1
|
Lu S, McGaughey A, Im S, Liu Y, Wang X, Leininger A, Jassby D, Hoek E, Ren ZJ. Membrane electrolysis distillation for volatile fatty acids extraction from pH-neutral fermented wastewater. WATER RESEARCH 2024; 265:122306. [PMID: 39182349 DOI: 10.1016/j.watres.2024.122306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Volatile fatty acids (VFAs) serve as building blocks for a wide range of chemicals, but it is difficult to extract VFAs from pH-neutral wastewater using evaporation methods because of the ionized form. This study presents a new membrane electrolysis distillation (MED) process that extracts VFAs from such fermentation solutions. MED uniquely integrates pH regulation and joule heating to facilitate the efficient evaporation of VFAs. This integration occurs alongside a hydrophobic membrane that ensures effective gas-liquid phase separation. Operating solely on electricity, MED achieved an acid flux rate of 12.03 g/m2/h at 6V. In contrast, the control results without the joule heating or pH swing only obtained a 0.23 g/m2/h and 0.32 g/m2/h flux, respectively. In addition, a physicochemical model was developed to assess the impacts of temperature on membrane surface pH. This system enhances resource recovery from waste streams and helps achieve a circular carbon economy.
Collapse
Affiliation(s)
- Sidan Lu
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, United States
| | - Allyson McGaughey
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, United States
| | - Sungju Im
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, United States
| | - Yiming Liu
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, United States
| | - Xinyi Wang
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, United States
| | - Aaron Leininger
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, United States
| | - David Jassby
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, United States
| | - Eric Hoek
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, United States
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
2
|
Influence of Nanomaterials and Other Factors on Biohydrogen Production Rates in Microbial Electrolysis Cells-A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238594. [PMID: 36500687 PMCID: PMC9739545 DOI: 10.3390/molecules27238594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Microbial Electrolysis Cells (MECs) are one of the bioreactors that have been used to produce bio-hydrogen by biological methods. The objective of this comprehensive review is to study the effects of MEC configuration (single-chamber and double-chamber), electrode materials (anode and cathode), substrates (sodium acetate, glucose, glycerol, domestic wastewater and industrial wastewater), pH, temperature, applied voltage and nanomaterials at maximum bio-hydrogen production rates (Bio-HPR). The obtained results were summarized based on the use of nanomaterials as electrodes, substrates, pH, temperature, applied voltage, Bio-HPR, columbic efficiency (CE) and cathode bio-hydrogen recovery (C Bio-HR). At the end of this review, future challenges for improving bio-hydrogen production in the MEC are also discussed.
Collapse
|
3
|
He K, Li W, Tang L, Li W, Lv S, Xing D. Suppressing Methane Production to Boost High-Purity Hydrogen Production in Microbial Electrolysis Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11931-11951. [PMID: 35969804 DOI: 10.1021/acs.est.2c02371] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogen gas (H2) is an attractive fuel carrier due to its high specific enthalpy; moreover, it is a clean source of energy because in the combustion reaction with oxygen (O2) it produces water as the only byproduct. The microbial electrolysis cell (MEC) is a promising technology for producing H2 from simple or complex organics present in wastewater and solid wastes. Methanogens and non-archaeal methane (CH4)-producing microorganisms (NAMPMs) often grow in the MECs and lead to rapid conversion of produced H2 to CH4. Moreover, non-archaeal methane production (NAMP) catalyzed by nitrogenase of photosynthetic bacteria was always overlooked. Thus, suppression of CH4 production is required to enhance H2 yield and production rate. This review comprehensively addresses the principles and current state-of-the-art technologies for suppressing methanogenesis and NAMP in MECs. Noteworthy, specific strategies aimed at the inhibition of methanogenic enzymes and nitrogenase could be a more direct approach than physical and chemical strategies for repressing the growth of methanogenic archaea. In-depth studies on the multiomics of CH4 metabolism can possibly provide insights into sustainable and efficient approaches for suppressing metabolic pathways of methanogenesis and NAMP. The main objective of this review is to highlight key concepts, directions, and challenges related to boosting H2 generation by suppressing CH4 production in MECs. Finally, perspectives are briefly outlined to guide and advance the future direction of MECs for production of high-purity H2 based on genetic and metabolic engineering and on the interspecific interactions.
Collapse
Affiliation(s)
- Kuanchang He
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Wei Li
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Longxiang Tang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Wei Li
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Sihao Lv
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
4
|
N-doped Macroporous Carbon Loading Mo2C as Cathode Electrocatalyst of Hybrid Neutral-alkaline Microbial Electrolysis Cells for H2 Generation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Kim B, Yang E, Kim B, Obaid M, Jang JK, Chae KJ. Recent Application of Nanomaterials to Overcome Technological Challenges of Microbial Electrolysis Cells. NANOMATERIALS 2022; 12:nano12081316. [PMID: 35458023 PMCID: PMC9028323 DOI: 10.3390/nano12081316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022]
Abstract
Microbial electrolysis cells (MECs) have attracted significant interest as sustainable green hydrogen production devices because they utilize the environmentally friendly biocatalytic oxidation of organic wastes and electrochemical proton reduction with the support of relatively lower external power compared to that used by water electrolysis. However, the commercialization of MEC technology has stagnated owing to several critical technological challenges. Recently, many attempts have been made to utilize nanomaterials in MECs owing to the unique physicochemical properties of nanomaterials originating from their extremely small size (at least <100 nm in one dimension). The extraordinary properties of nanomaterials have provided great clues to overcome the technological hurdles in MECs. Nanomaterials are believed to play a crucial role in the commercialization of MECs. Thus, understanding the technological challenges of MECs, the characteristics of nanomaterials, and the employment of nanomaterials in MECs could be helpful in realizing commercial MEC technologies. Herein, the critical challenges that need to be addressed for MECs are highlighted, and then previous studies that used nanomaterials to overcome the technological difficulties of MECs are reviewed.
Collapse
Affiliation(s)
- Byeongcheol Kim
- Technology Development Division, Korea Institute for Water Technology Certification (KIWATEC), 20 Gukgasandan-daero 40-gil, Guji-myeon, Dalseong-gun, Daegu 43008, Korea;
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea
| | - Euntae Yang
- Department of Marine Environmental Engineering, College of Marine Science, Gyeongsang National University, Tongyoung 53064, Korea
- Correspondence:
| | - Bongkyu Kim
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54596, Korea;
| | - M. Obaid
- Chemical Engineering Department, Faculty of Engineering, Minia University, Al-Minya 61111, Egypt;
| | - Jae Kyung Jang
- Energy and Environmental Engineering Division, Department of Agricultural Engineering, National Institute of Agricultural Sciences, Rural Development Administration, 310 Nongsaengmyeong-ro, Deokjin-gu, Jeonju-si 54875, Korea;
| | - Kyu-Jung Chae
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Korea;
- Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Korea
| |
Collapse
|