1
|
Huang Y, Chen K, Kong D, Song B, Zhang X, Liu Q, Yuan J. A Ratiometric Time-Gated Luminescence Probe for Imaging H 2O 2 in Endoplasmic Reticulum of Living Cells and Its Application to Smartphone-Guided Bioimaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407631. [PMID: 39588891 DOI: 10.1002/smll.202407631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/23/2024] [Indexed: 11/27/2024]
Abstract
The significance of H2O2 as a marker of reactive oxygen species (ROS) and oxidative stress in living organisms has spurred growing interest in its roles in inflammation and disease progression. In this report, a ratiometric time-gated luminescence (RTGL) probe is proposed based on mixed lanthanide complexes, ER-BATTA-Tb3+/Eu3+, for imaging the H2O2 generation both in vitro and in vivo. Upon exposure to H2O2, the probe undergoes cleavage of the benzyl boric acid group, releasing hydroxyl (─OH) groups, which significantly reduces the emission of the Eu3+ complex while slightly increasing the emission of the Tb3+ complex. This response allows the I540/I610 ratio to be used as an indicator for monitoring the H2O2 level changes. The probes are capable of selectively accumulating in the endoplasmic reticulum (ER), allowing effective imaging of H2O2 in the ER of living cells and liver-injured mice under oxidative stress. Moreover, by integrating ER-BATTA-Tb3+/Eu3+ into (polyethylene glycol) PEG hydrogels, the H2O2-responsive smart sensor films, PEG-H2O2-Sensor films, are created, which enable the real-time monitoring of H2O2 levels in various wounds using a smartphone imaging platform and R/G channel evaluation. The sensor films are also innovatively applied for the in situ monitoring of H2O2 in brains of epileptic rats, facilitating the precise assessment of brain damage. This study provides a valuable tool for the quantitative detection of H2O2 in vitro and in vivo, as well as for the clinical monitoring and treatment of H2O2-related diseases in multiple scenarios.
Collapse
Affiliation(s)
- Yundi Huang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Kaiwen Chen
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Deshu Kong
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Bo Song
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xinyue Zhang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Qi Liu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Jingli Yuan
- College of Life Science, Dalian Minzu University, Dalian, 116600, China
| |
Collapse
|
2
|
Basu P, Banerjee A, Okoro PD, Masoumi A, Kanjilal B, Akbari M, Martins‐Green M, Armstrong DG, Noshadi I. Integration of Functional Polymers and Biosensors to Enhance Wound Healing. Adv Healthc Mater 2024; 13:e2401461. [PMID: 39235365 PMCID: PMC11582501 DOI: 10.1002/adhm.202401461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/17/2024] [Indexed: 09/06/2024]
Abstract
Biosensors have led to breakthroughs in the treatment of chronic wounds. Since the discovery of the oxygen electrode by Clarke, biosensors have evolved into the design of smart bandages that dispense drugs to treat wounds in response to physiological factors, such as pH or glucose concentration, which indicate pathogenic tendencies. Aptamer-based biosensors have helped identify and characterize pathogenic bacteria in wounds that often form antibiotic-resistant biofilms. Several functional polymers have served as indispensable parts of the fabrication of these biosensors. Beginning with natural polymers such as alginate, chitosan, and silk-based fibroin, which are biodegradable and absorptive, advances have been made in formulating biocompatible synthetic polymers such as polyurethane and polyethylene glycol designed to reduce non-specific binding of proteins and cells, making biosensors less painful or cumbersome for patient use. Recently, polycaprolactone has been developed, which offers ductility and a large surface-area-to-volume ratio. There is still room for advances in the fabrication and use of biosensors for wound healing and in this review, the trend in developing biosensors from biomarker detection to smart dressings to the incorporation of machine learning in designing customized wound patches while making application easier is highlighted and can be used for a long time.
