1
|
Guo Z, Cao Y, Tian Y, Fan L, Liu W, Ma Y, Zhang Q, Cao C. Smartphone-deployable and all-in-one machine vision for visual quantification analysis based on distance readout of electrophoresis titration biosensor. Biosens Bioelectron 2025; 267:116832. [PMID: 39368292 DOI: 10.1016/j.bios.2024.116832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
As a class of point-of-care (POC) assays with visible distance readout (thermometer style), the electrophoresis titration (ET) biosensor affords high robustness, versatility, and simplicity for point-of-care quantification. However, naked-eye observation of the distance readout is unreliable in POC settings and manual processing of distance readout is time-consuming. Herein, we developed a smartphone-deployable and all-in-one machine vision for four ET biosensors (bovine serum albumin, melamine, uric acid, glutathione) to classify and quantify the samples simultaneously. To ensure accurate and rapid quantification on the smartphone, we customized the decolorization methods and edge detection operators to balance the region of interest (ROI) extraction performance and processing speed. We then established a dataset of 180 distance readout images to endow our machine vision with the ability to classify four sample types. Consequently, our machine vision demonstrated high accuracy in determining the sample type (>97.2%) and concentration (>97.3%). Moreover, expanding its applications to other targets was readily achieved by including distance readout images of other ET biosensors (e.g., hemoglobin A1c) in the dataset. Therefore, our strategy of constructing machine vision is compatible with the versatile ET biosensor technique, suggesting that the same strategy can be used for other thermometer-style POC assays.
Collapse
Affiliation(s)
- Zehua Guo
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yiren Cao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Youli Tian
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liuyin Fan
- Student Innovation Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weiwen Liu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yixin Ma
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiang Zhang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Chengxi Cao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Guo Z, Cao Y, Fan L, Liu W, Wei L, Ma Y, Ren J, Zhang Q, Cao C. A temperature-independent model of dual calibration standards for onsite and point-of-care quantification analyses via electrophoresis titration chip. Anal Chim Acta 2024; 1289:342207. [PMID: 38245206 DOI: 10.1016/j.aca.2024.342207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024]
Abstract
Electrophoresis titration chip (ETC) is a versatile tool for onsite and point-of-care quantification analyses because it affords naked-eye detection and a straightforward quantification format. However, it is vulnerable to changes in environmental temperature, which regulates the electrophoretic migration by affecting the ion mobility and the target recognition by influencing the enzyme activity. Therefore, the quantification accuracy of the ETC tests was severely compromised. Rather than using the dry bath or heating/cooling units, we proposed a facile model of dual calibration standards (DCS) to mathematically eliminate the effects of temperature on quantification accuracy. To verify our model, we deployed the ETC device at different temperatures ranging from 5 to 40 °C. We further utilized the DCS-ETC to determine the protein content and uric acid concentration in real samples outside the laboratory. All the experimental results showed that our model significantly stabilized the quantification recovery from 35.31-153.44 % to 99.38-103.44 % for protein titration; the recovery of uric acid titration is also stable at 96.25-106.42 %, suggesting the enhanced robustness of the ETC tests. Therefore, DCS-ETC is a field-deployable test that can offer reliable quantification performance without extra equipment for temperature control. We envision that it is promising to be used for onsite applications, including food safety control and disease diagnostics.
Collapse
Affiliation(s)
- Zehua Guo
- School of Sensing Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yiren Cao
- School of Sensing Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liuyin Fan
- Student Innovation Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weiwen Liu
- School of Sensing Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Wei
- Shanghai 6th People's Hospital, Shanghai Jiao Tong University, Shanghai, 200235, China
| | - Yixin Ma
- School of Sensing Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiang Zhang
- School of Sensing Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Chengxi Cao
- School of Sensing Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Hagness DE, Yang Y, Tilley RD, Gooding JJ. The application of an applied electrical potential to generate electrical fields and forces to enhance affinity biosensors. Biosens Bioelectron 2023; 238:115577. [PMID: 37579531 DOI: 10.1016/j.bios.2023.115577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/13/2023] [Accepted: 08/05/2023] [Indexed: 08/16/2023]
Abstract
Affinity biosensors play a crucial role in clinical diagnosis, pharmaceuticals, immunology, and other areas of human health. Affinity biosensors rely on the specific binding between target analytes and biological ligands such as antibodies, nucleic acids, aptamers, or other receptors to primarily generate electrochemical or optical signals. Considerable effort has been put into improving the performance of the affinity technologies to make them more sensitive, efficient and reproducible, of the many approaches electrokinetic phenomena are a viable option. In this perspective, studies that combine electrokinetic phenomena with affinity biosensor are discussed about their promise for achieving higher sensitivity and lower detection limit.
