamer for the target make it favorable for signal amplification. This allows for a highly sensitive and selective detection of the target. The aptasensor is based on a carbon screen-printed electrode (CSPE) that has been modified with a nanocomposite consisting of multi-walled carbon nanotubes (MWCNTs), reduced graphene oxide (rGO), chitosan (CS), and a synthesized carbon quantum dot (CQD) from CS. Additionally, the self-assembled aptamers were immobilized on hemin-graphite oxide (H-GO) as a signal probe. The composition of the nanocomposite (rGO-MWCNT/CS/CQD) provides high conductivity and stability, facilitating the efficient capture of A. baumannii onto the surface of the aptasensor. Also, aptamer immobilized on Hemin-graphite oxide (H-GO/Aptamer) was utilized as an electrochemical signal reporter probe by H reduction. This approach improved the detection sensitivity and the aptamer surface density for detecting A. baumannii. Furthermore, under optimized experimental conditions, the aptasensor was demonstrated to be capable of detecting A. baumannii with a linear range of (10 - 1 × 107 Colony-forming unit (CFU)/mL) and a limit of detection (LOD) of 1 CFU/mL (σ = 3). One of the key features of this aptasensor is its ability to distinguish between live and dead bacteria cells, which is very important and critical for clinical applications. In addition, we have successfully detected A. baumannii bacteria in healthy human serum and skim milk powder samples provided using the prepared electrochemical aptasensor. The functional groups present in the synthetic CQD, rGO-MWCNT, and chitosan facilitate biomolecule immobilization and enhance stability and activity. The fast electron-transfer kinetics and high conductivity of these materials contribute to improved sensitivity and selectivity. Furthermore, The H-GO/Aptamer composite's large surface area increases the number of immobilized secondary aptamers and enables a more stable structure. This large surface area also facilitates more H loading, leading to signal amplification.
Collapse
Affiliation(s)
- Rokhsareh Abedi
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Jahan Bakhsh Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| | - Mojtaba Mohseni
- Department of Microbiology, Faculty of Science, University of Mazandaran, Iran
| | - Ayemeh Bagheri Hashkavayi
- Department of Applied Physical Sciences, University of North Carolina- Chapel Hill, 1112 Murray Hall, CB#3050, Chapel Hill, NC, 27599-2100, USA
| |
Collapse
|
4
|
Zhang J, Zhou H, Hao T, Yang Y, Zhang Q, Li J, Ye M, Wu Y, Gao W, Guo Z. Faraday cage-type ECL biosensor for the detection of circulating tumor cell MCF-7. Anal Chim Acta 2023; 1271:341465. [PMID: 37328246 DOI: 10.1016/j.aca.2023.341465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/15/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023]
Abstract
Herein, a Faraday cage-type electrochemiluminescence biosensor was designed for the detection of human breast cancer cell MCF-7. Two kinds of nanomaterials, Fe3O4-APTs and GO@PTCA-APTs, were synthesized as capture unit and signal unit, respectively. In presence of the target MCF-7, the Faraday cage-type electrochemiluminescence biosensor was constructed by forming a complex "capture unit-MCF-7-signal unit". In this case, lots of electrochemiluminescence signal probes were assembled and could participate in the electrode reaction, achieving a significant increase in sensitivity. In addition, the double aptamer recognition strategy was adopted to improve the capture, enrichment efficiency and detection reliability. Under optimal experimental conditions, the limit of detection was 3 cells/mL. And, the sensor could afford the detection of actual human blood samples, which is the first report on the detection of intact circulating tumor cells by the Faraday cage-type electrochemiluminescence biosensor.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Huiqian Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Tingting Hao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Yiyao Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Qingqing Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| | - Jinyun Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, PR China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, PR China
