1
|
Liu Y, Liu S, Huang J, Zhou J, He F. Development of SPQC sensor based on the specific recognition of TAL-effectors for locus-specific detection of 6-methyladenine in DNA. Talanta 2024; 277:126279. [PMID: 38810382 DOI: 10.1016/j.talanta.2024.126279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/09/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024]
Abstract
N6-methyladenosine (6mA) plays a pivotal role in diverse biological processes, including cancer, bacterial toxin secretion, and bacterial drug resistance. However, to date there has not been a selective, sensitive, and simple method for quantitative detection of 6mA at single base resolution. Herein, we present a series piezoelectric quartz crystal (SPQC) sensor based on the specific recognition of transcription-activator-like effectors (TALEs) for locus-specific detection of 6mA. Detection sensitivity is enhanced through the use of a hybridization chain reaction (HCR) in conjunction with silver staining. The limit of detection (LOD) of the sensor was 0.63 pM and can distinguish single base mismatches. We demonstrate the applicability of the sensor platform by quantitating 6mA DNA at a specific site in biological matrix. The SPQC sensor presented herein offers a promising platform for in-depth study of cancer, bacterial toxin secretion, and bacterial drug resistance.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Shuyi Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Ji Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Jiandang Zhou
- Department of Clinical Laboratory, The Third Xiangya Hospital, Xiangya Medical College of Central South University, Changsha, 410013, PR China.
| | - Fengjiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
2
|
Povedano E, Ruiz-Valdepeñas Montiel V, Sebuyoya R, Torrente-Rodríguez RM, Garranzo-Asensio M, Montero-Calle A, Pingarrón JM, Barderas R, Bartosik M, Campuzano S. Bringing to Light the Importance of the miRNA Methylome in Colorectal Cancer Prognosis Through Electrochemical Bioplatforms. Anal Chem 2024; 96:4580-4588. [PMID: 38348822 PMCID: PMC10955513 DOI: 10.1021/acs.analchem.3c05474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 03/20/2024]
Abstract
This work reports the first electrochemical bioplatforms developed for the determination of the total contents of either target miRNA or methylated target miRNA. The bioplatforms are based on the hybridization of the target miRNA with a synthetic biotinylated DNA probe, the capture of the formed DNA/miRNA heterohybrids on the surface of magnetic microcarriers, and their recognition with an antibody selective to these heterohybrids or to the N6-methyladenosine (m6A) epimark. The determination of the total or methylated target miRNA was accomplished by labeling such secondary antibodies with the horseradish peroxidase (HRP) enzyme. In both cases, amperometric transduction was performed on the surface of disposable electrodes after capturing the resulting HRP-tagged magnetic bioconjugates. Because of their increasing relevance in colorectal cancer (CRC) diagnosis and prognosis, miRNA let-7a and m6A methylation were selected. The proposed electrochemical bioplatforms showed attractive analytical and operational characteristics for the determination of the total and m6A-methylated target miRNA in less than 75 min. These bioplatforms, innovative in design and application, were applied to the analysis of total RNA samples extracted from cultured cancer cells with different metastatic profiles and from paired healthy and tumor tissues of patients diagnosed with CRC at different stages. The obtained results demonstrated, for the first time using electrochemical platforms, the potential of interrogating the target miRNA methylation level to discriminate the metastatic capacities of cancer cells and to identify tumor tissues and, in a pioneering way, the potential of the m6A methylation in miRNA let-7a to serve as a prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Eloy Povedano
- Departamento
de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid 28040, Spain
| | - Víctor Ruiz-Valdepeñas Montiel
- Departamento
de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid 28040, Spain
| | - Ravery Sebuyoya
- Research
Centre for Applied Molecular Oncology, Masaryk
Memorial Cancer Institute, Zluty kopec 7, Brno 656
53, Czech Republic
- National
Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Rebeca M. Torrente-Rodríguez
- Departamento
de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid 28040, Spain
| | - Maria Garranzo-Asensio
- Chronic
Disease Programme, UFIEC, Institute of Health
Carlos III, Majadahonda, Madrid 28220, Spain
| | - Ana Montero-Calle
- Chronic
Disease Programme, UFIEC, Institute of Health
Carlos III, Majadahonda, Madrid 28220, Spain
| | - José M. Pingarrón
- Departamento