Collapse
Affiliation(s)
- Proma Basu
- Department of BioengineeringUniversity of California, RiversideRiversideCA92521USA
| | - Aihik Banerjee
- Department of BioengineeringUniversity of California, RiversideRiversideCA92521USA
| | - Prince David Okoro
- Department of BioengineeringUniversity of California, RiversideRiversideCA92521USA
| | | | - Baishali Kanjilal
- Department of BioengineeringUniversity of California, RiversideRiversideCA92521USA
| | - Mohsen Akbari
- Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
| | - Manuela Martins‐Green
- Department of Molecular Cellular and Systems BiologyUniversity of California, RiversideRiversideCA92521USA
| | - David G. Armstrong
- Keck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
| | - Iman Noshadi
- Department of BioengineeringUniversity of California, RiversideRiversideCA92521USA
| |
Collapse
|
3
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
4
|
Zou J, Song B, Kong D, Dong Z, Liu Q, Yuan J. Responsive β-Diketonate-europium(III) Complex-Based Probe for Time-Gated Luminescence Detection and Imaging of Hydrogen Sulfide In Vitro and In Vivo. Inorg Chem 2024; 63:13244-13252. [PMID: 38981109 DOI: 10.1021/acs.inorgchem.4c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
As a crucial biological gasotransmitter, hydrogen sulfide (H2S) plays important roles in many pathological and physiological processes. Highly selective and sensitive detection of H2S is significant for the precise diagnosis and evaluation of diverse diseases. Nevertheless, challenges remain in view of the interference of autofluorescence in organisms and the stronger reactivity of H2S itself. Herein, we report the design and synthesis of a novel H2S-responsive β-diketonate-europium(III) complex-based probe, [Eu(DNB-Npketo)3(terpy)], for background-free time-gated luminescence (TGL) detection and imaging of H2S in autofluorescence-rich biological samples. The probe, consisting of a 2,4-dinitrobenzenesulfonyl (DNB) group coupled to a β-diketonate-europium(III) complex, shows almost no luminescence owing to the existence of intramolecular photoinduced electron transfer. The cleavage of the DNB group by a H2S-triggered reaction results in the recovery of the long-lived luminescence of the Eu3+ complex, allowing the detection of H2S in complicated biological samples to be performed in TGL mode. The probe showed a fast response, high specificity, and high sensitivity toward H2S, which enabled it to be successfully used for the quantitative TGL detection of H2S in tissue homogenates of mouse organs. Additionally, the low cytotoxicity of the probe allowed it to be further used for the TGL imaging of H2S in living cells and mice under different stimuli. All of the results suggested the potential of the probe for the investigation and diagnosis of H2S-related diseases.
Collapse
Affiliation(s)
- Jinhua Zou
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Bo Song
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Deshu Kong
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Zhiyuan Dong
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Qi Liu
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jingli Yuan
- College of Life Science, Dalian Minzu University, 18 Liaohe West Road, Jinzhou New District, Dalian 116600, China
| |
Collapse
|
5
|
Dong Z, Song B, Ma H, Gao X, Zhang W, Yuan J. A strategy to enhance the water solubility of luminescent β-diketonate-Europium(III) complexes for time-gated luminescence bioassays. Talanta 2024; 274:126000. [PMID: 38608630 DOI: 10.1016/j.talanta.2024.126000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Luminescent β-diketonate-europium(III) complexes have been found a wide range of applications in time-gated luminescence (TGL) bioassays, but their poor water solubility is a main problem that limits their effective uses. In this work we propose a simple and general strategy to enhance the water solubility of luminescent β-diketonate-europium(III) complexes that permits facile synthesis and purification. By introducing the fluorinated carboxylic acid group into the structures of β-diketone ligands, two highly water-soluble and luminescent Eu3+ complexes, PBBHD-Eu3+ and CPBBHD-Eu3+, were designed and synthesized. An excellent solubility exceeding 20 mg/mL for PBBHD-Eu3+ was found in a pure aqueous buffer, while it also displayed strong and long-lived luminescence (quantum yield φ = 26%, lifetime τ = 0.49 ms). After the carboxyl groups of PBBHD-Eu3+ were activated, the PBBHD-Eu3+-labeled streptavidin-bovine serum albumin (SA-BSA) conjugate was prepared, and successfully used for the immunoassay of human α-fetoprotein (AFP) and the imaging of an environmental pathogen Giardia lamblia under TGL mode, which demonstrated the practicability of PBBHD-Eu3+ for highly sensitive TGL bioassays. The carboxyl groups of PBBHD can also be easily derivatized with other reactive chemical groups, which enables PBBHD-Eu3+ to meet diverse requirements of biolabeling technique, to provide new opportunities for developing functional europium(III) complex biolabels serving for TGL bioassays.