| | - Yangbo Wu
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Wanlei Gao
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Zhiyong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
5
|
Abedi R, Raoof JB, Mohseni M, Bagheri Hashkavayi A. A signal-off aptasensor for the determination of Acinetobacter baumannii by using methylene blue as an electrochemical probe. Mikrochim Acta 2023; 190:308. [PMID: 37466698 DOI: 10.1007/s00604-023-05901-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023]
Abstract
An electrochemical aptasensor has been developed to detect Acinetobacter baumannii (A. baumannii). The proposed system was developed by modifying carbon screen-printed electrodes (CSPEs) with a synthesized MWCNT@Fe3O4@SiO2-Cl nanocomposite and then binding A. baumannii-specific aptamer using covalent immobilization on the modified electrode surface and the interaction of methylene blue (MB) with Apt as an electrochemical redox indicator. As a result of the incubation of the A. baumannii bacteria as a target on the proposed aptasensor, a cathodic peak current density (Jpc) of MB decreased due to the formation of the Apt-A. baumannii complex and MB being released from the immobilized Apt on the surface of the modified electrode. In addition to increasing the electron transfer kinetics, the nanocomposite provides a relatively stable matrix to improve the loading Apt sequence. The suggested aptasensor was demonstrated to be capable of detecting A. baumannii with a linear range of 10.0-1.0 × 107 colony-forming unit (CFU) mL-1 and a detection limit of 1 CFU mL-1 (S/N = 3) using differential pulse voltammetry (DPV) studies at a working potential of ~0.29 V and a scan rate of 100 mV s-1. The outcomes revealed that the aptasensor exhibited high A. baumannii detection sensitivity, stability, reproducibility, and specificity.
Collapse
Affiliation(s)
- Rokhsareh Abedi
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Jahan Bakhsh Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| | - Mojtaba Mohseni
- Department of Molecular and Cell Biology, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Ayemeh Bagheri Hashkavayi
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| |
Collapse
|
6
|
Dai G, Yao H, Yang L, Ding Y, Du S, Shen H, Mo F. Rapid detection of foodborne pathogens in diverse foodstuffs by universal electrochemical aptasensor based on UiO-66 and methylene blue composites. Food Chem 2023; 424:136244. [PMID: 37244183 DOI: 10.1016/j.foodchem.2023.136244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/05/2023] [Accepted: 04/24/2023] [Indexed: 05/29/2023]
Abstract
Rapid and sensitive detection of foodborne pathogens in complex environments is essential for food protection. A universal electrochemical aptasensor was fabricated for the detection of three common foodborne pathogens, including Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Salmonella typhimurium (S. typhimurium). The aptasensor was developed based on the homogeneous and membrane filtration strategy. Zirconium-based metal-organic framework (UiO-66)/methylene blue (MB)/aptamer composite was designed as a signal amplification and recognition probe. Bacteria were quantitatively detected by the current changes of MB. By simply changing the aptamer, different bacteria could be detected. The detection limits of E. coli, S. aureus and S. typhimurium were 5, 4 and 3 CFU·mL-1, respectively. In humidity and salt environments, the stability of the aptasensor was satisfactory. The aptasensor exhibited satisfactory detection performance in different real samples. This aptasensor has excellent potential for rapid detection of foodborne pathogens in complex environments.
Collapse
Affiliation(s)
- Ge Dai
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Handong Yao
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China; School of Engineering, Huzhou University, Huzhou 313000, China
| | - Liuhong Yang
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Yifeng Ding
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Shuxin Du
- School of Engineering, Huzhou University, Huzhou 313000, China
| | - Hui Shen
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China.
| | - Fengfeng Mo
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China.