Collapse
Affiliation(s)
- Daniel E Hagness
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Ying Yang
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia; Australia Centre for Nanomedicine, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Richard D Tilley
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia; Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - J Justin Gooding
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia; Australia Centre for Nanomedicine, The University of New South Wales, Sydney, New South Wales, 2052, Australia.
| |
Collapse
|
4
|
Gu M, Gong Y, Wu XM, Dong Y, Wang GL. Surface polarization of BiOI to boost the photoelectrochemical signal transduction for high performance bioassays. Chem Commun (Camb) 2022; 58:4651-4654. [DOI: 10.1039/d2cc00019a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The surface hydroxylation induced polarization (SHIP) is disclosed as an effective tactic to promote the cathodic photoelectrochemical (PEC) communication of bismuth oxyiodide with doxorubicin (Dox) by as large as three...
Collapse
|
5
|
Niu X, Zhao Y, Wang F, Wu J, Qu F, Tan W. Ultrasensitive Photoelectrochemical Biosensor Based on Novel Z-Scheme Heterojunctions of Zn-Defective CdS/ZnS for MicroRNA Assay. Anal Chem 2021; 93:17134-17140. [PMID: 34911298 DOI: 10.1021/acs.analchem.1c04820] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The sensitive and accurate detection of microRNA (miRNA) has meaningful values for clinical diagnosis application as an early stage of tumor markers. Herein, a novel photoelectrochemical (PEC) biosensor was developed for the ultrasensitive and highly selective detection of microRNA-122 (miRNA-122) based on a direct Z-scheme heterojunction of Zn vacancy-mediated CdS/ZnS (CSZS-VZn). Impressively, the prepared Z-scheme heterojunction nanocomposite with defect level properties could make the photogenerated charges stay at the Zn vacancy defect levels and combine photogenerated holes in the valence bands of CdS, thus significantly achieving a better charge carrier separation efficiency and broadening the absorption of visible light and demonstrating 5-8 times enhancement of PEC response compared to single-component materials. Simultaneously, an exonuclease III (Exo-III)-assisted signal amplification strategy and a strand displacement reaction were combined to improve the conversion efficiency of the target and further increase the detection sensitivity. More importantly, the elaborated biosensor showed ultrasensitive and highly specific detection of the target miRNA-122 over a wide linear range from 10 aM to 100 pM with a low detection limit of 3.3 aM and exhibited enormous potential in the fields of bioanalysis and clinical diagnosis.