Collapse
Affiliation(s)
- Zhiyuan Dong
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Bo Song
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| | - Hua Ma
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xiaona Gao
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Wenzhu Zhang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Jingli Yuan
- College of Life Science, Dalian Minzu University, 18 Liaohe West Road, Jinzhou New District, Dalian, 116600, China.
| |
Collapse
|
6
|
Wang M, Kitagawa Y, Hasegawa Y. Current Development of Lanthanide Complexes for Biomedical Applications. Chem Asian J 2024; 19:e202400038. [PMID: 38348520 DOI: 10.1002/asia.202400038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/09/2024] [Indexed: 03/01/2024]
Abstract
Luminescent molecule-based bioimaging system is widely used for precise localization and distinction of cancer/tumor cells. Luminescent lanthanide (Ln(III)) complexes offer long-lived (sub-millisecond time scale) and sharp (FWHM <10 nm) emission, arising from the forbidden 4f-4f electronic transitions. Luminescent Ln(III) complex-based bioimaging has emerged as a promising option for both in vitro and in vivo visualizations. In this mini-review, the historical development and recent significant progress of luminescent Ln(III) probes for bioapplications are introduced. The recent studies are mainly focused on three points: (i) the structural modifications of Ln(III) complexes in both macrocyclic and small ligands, (ii) the acquirement of high resolution luminescence images of cancer/tumor cells and (iii) the constructions of ratiometric biosensors. Furthermore, our recent study is explained as a new Cancer GPS (cancer grade probing for determining tumor grade through photophysical property analyses of intracellular Eu(III) complex.
Collapse
Affiliation(s)
- Mengfei Wang
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Yuichi Kitagawa
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Yasuchika Hasegawa
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| |
Collapse
|
7
|
Liu Q, Li X, Xiao M, Ai Y, Liu G, Ding H, Pu S. A "Turn-on" Fluorescent Probe Based on Phenothiazine for Selectively Recognizing ClO - and its Practical Applications. J Fluoresc 2023; 33:2451-2459. [PMID: 37129794 DOI: 10.1007/s10895-023-03215-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Hypochlorous acid (HClO), a highly reactive oxygen species, has important effects on human health. High selectivity and sensitivity remain challenges of fluorescent probes for detection of ClO- with a large Stokes shift. This work designed and synthesized a novel phenothiazine-based fluorescent probe TF which can detect ClO- by colorimetric and fluorescent dual signals. TF displayed turn-on fluorescence effect toward ClO- with high selectivity (≥ 28-folds) and sensitivity (LOD = 0.472 μM), fast response time (< 1 min) and large Stokes shift (150 nm) in PBS (pH = 7.4, 40% DMSO). Meanwhile, TF can visualize ClO- on the mung bean sprouts model and apply as testing strips for portable and rapid detecting ClO- by the naked eyes. A phenothiazine-based fluorescent probe with large Stokes shift was synthesized and its responding rapidly ability to detect ClO- was studied.
Collapse
Affiliation(s)
- Qianling Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Xue Li
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Ming Xiao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Yin Ai
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Haichang Ding
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China.
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China.
- Department of Ecology and Environment, Yuzhang Normal University, Nanchang, 330103, People's Republic of China.
| |
Collapse
|
8
|
Liu C, Li Z, Zhang H, Yu H, Yan J, Wei D, Song Z, Cao J, Sun Y. Visualization of the elevated levels of hypochlorous acid in Alzheimer's disease with a ruthenium(II) complex-based luminescence probe. Anal Chim Acta 2023; 1279:341779. [PMID: 37827677 DOI: 10.1016/j.aca.2023.341779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 10/14/2023]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder that devastatingly affects people's lives. Accumulating evidence indicates that the pathological progression of AD is inseparably connected with hypochlorous acid (HClO). However, further exploring the biological function remains an open challenging due to a lack of effective tools to image HClO in AD brains. To this end, a ruthenium(II) luminescence probe, Ru-HClO, is developed for quantitative detection and visualization of HClO in nerve cells and AD brains. Ru-HClO shows quenched luminescence due to the PET process (excited electron transfer from Ru(II) center to diaminomaleonitrile) and the CN bond isomerization in the excited state. The HClO-triggered specific cleavage reaction with Ru-HClO cleaves the CN bond to form highly luminescent Ru-COOH. Ru-HClO shows rapid response speed, high sensitivity and selectivity, excellent biocompatibility, which makes the probe to be applied to semi-quantitative analysis of HClO in nerve cells and high-throughput screening of anti-AD drugs in the AD cell model. Moreover, using Ru-HClO as a probe, present work further validated that the elevated levels of HClO secretion were accompanied by the AD progressed. These findings may provide valuable results for figuring out the biological roles that HClO played in AD but also for accelerating anti-AD therapeutic discovery.