de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid 28040, Spain
| | - Rodrigo Barderas
- Chronic
Disease Programme, UFIEC, Institute of Health
Carlos III, Majadahonda, Madrid 28220, Spain
| | - Martin Bartosik
- Research
Centre for Applied Molecular Oncology, Masaryk
Memorial Cancer Institute, Zluty kopec 7, Brno 656
53, Czech Republic
| | - Susana Campuzano
- Departamento
de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid 28040, Spain
| |
Collapse
|
3
|
Hu J, Zhang YT, Han Y, Ma F, Li CZ, Cui L, Zhang CY. Methylation-Powered Assembly of a Single Quantum Dot-Based FRET Nanosensor for Antibody-Free and Enzyme-Free Monitoring of Locus-Specific N6-Methyladenosine in Clinical Tissues. Anal Chem 2023; 95:17945-17953. [PMID: 38000786 DOI: 10.1021/acs.analchem.3c04571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
N6-Methyladenosine (m6A) is the most pervasive and evolutionarily conserved epitranscriptomic modification in long noncoding RNA (lncRNA), and its dysregulation may induce aberrant transcription and translation programs. Herein, we demonstrate the methylation-powered assembly of a single quantum dot (QD)-based fluorescence resonance energy transfer (FRET) nanosensor for antibody- and enzyme-free monitoring of locus-specific m6A in clinical tissues. The m6A-sensitive DNAzyme VMC10 is employed to identify a specific m6A site in lncRNA, and it catalyzes the hydrolytic cleavage of unmethylated lncRNA. The cleaved lncRNA fails to trigger the subsequent catalytic hairpin assembly (CHA) reaction due to the energy barrier. In contrast, when m6A-lncRNA is present, the methyl group in m6A protects lncRNA from VMC10-mediated cleavage. With the aid of an assistant probe, the retained intact m6A-lncRNA is released from the VMC10/lncRNA complex and subsequently triggers the CHA reaction, generating abundant AF647/biotin dual-labeled duplexes. The assembly of AF647/biotin dual-labeled duplexes onto 605QD results in efficient FRET between 605QD and AF647. The FRET signal can be simply quantified by single-molecule detection. Notably, this assay can be implemented in an antibody-free and enzyme-free manner. This nanosensor can sensitively quantify target m6A with a detection limit of 0.47 fM, and it can discriminate as low as a 0.001% m6A level from excess coexisting counterparts. Importantly, this nanosensor can monitor the cellular m6A level with single-cell sensitivity and profile target m6A expression in breast cancer and healthy para-cancerous tissues, providing a powerful tool for studying the physiological and pathological functions of m6A.
Collapse
Affiliation(s)
- Jinping Hu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ya-Ting Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Yun Han
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chen-Zhong Li
- Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Lin Cui
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
4
|
Li S, Shi J, Yang X, Qiao Y, Jiang Y, Zhou Y, Li Y, Zhang C. Washing-Free Electrochemiluminescence Biosensor for the Simultaneous Determination of N6 Methyladenosines Incorporating a Tri-Double Resolution Strategy. ACS Sens 2023; 8:2771-2779. [PMID: 37421370 DOI: 10.1021/acssensors.3c00679] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
We propose a novel washing-free electrochemiluminescence (ECL) biosensor for the simultaneous detection of two types of N6 methyladenosines-RNAs (m6A-RNAs), which are potential cancer biomarkers, on the basis of binding-induced DNA strand displacement (BINSD). The biosensor integrated a tri-double resolution strategy that combined spatial and potential resolution, hybridization and antibody recognition, and ECL luminescence and quenching. The biosensor was fabricated by separately immobilizing two ECL reagents (gold nanoparticles/g-C3N4 nanosheets and ruthenium bipyridine derivative/gold nanoparticles/Nafion) and the capture DNA probe on the two sections of glassy carbon electrode. As a proof of concept, m6A-Let-7a-5p and m6A-miR-17-5p were chosen as model analytes, while m6A antibody-DNA3/ferrocene-DNA4/ferrocene-DNA5 was designed as an m6A-binding probe and DNA6/DNA7 was designed as a hybridization probe with DNA3 to release the quenching probes ferrocene-DNA4/ferrocene-DNA5. The recognition process led to the quenching of the ECL signals from both probes via BINSD. The proposed biosensor has the advantage of being washing-free. The ECL methods using the fabricated ECL biosensor with the designed probes exhibited a low detection limit of 0.03 pM for two m6A-RNAs and high selectivity. This work reveals that this strategy is promising for developing an ECL method for the simultaneous detection of two m6A-RNAs. The proposed strategy could be expanded to develop the analytical methods for the simultaneous detection of other RNA modifications by changing the antibody and hybridization probe sequences.