| |
Collapse
|
7
|
Zhang D, Lin H, Chen L, Wu Y, Xie J, Shi X, Guo Z. Cluster-bomb type magnetic biosensor for ultrasensitive detection of Vibrio parahaemolyticus based on low field nuclear magnetic resonance. Anal Chim Acta 2023; 1248:340906. [PMID: 36813458 DOI: 10.1016/j.aca.2023.340906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
Herein, a novel cluster-bomb type signal sensing and amplification strategy in low field nuclear magnetic resonance was proposed, and a magnetic biosensor for ultrasensitive homogeneous immunoassay of Vibrio parahaemolyticus (VP) was developed. The capture unit MGO@Ab was magnetic graphene oxide (MGO) immobilized by VP antibody (Ab) to capture VP. And, the signal unit PS@Gd-CQDs@Ab was polystyrene (PS) pellets covered by Ab to recognize VP and Gd-CQDs i.e. carbon quantum dots (CQDs) containing lots of magnetic signal labels Gd3+. In presence of VP, the immunocomplex signal unit-VP-capture unit could be formed and separated by magnetic force conveniently from the sample matrix. With the successive introduction of disulfide threitol and hydrochloric acid, signal units were cleaved and disintegrated, resulting in a homogeneous dispersion of Gd3+. Thus, cluster-bomb type dual signal amplification was achieved through increasing the amount and the dispersity of signal labels simultaneously. Under optimal experimental conditions, VP could be detected in the concentration range of 5-1.0 × 106 CFU/mL, with a limit of quantitation (LOQ) 4 CFU/mL. In addition, satisfactory selectivity, stability and reliability could be obtained. Therefore, this cluster-bomb type signal sensing and amplification strategy is powerful in designing magnetic biosensor and detecting pathogenic bacteria.
Collapse
Affiliation(s)
- Dongyu Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Han Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Le Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Yangbo Wu
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Jianjun Xie
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Science, Ningbo University, Ningbo, 315211, PR China
| | - Zhiyong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
8
|
Abedi R, Bakhsh Raoof J, Mohseni M, Bagheri Hashkavayi A. Sandwich-Type Electrochemical Aptasensor for Highly Sensitive and Selective Detection of Pseudomonas Aeruginosa Bacteria Using a Dual Signal Amplification Strategy. Bioelectrochemistry 2023; 150:108332. [PMID: 36493674 DOI: 10.1016/j.bioelechem.2022.108332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/12/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
An electrochemical aptasensor developed to realize the detection of Pseudomonas aeruginosa (P. aeruginosa) bacteria based on a signal amplification strategy. The carbon screen-printed electrode (CSPE) surface was modified by MIL-101(Cr)/Multi-walled carbon nanotubes (MWCNT), which significantly increased the effective surface area of the electrode, thus resulting in further F23 aptamer immobilization at the surface of the modified electrode. As a result, the P. aeruginosa can be efficiently captured onto the surface of the aptasensor. Moreover, aptamer immobilized on the two-dimensional graphitic carbon nitride complex with silver nanoparticles (AgNPs/c-g-C3N4/Apt) was used as an electrochemical signal label, connected to P. aeruginosa bacteria at the modified electrode. This strategy increased the aptamer surface density and the sensitivity for detecting P. aeruginosa. Also, the resultant material was thoroughly characterized using Fourier transform infrared (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) analysis techniques. A highly sensitive voltammetric aptasensor for P. aeruginosa detection was obtained via this strategy at the limit of detection of 1 Colony-forming unit (CFU)/mL (σ = 3). Therefore, this proposed strategy with dual signal amplification can be a promising platform for simple, practical, reliable, and sensitive method for P. aeruginosa.
Collapse
Affiliation(s)
- Rokhsareh Abedi
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Jahan Bakhsh Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| | - Mojtaba Mohseni
- Department of Microbiology, Faculty of Science, University of Mazandaran, Iran
| | - Ayemeh Bagheri Hashkavayi
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
9
|
Zhou H, Guo W, Hao T, Xie J, Wu Y, Jiang X, Hu Y, Wang S, Guo Z. Electrochemical sensor for single-cell determination of bacteria based on target-triggered click chemistry and fast scan voltammetry. Food Chem 2023; 417:135906. [PMID: 36913866 DOI: 10.1016/j.foodchem.2023.135906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023]
Abstract
Herein, an electrochemical sensor for single-cell determination of bacteria was developed based on target-triggered click chemistry and fast scan voltammetry (FSV). In it, bacteria not only are the detection target, but also can use their own metabolism to achieve first-level signal amplification. More electrochemical labels were immobilized on functionalized 2D nanomaterials to achieve second-level signal amplification. At 400 V/s, FSV can achieve third-level signal amplification. The linear range and limit of quantification (LOQ) are 1 ∼ 108 CFU/mL and 1 CFU/mL, respectively. When the reaction time of E. coli-instructed Cu2+ reduction is extended to 120 min, PCR-free single-cell determination of E. coli was achieved by electrochemical method first time. The feasibility of the sensor was verified by analysis of E. coli in seawater and milk samples with recoveries ranging from 94% to 110%. This detection principle is widely applicable, providing a new path for the establishment of single-cell detection strategy for bacteria.