Collapse
Affiliation(s)
- Chaolong Liu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China.
| | - Zhipeng Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Hao Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Hongli Yu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Dengshuai Wei
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Zhenhua Song
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Jie Cao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
9
|
Luo P, Gao FQ, Sun W, Li JY, Wang C, Zhang QY, Li ZZ, Xu P. Activatable fluorescent probes for imaging and diagnosis of rheumatoid arthritis. Mil Med Res 2023; 10:31. [PMID: 37443101 DOI: 10.1186/s40779-023-00467-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease that is primarily manifested as synovitis and polyarticular opacity and typically leads to serious joint damage and irreversible disability, thus adversely affecting locomotion ability and life quality. Consequently, good prognosis heavily relies on the early diagnosis and effective therapeutic monitoring of RA. Activatable fluorescent probes play vital roles in the detection and imaging of biomarkers for disease diagnosis and in vivo imaging. Herein, we review the fluorescent probes developed for the detection and imaging of RA biomarkers, namely reactive oxygen/nitrogen species (hypochlorous acid, peroxynitrite, hydroxyl radical, nitroxyl), pH, and cysteine, and address the related challenges and prospects to inspire the design of novel fluorescent probes and the improvement of their performance in RA studies.
Collapse
Affiliation(s)
- Pan Luo
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Fu-Qiang Gao
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Wei Sun
- Department of Orthopaedic Surgery of the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jun-You Li
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Cheng Wang
- Department of Orthopaedic Surgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
| | - Qing-Yu Zhang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Zhi-Zhuo Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Peng Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
10
|
Song B, Yan H, Jiang J, Yu J, Huang S, Yuan J. An activatable nanoprobe based on nanocomposites of visible-light-excitable europium(III) complex-anchored MnO 2 nanosheets for bimodal time-gated luminescence and magnetic resonance imaging of tumor cells. Analyst 2023; 148:2493-2500. [PMID: 37183980 DOI: 10.1039/d3an00405h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Bimodal imaging probes that combine magnetic resonance imaging (MRI) and photoluminescence imaging are quite appealing since they can supply both anatomical and molecular information to effectively ameliorate the accuracy of detection. In this study, an activatable nanoprobe, [Eu(BTD)3(DPBT)]@MnO2, for bimodal time-gated luminescence imaging (TGLI) and MRI has been constructed by anchoring visible-light-excitable Eu3+ complexes on lamellar MnO2 nanosheets. Due to the luminescence quenching effect and non-magnetic resonance (MR) activity of MnO2 nanosheets, the developed nanoprobe presents quite weak TGL and MR signals. After exposure to H2O2 or GSH, accompanied by the transformation from MnO2 to Mn2+, the nanoprobe exhibits rapid, sensitive, and selective "turn-on" responses towards GSH and H2O2 in TGL and MR detection modes. Furthermore, the nanoprobe displays high stability, low cytotoxicity, good biocompatibility and water dispersion. Given the high contents of GSH and H2O2 in cancer cells, the nanoprobe was used for the identification of cancer cells by TGLI of intracellular GSH and H2O2, as well as for the tracing of tumor cells in tumor-bearing mice by tumor-targeting in vivo MRI and TGLI of tumor tissues. The research outcomes proved the potential of [Eu(BTD)3(DPBT)]@MnO2 as a useful nanoprobe for the tracing and accurate detection of cancer cells in vitro and in vivo via bimodal TGLI and MRI.