Collapse
Affiliation(s)
- Xiankang Niu
- Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, 310022 Zhejiang, China.,College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165 Shandong, China
| | - Yan Zhao
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165 Shandong, China
| | - Fang Wang
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165 Shandong, China
| | - Jinghua Wu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165 Shandong, China
| | - Fengli Qu
- Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, 310022 Zhejiang, China.,College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165 Shandong, China
| | - Weihong Tan
- Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, 310022 Zhejiang, China
| |
Collapse
|
6
|
Chen H, Cheng Z, Zhou X, Wang R, Yu F. Emergence of Surface-Enhanced Raman Scattering Probes in Near-Infrared Windows for Biosensing and Bioimaging. Anal Chem 2021; 94:143-164. [PMID: 34812039 DOI: 10.1021/acs.analchem.1c03646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hui Chen
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.,Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Ziyi Cheng
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.,Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Xuejun Zhou
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.,Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Rui Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.,Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Fabiao Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.,Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
7
|
George Kerry R, Ukhurebor KE, Kumari S, Maurya GK, Patra S, Panigrahi B, Majhi S, Rout JR, Rodriguez-Torres MDP, Das G, Shin HS, Patra JK. A comprehensive review on the applications of nano-biosensor-based approaches for non-communicable and communicable disease detection. Biomater Sci 2021; 9:3576-3602. [PMID: 34008586 DOI: 10.1039/d0bm02164d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The outstretched applications of biosensors in diverse domains has become the reason for their attraction for scientific communities. Because they are analytical devices, they can detect both quantitative and qualitative biological components through the generation of detectable signals. In the recent past, biosensors witnessed significant changes and developments in their design as well as features. Nanotechnology has revolutionized sensing phenomena by increasing biodiagnostic capacity in terms of specificity, size, and cost, resulting in exceptional sensitivity and flexibility. The steep increase of non-communicable diseases across the world has emerged as a matter of concern. In parallel, the abrupt outbreak of communicable diseases poses a serious threat to mankind. For decreasing the morbidity and mortality associated with various communicable and non-communicable diseases, early detection and subsequent treatment are indispensable. Detection of different biological markers generates quantifiable signals that can be electrochemical, mass-based, optical, thermal, or piezoelectric. Speculating on the incumbent applicability and versatility of nano-biosensors in large disciplines, this review highlights different types of biosensors along with their components and detection mechanisms. Moreover, it deals with the current advancements made in biosensors and the applications of nano-biosensors in detection of various non-communicable and communicable diseases, as well as future prospects of nano-biosensors for diagnostics.
Collapse
Affiliation(s)
- Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | - Kingsley Eghonghon Ukhurebor
- Climatic/Environmental/Telecommunication Unit, Department of Physics, Edo University Iyamho, P.B.M. 04, Auchi, 312101, Edo State, Nigeria
| | - Swati Kumari
- Biopioneer Private limited, Bhubaneswar, Odisha 751024, India
| | - Ganesh Kumar Maurya
- Zoology Section, Mahila MahaVidyalya, Banaras Hindu University, Varanasi-221005, India
| | - Sushmita Patra
- Department of Biotechnology, North Odissa University, Takatpur, Baripada, Odisha 757003, India
| | - Bijayananda Panigrahi
- Biopioneer Private limited, Bhubaneswar, Odisha 751024, India and School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| | - Sanatan Majhi
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | | | - María Del Pilar Rodriguez-Torres
- Departamento de Ingeniería Molecular de Materiales, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Blvd Juriquilla 3001, 76230, Querétaro, Mexico
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, Republic of Korea.
| | - Han-Seung Shin
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyangsi, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, Republic of Korea.
| |
Collapse
|
8
|
Zhang Q, Guo Z, Luo F, Xiao H, Liu W, Fan L, Cao C. Model, Simulation, and Experiments on Moving Exchange Boundary via Ligand and Quantum Dots in Chip Electrophoresis. Anal Chem 2021; 93:5360-5364. [PMID: 33754711 DOI: 10.1021/acs.analchem.1c00242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, the quench model of the moving exchange boundary (MEB) was first created via a ligand of 5,5'-dithiobis(2-nitro-benzoic acid) (DTNB) and group of 3-mercaptopropionic acid (MPA) capped on QDs, and then the recovery model was formed via MPA and 2-nitro-5-thiobenzoic acid (TNB) capped on QDs. The theory on MEB dynamics and width was developed based on the two reversible models, the simulation was conducted for the illumination of MEB, and the protocol was described for the MEB runs. The experiments revealed that (i) the quench model could be created via DTNB and MPA capped on QDs and the recovery one could be in situ formed via MPA and TNB capped on QDs, showing the feasibility of MEB models; (ii) the simulations on MEB dynamics and width were in coincidence with the theoretic predictions, showing the validity of two models; and (iii) the experiments demonstrated the validity of models, predictions, and simulations. The models and theory have potential for development of a biosensor, nanoparticle characterization, separation science, and an affinity assay of ligand-QDs.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Instrument Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zehua Guo
- Department of Instrument Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fang Luo
- School of Life Science and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hua Xiao
- School of Life Science and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weiwen Liu
- Department of Instrument Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liuyin Fan
- Student Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengxi Cao
- Department of Instrument Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,School of Life Science and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China.,Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|