Collapse
Affiliation(s)
- Huiqian Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Wenbo Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Tingting Hao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China.
| | - Jianjun Xie
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, PR China
| | - Yangbo Wu
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, PR China
| | - Xiaohua Jiang
- School of Materials & Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, PR China
| | - Yufang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Sui Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Zhiyong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
10
|
Zhou H, Guo W, Wang S, Hao T, Wang Z, Hu Y, Wang S, Xie J, Jiang X, Guo Z. Electrochemical aptasensor for Staphylococcus aureus by stepwise signal amplification. Mikrochim Acta 2022; 189:353. [DOI: 10.1007/s00604-022-05401-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022]
|
11
|
Zheng L, Shen Y, Dong W, Zheng C, Zhou R, Lou YL. Rapid Detection and Antimicrobial Susceptibility Testing of Pathogens Using AgNPs-Invertase Complexes and the Personal Glucose Meter. Front Bioeng Biotechnol 2022; 9:795415. [PMID: 35118055 PMCID: PMC8804100 DOI: 10.3389/fbioe.2021.795415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Rapid detection of pathogens and assessment of antimicrobial susceptibility is of great importance for public health, especially in resource-limiting regions. Herein, we developed a rapid, portable, and universal detection method for bacteria using AgNPs-invertase complexes and the personal glucose meter (PGM). In the presence of bacteria, the invertase could be released from AgNPs-invertase complexes where its enzyme activity of invertase was inhibited. Then, the enzyme activity of invertase was restored and could convert sucrose into glucose measured by a commercially PGM. There was a good linear relationship between PGM signal and concentration of E. coli or S. aureus as the bacteria model with high sensitivity. And our proposed biosensor was proved to be a rapid and reliable method for antimicrobial susceptibility testing within 4 h with consistent results of Minimum Inhibitory Concentrations (MICs) testing, providing a portable and convenient method to treat infected patients with correct antibiotics and reduce the production of antibiotic-resistant bacteria, especially for resource-limiting settings.
Collapse
Affiliation(s)
- Laibao Zheng
- *Correspondence: Yong-Liang Lou, ; Laibao Zheng,
| | | | | | | | | | | |
Collapse
|
12
|
Yang L, Wu T, Du Y, Zhang N, Feng R, Ma H, Wei Q. PEGylation Improved Electrochemiluminescence Supramolecular Assembly of Iridium(III) Complexes in Apoferritin for Immunoassays Using 2D/2D MXene/TiO 2 Hybrids as Signal Amplifiers. Anal Chem 2021; 93:16906-16914. [PMID: 34872250 DOI: 10.1021/acs.analchem.1c04006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dynamic self-assembly of iridium complexes in water-soluble nanocontainers is an important bottom-up process for fabricating electrochemiluminescence (ECL) bioprobes. PEGylated apoferritin (PEG-apoHSF) as the host offers a confined space to alter and modify the self-assembly of trans-bis(2-phenylpyridine)(acetylacetonate)iridium(III) [Ir(ppy)2(acac)] based on a pH-dependent depolymerization/reassembly pathway, allowing the formation of ECL-active iridium cores in PEG-apoHSF cavities (Ir@PEG-apoHSF). With an improved encapsulation ratio in PEG-apoHSF, the coreactant ECL behavior of the fabricated Ir@PEG-apoHSF nanodots with tri-n-propylamine (TPrA) was further demonstrated, exhibiting maximum ECL emission at 530 nm that was theoretically dominated by the band gap transition. The application of Ir@PEG-apoHSF as a bioprobe in a "signal-on" ECL immunosensing system was developed based on electroactive Ti3C2Tx MXenes/TiO2 nanosheet (Ti3C2Tx/TiO2) hybrids. Combining with the efficiently catalyzed electro-oxidation of TPrA and Ir(ppy)2(acac) by Ti3C2Tx/TiO2 hybrids, the developed immunosensor showed dramatically amplified ECL responses toward the target analyte of neuron-specific enolase (NSE). Under experimental conditions, linear quantification of NSE from 100 fg/mL to 50 ng/mL was well established by this assay, achieving a limit of detection (LOD) of 35 fg/mL. The results showcased the capability of PEGylated apoHSF to host and stabilize water-insoluble iridium complexes as ECL emitters for aqueous biosensing and immunoassays.