Collapse
Affiliation(s)
- Bo Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Huinan Yan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Jiao Jiang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Jin Yu
- Second Affiliated Hospital, Dalian Medical University, Dalian 116027, China
| | - Shengjun Huang
- Division of Fossil Energy Conversion, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
11
|
Yu GH, Hu HR, Liu RB, Sheng GZ, Niu JJ, Fang Y, Wang KP, Hu ZQ. A triphenylamine-based fluorescence probe for detection of hypochlorite in mitochondria. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122830. [PMID: 37178586 DOI: 10.1016/j.saa.2023.122830] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/31/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
The level of HClO/ClO- in mitochondria is essential to keep the normal function of mitochondria. Therefore, it is meaningful to accurately and quickly monitor ClO- in mitochondria. In this work, a new triphenylamine-based fluorescence probe PDTPA was designed and synthesized, in which pyridinium salt and dicyano-vinyl group were introduced as mitochondria targeting site and reaction site for ClO-. The probe showed high sensitivity and fast fluorescence response (<10 s) in the detection of ClO-. Moreover, the probe PDTPA had good linearity in a wide concentration range of ClO- and its detection limit was calculated as 10.5 μM. Confocal fluorescence images demonstrated that the probe could target mitochondria and track the fluctuations of endogenous/exogenous ClO- levels in the mitochondria of living cells.
Collapse
Affiliation(s)
- Guan-Hua Yu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hao-Ran Hu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Rui-Bin Liu
- Shandong Kangqiao Biotechnology Co. Ltd, Binzhou 256500, China
| | - Guo-Zhu Sheng
- Shandong Kangqiao Biotechnology Co. Ltd, Binzhou 256500, China
| | - Jia-Jie Niu
- Shandong Kangqiao Biotechnology Co. Ltd, Binzhou 256500, China
| | - Ying Fang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Kun-Peng Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Zhi-Qiang Hu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
12
|
Korotkov SM, Sobol KV, Novozhilov AV, Nesterov VP. Effect of Eu3+ on Calcium-Dependent Processes in Vertebrate Myocardium. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022070067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
13
|
Yang J, Chen Y, Zhao L, Zhang J, Luo H. Constructions and Properties of Physically Cross-Linked Hydrogels Based on Natural Polymers. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2137525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Jueying Yang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Yu Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
- Sports & Medicine Integration Research Center (SMIRC), Capital University of Physical Education and Sports, Beijing, China
| | - Lin Zhao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Jinghua Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Hang Luo
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
14
|
Liao Y, Wang S, Song Y, Shi Z, Chen G, Nan X, Feng H, He W. A novel bifunctional fluorescent probe for selectively sensing of Hg2+ or ClO- and its application in living cell imaging. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Shen Y, Zhu C, Wei Y, Chen H, Wu Z, Ye Y, Han DM. Engineering of Portable Smartphone Integrated with Liposome-Encapsulated Curcumin for Onsite Visual Ratiometric Fluorescence Imaging of Hypochlorite. Chemistry 2022; 28:e202200263. [PMID: 35233854 DOI: 10.1002/chem.202200263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 12/18/2022]
Abstract
Precisely onsite monitoring of hypochlorite (ClO- ) is of great significance to guide its rational use, reducing/avoiding its potential threat toward food safety and human health. Considering ClO- could quench fluorescence of curcumin (CCM) by oxidizing the o-methoxyphenol of CCM into benzoquinone, a portable ratiometric fluorescence sensor integrated with smartphone was designed for realizing the visual point-of-care testing (POCT) of ClO- . The amphiphilic phospholipid polymer was used as carrier to wrap curcumin, forming a novel liposome-encapsulated CCM, which provided a scaffold to bind with [Ru(bpy)3 ]2+ through electrostatic interaction, thus assembling [Ru(bpy)3 ]2+ -functionalized liposome-encapsulated CCM ([Ru(bpy)3 ]2+ @CCM-NPs). Further integrated with smartphone, visual imaging of [Ru(bpy)3 ]2+ @CCM-NPs could be achieved and the accurate onsite detection of ClO- could be realized with a detection limit of 66.31 nM and a linear range of 0.2210 to 80.0 μM. In addition, the sensor could monitor ClO- in real samples with an onsite detection time of ∼154.0 s.