Collapse
Affiliation(s)
- Sijia Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Jiayue Shi
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Xia Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yanxia Qiao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yang Jiang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yaqian Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yan Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| |
Collapse
|
5
|
Bao J, Ding K, Zhu Y. An electrochemical biosensor for detecting DNA methylation based on AuNPs/rGO/g-C 3N 4 nanocomposite. Anal Biochem 2023; 673:115180. [PMID: 37146956 DOI: 10.1016/j.ab.2023.115180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
DNA methylation as a ubiquitously regulation is closely associated with cell proliferation and differentiation. Growing data shows that aberrant methylation contributes to disease incidence, especially in tumorigenesis. The approach for identifying DNA methylation usually depends on treatment of sodium bisulfite, which is time-consuming and conversion-insufficient. Here, with a special biosensor, we establish an alternative approach for detecting DNA methylation. The biosensor is consisted of two parts, which are gold electrode and nanocomposite (AuNPs/rGO/g-C3N4). Nanocomposite was fabricated by three components, which are gold nanoparticles (AuNPs), reduced graphene oxide (rGO) and graphite carbon nitride (g-C3N4). For methylated DNA detection, the target DNA was captured by probe DNA immobilized on the gold electrode surface through thiolating process and subjected to hybrid with anti-methylated cytosine conjugated to nanocomposite. When the methylated cytosines in target DNA were recognized by anti-methylated cytosine, a change of electrochemical signals will be observed. With different size of target DNAs, the concentration and methylation level were tested. It is shown that in short size methylated DNA fragment, the linear range and LOD of concentration is 10-7M-10-15M and 0.74 fM respectively; in longer size methylated DNA, the linear range of methylation proportion and LOD of copy number is 3%-84% and 103 respectively. Also, this approach has a high sensitivity and specificity as well as anti-disturbing ability.
Collapse
Affiliation(s)
- Junming Bao
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, PR China
| | - Kejian Ding
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, PR China.
| | - Yunfeng Zhu
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, PR China.
| |
Collapse
|
6
|
Wang ZY, Li P, Hu J, Xu Q, Zhang CY. Construction of a Single-Molecule Biosensor for Antibody-Free Detection of Locus-Specific N6-Methyladenosine in Cancer Cells and Tissues. Anal Chem 2023; 95:5454-5462. [PMID: 36930460 DOI: 10.1021/acs.analchem.3c00730] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
N6-Methyladenosine (m6A) has emerged as a key post-transcriptional regulator in mRNA metabolism, and its dysregulation is associated with multiple human diseases. Herein, we construct a single-molecule fluorescent biosensor for antibody-free detection of locus-specific m6A in cancer cells and tissues. A 5'-biotinylated capture probe and a 3'-hydroxylated assistant probe are designed for the recognition of specific m6A-mRNA. The m6A-sensitive endoribonuclease MazF can identify and cleave the unmethylated mRNA, and the retained intact m6A-mRNA can hybridize with assistant probes and capture probes to achieve sandwich hybrids. The sandwich hybrids are immobilized on magnetic beads (MBs) to initiate the terminal deoxynucleotidyl transferase (TdT)-assisted polymerization, facilitating the continuous incorporation of Cy5-dATP to form long Cy5-polyA tails for the production of an on-bead amplified fluorescence signal. After magnetic separation and exonuclease digestion, numerous Cy5 fluorophores are released and subsequently measured by single-molecule detection. Especially, this biosensor is implemented simply and isothermally without the involvement of either radiolabeling or m6A-specific antibody. Moreover, this biosensor shows ultrahigh sensitivity with a detection limit of 2.24 × 10-17 M, and it can discriminate a 0.01% m6A level from a large pool of coexisting counterparts. Furthermore, this biosensor can be used for monitoring cellular m6A-mRNA expression and differentiating the m6A level in the breast cancer patient tissues from that in the healthy person tissues, providing a new avenue for clinical diagnosis and epitranscriptomic research.