Collapse
Affiliation(s)
- Lei Yang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Tingting Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yu Du
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Nuo Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Ruiqing Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.,Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
13
|
Pan R, Li G, Liu S, Zhang X, Liu J, Su Z, Wu Y. Emerging nanolabels-based immunoassays: Principle and applications in food safety. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Nesakumar N, Lakshmanakumar M, Srinivasan S, Jayalatha JBB A, Balaguru Rayappan JB. Principles and Recent Advances in Biosensors for Pathogens Detection. ChemistrySelect 2021. [DOI: 10.1002/slct.202101062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Noel Nesakumar
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- School of Chemical and Biotechnology SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Muthaiyan Lakshmanakumar
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- School of Electrical & Electronics Engineering SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Soorya Srinivasan
- School of Electrical & Electronics Engineering SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Arockia Jayalatha JBB
- School of Electrical & Electronics Engineering SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- School of Electrical & Electronics Engineering SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| |
Collapse
|
15
|
Wei W, Lin H, Hao T, Wang S, Hu Y, Guo Z, Luo X. DNA walker-mediated biosensor for target-triggered triple-mode detection of Vibrio parahaemolyticus. Biosens Bioelectron 2021; 186:113305. [PMID: 33990037 DOI: 10.1016/j.bios.2021.113305] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 01/04/2023]
Abstract
Herein, we have constructed a target-triggered and DNA walker-mediated biosensor with triple signal (BTS) outputs mode for sensitive and reliable detection of pathogenic bacteria. Vibrio parahaemolyticus (VP) being the detection target model, the aptamer conformational changes induced by VP have been designed to activate the DNA walk on the modifiable and conductive surface of Fe3O4 nanoparticles to generate triple signal outputs, including electrochemiluminescence (ECL), fast scan cyclic voltammetry (FSCV) and fluorescent pixel counting (FLPC). Limits of quantification (LOQ) of VP were as low as 1 CFU⋅mL-1 by ECL with a linear range of 1-106 CFU⋅mL-1, 1 CFU⋅mL-1 by FSCV with a linear range of 1-106 CFU⋅mL-1, and 10 CFU⋅mL-1 by FLPC with a linear range of 10-107 CFU⋅mL-1 respectively, all squared correlation coefficients R2 being > 0.99. In addition, optical and electrochemical results, signal-on and signal-off results, electrode phase and solution phase results could be mutually verified by integrating of multiple detection techniques in one biosensor, greatly improving the accuracy and reliability. Therefore, the designed BTS has provided a powerful strategy for pathogenic bacteria detection considering its high detection sensitivity and accuracy, exhibiting great potential in food safety, water quality and biological contamination.
Collapse
Affiliation(s)
- Wenting Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Han Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| | - Tingting Hao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Sui Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Yufang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Zhiyong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| | - Xingyu Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| |
Collapse
|
16
|
Zheng Y, Chen L, Yin X, Lin F, Xu Y, Lin X, Weng S. Dual-mode biosensor for femtomolar miRNA-155 detection by electrochemiluminescence and adsorptive stripping voltammetry. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|