Collapse
Affiliation(s)
- Yizhong Shen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - Chunlei Zhu
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - Yunlong Wei
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - Huanhuan Chen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - Zeyu Wu
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - Yingwang Ye
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - De-Man Han
- Engineering Research Center of Recycling & Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province, Taizhou University of Technology, Jiaojiang, 318000, China
| |
Collapse
|
16
|
Huang Z, Xiong C, Huang J, Zhao T, Cao W, Du G, Chen N. Eu 3+ Doped LaF 3 -based Inorganic-organic Hybrid Nanostructured Materials for Broad-spectrum Excitation and Strong Photoluminescence. LUMINESCENCE 2022; 37:944-952. [PMID: 35338676 DOI: 10.1002/bio.4239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 11/08/2022]
Abstract
Inorganic-organic hybrid nanoparticles formed by lanthanide-doped nanostructures and organic ligands have been intensively studied, which could greatly increase their photoluminescence performance as a result of the energy transfer process from organic ligands to Ln3+ ions. However, the photoluminescence intensity and excitation spectral width are still quite limited on coordinating with a single type of organic ligand. In this work, Eu3+ -doped LaF3 (LaF3 :Eu3+ ) nanoparticles were prepared using hydrothermal method, which was then hybridized with benzoic acid and thenoyltrifluoroacetone to form the hybrid nanostructures. After that, the hybrid nanostructures were mixed with 2,2'-azobisisobutyronitrile and methyl methacrylate to prepare the composites. The sample obtained by hybridization and composite doping with 5% Eu3+ exhibited the best photoluminescence performance. The excitation peak width and luminescence intensity of the hybrid nanostructures were significantly increased. The excitation spectral width of the inorganic-organic mixed hybrid nanostructures was particularly enhanced, which covers the whole ultraviolet (UV) band region of solar light on earth. The prepared composites exhibited good optical properties.
Collapse
Affiliation(s)
- Zhiyong Huang
- School of Materials Science and Engineering, Nanchang University, Nanchang, China
| | - Chenhan Xiong
- School of Materials Science and Engineering, Nanchang University, Nanchang, China
| | - Jianhua Huang
- School of Materials Science and Engineering, Nanchang University, Nanchang, China.,Hunan Engineering Laboratory for Control and Optimization of PV Systems, Hunan Vocational Institute of Technology, Xiangtan, China
| | - Tianxiang Zhao
- School of Materials Science and Engineering, Nanchang University, Nanchang, China
| | - Wei Cao
- School of Materials Science and Engineering, Nanchang University, Nanchang, China
| | - Guoping Du
- School of Materials Science and Engineering, Nanchang University, Nanchang, China
| | - Nan Chen
- School of Materials Science and Engineering, Nanchang University, Nanchang, China
| |
Collapse
|
17
|
Ning Y, Jin GQ, Wang MX, Gao S, Zhang JL. Recent progress in metal-based molecular probes for optical bioimaging and biosensing. Curr Opin Chem Biol 2021; 66:102097. [PMID: 34775149 DOI: 10.1016/j.cbpa.2021.102097] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/29/2022]
Abstract
Biological imaging and biosensing from subcellular/cellular level to whole body have enabled non-invasive visualisation of molecular events during various biological and pathological processes, giving great contributions to the rapid and impressive advances in chemical biology, drug discovery, disease diagnosis and prognosis. Optical imaging features a series of merits, including convenience, high resolution, good sensitivity, low cost and the absence of ionizing radiation. Among different luminescent probes, metal-based molecules offer unique promise in optical bioimaging and biosensing in vitro and in vivo, arising from their small sizes, strong luminescence, large Stokes shifts, long lifetimes, high photostability and tunable toxicity. In this review, we aim to highlight the design of metal-based molecular probes from the standpoint of synthetic chemistry in the last 2 years for optical imaging, covering d-block transition metal and lanthanide complexes and multimodal imaging agents.
Collapse
Affiliation(s)
- Yingying Ning
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China; Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i(3)), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, 02129, USA
| | - Guo-Qing Jin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China
| | - Meng-Xin Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, PR China; Spin-X Institute, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, PR China; Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, PR China.
| |
Collapse
|
18
|
Sun G, Xie Y, Sun L, Zhang H. Lanthanide upconversion and downshifting luminescence for biomolecules detection. NANOSCALE HORIZONS 2021; 6:766-780. [PMID: 34569585 DOI: 10.1039/d1nh00299f] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biomolecules play critical roles in biological activities and are closely related to various disease conditions. The reliable, selective and sensitive detection of biomolecules holds much promise for specific and rapid biosensing. In recent years, luminescent lanthanide probes have been widely used for monitoring the activity of biomolecules owing to their long luminescence lifetimes and line-like emission which allow time-resolved and ratiometric analyses. In this review article, we concentrate on recent advances in the detection of biomolecule activities based on lanthanide luminescent systems, including upconversion luminescent nanoparticles, lanthanide-metal organic frameworks, and lanthanide organic complexes. We also introduce the latest remarkable accomplishments of lanthanide probes in the design principles and sensing mechanisms, as well as the forthcoming challenges and perspectives for practical achievements.
Collapse
Affiliation(s)
- Guotao Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Yao Xie
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Lining Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
19
|
Zhao Y, Yao Z, Snow CD, Xu Y, Wang Y, Xiu D, Belfiore LA, Tang J. Stable Fluorescence of Eu 3+ Complex Nanostructures Beneath a Protein Skin for Potential Biometric Recognition. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2462. [PMID: 34578776 PMCID: PMC8469943 DOI: 10.3390/nano11092462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/01/2021] [Accepted: 09/12/2021] [Indexed: 11/16/2022]
Abstract
We designed and realized highly fluorescent nanostructures composed of Eu3+ complexes under a protein coating. The nanostructured material, confirmed by photo-induced force microscopy (PiFM), includes a bottom fluorescent layer and an upper protein layer. The bottom fluorescent layer includes Eu3+ that is coordinated by 1,10-phenanthroline (Phen) and oleic acid (O). The complete complexes (OEu3+Phen) formed higher-order structures with diameter 40-150 nm. Distinctive nanoscale striations reminiscent of fingerprints were observed with a high-resolution transmission electron microscope (HRTEM). Stable fluorescence was increased by the addition of Eu3+ coordinated by Phen and 2-thenoyltrifluoroacetone (TTA), and confirmed by fluorescence spectroscopy. A satisfactory result was the observation of red Eu3+ complex emission through a protein coating layer with a fluorescence microscope. Lanthanide nanostructures of these types might ultimately prove useful for biometric applications in the context of human and non-human tissues. The significant innovations of this work include: (1) the structural set-up of the fluorescence image embedded under protein "skin"; and (2) dual confirmations of nanotopography and unique nanofingerprints under PiFM and under TEM, respectively.
Collapse
Affiliation(s)
- Yue Zhao
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Y.Z.); (Z.Y.); (Y.X.); (Y.W.); (D.X.); (L.A.B.)
| | - Ziyu Yao
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Y.Z.); (Z.Y.); (Y.X.); (Y.W.); (D.X.); (L.A.B.)
| | - Christopher D. Snow
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Yanan Xu
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Y.Z.); (Z.Y.); (Y.X.); (Y.W.); (D.X.); (L.A.B.)
| | - Yao Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Y.Z.); (Z.Y.); (Y.X.); (Y.W.); (D.X.); (L.A.B.)
| | - Dan Xiu
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Y.Z.); (Z.Y.); (Y.X.); (Y.W.); (D.X.); (L.A.B.)
| | - Laurence A. Belfiore
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Y.Z.); (Z.Y.); (Y.X.); (Y.W.); (D.X.); (L.A.B.)
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Y.Z.); (Z.Y.); (Y.X.); (Y.W.); (D.X.); (L.A.B.)
| |
Collapse
|
20
|
Luo P, Xu J, Shen B, Xu P. A Mitochondria‐Targeted Fluorescence Probe for Visualizing Detection of Hypochlorite in Living Cells. ChemistrySelect 2021. [DOI: 10.1002/slct.202102377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Pan Luo
- Department of Joint Surgery HongHui Hospital Xi'an Jiaotong University Xi'an Shanxi 710054 China
| | - Jiawen Xu
- Orthopedic Research Institute Department of Orthopedics Sichuan University West China Hospital 37#Guoxue Road Chengdu 610041 Sichuan Province People's Republic of China
| | - Bin Shen
- Orthopedic Research Institute Department of Orthopedics Sichuan University West China Hospital 37#Guoxue Road Chengdu 610041 Sichuan Province People's Republic of China
| | - Peng Xu
- Department of Joint Surgery HongHui Hospital Xi'an Jiaotong University Xi'an Shanxi 710054 China
| |
Collapse
|
21
|
Yang CM, Yen T, Liu HL, Lin YJ, Lin PY, Tsui LS, Chen CH, Chen YP, Hsu YC, Lo CH, Wu TR, Lai HC, Chin WC, Pijanowska DG, Hwang TL, Lai CS. A real-time mirror-LAPS mini system for dynamic chemical imaging and cell acidification monitoring. SENSORS AND ACTUATORS B: CHEMICAL 2021; 341:130003. [DOI: 10.1016/j.snb.2021.130003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
|