Collapse
Affiliation(s)
- Zi-Yue Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Peng Li
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Jinping Hu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Qinfeng Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
7
|
Ding JH, Chen MY, Xie NB, Xie C, Xiong N, He JG, Wang J, Guo C, Feng YQ, Yuan BF. Quantitative and site-specific detection of inosine modification in RNA by acrylonitrile labeling-mediated elongation stalling. Biosens Bioelectron 2023; 219:114821. [PMID: 36279821 DOI: 10.1016/j.bios.2022.114821] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/04/2022] [Accepted: 10/14/2022] [Indexed: 11/19/2022]
Abstract
RNA molecules contain diverse modifications that play crucial roles in a wide variety of biological processes. Inosine is one of the most prevalent modifications in RNA and dysregulation of inosine is correlated with many human diseases. Herein, we established an acrylonitrile labeling-mediated elongation stalling (ALES) method for quantitative and site-specific detection of inosine in RNA from biological samples. In ALES method, inosine is selectively cyanoethylated with acrylonitrile to form N1-cyanoethylinosine (ce1I) through a Michael addition reaction. The N1-cyanoethyl group of ce1I compromises the hydrogen bond between ce1I and other nucleobases, leading to the stalling of reverse transcription at original inosine site. This specific property of stalling at inosine site could be evaluated by subsequent real-time quantitative PCR (qPCR). With the proposed ALES method, we found the significantly increased level of inosine at position Chr1:63117284 of Ino80dos RNA of multiple tissues from sleep-deprived mice compared to the control mice. This is the first report on the investigation of inosine modification in sleep-deprived mice, which may open up new direction for deciphering insomnia from RNA modifications. In addition, we found the decreased level of inosine at GluA2 Q/R site (Chr4:157336723) in glioma tissues, indicating the decreased level of inosine at GluA2 Q/R site may serve as potential indicator for the diagnosis of glioma. Taken together, the proposed ALES method is capable of quantitative and site-specific detection of inosine in RNA, which provides a valuable tool to uncover the functions of inosine in human diseases.
Collapse
Affiliation(s)
- Jiang-Hui Ding
- School of Public Health, College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Meng-Yuan Chen
- School of Public Health, College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Neng-Bin Xie
- School of Public Health, College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China; Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, 430071, China; Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| | - Conghua Xie
- School of Public Health, College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China; Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| | - Nanxiang Xiong
- School of Public Health, College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China; Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| | - Jin-Gang He
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jie Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Yu-Qi Feng
- School of Public Health, College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Bi-Feng Yuan
- School of Public Health, College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China; Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, 430071, China; Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China.
| |
Collapse
|
8
|
Cui X, Fang X, Zhou Y, Ren Z, Wei L, Zheng Y, Yin H, Wang J, Ai S. Photoelectrochemical immunosensor for RNA methylation detection based on the enhanced photoactivity of Bi2S3 nanorods by g-C3N4 nanosheets. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Zheng Y, Fang X, Zhou Y, Cui X, Cao L, Gao L, Yin H, Wang J, Ai S. Enhanced photoactivity of Bi2S3 nanoflowers by CS-AgBr and CeO2: Application in photoelectrochemical biosensor for the effect of antibiotics on N6-methyladenosine in rice tissues. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Cao G, Deng Y, Chen X, Huo D, Li J, Yang M, Hou C. The fluorescent biosensor for detecting N 6 methyladenine FzD5 mRNA and MazF activity. Anal Chim Acta 2021; 1188:339185. [PMID: 34794576 DOI: 10.1016/j.aca.2021.339185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 01/11/2023]
Abstract
N6 methyladenine (m6A) modification of the FzD5 mRNA, an important post-transcriptional regulation in eukaryotes, is closely related to the occurrence and development of breast cancer. Here, we developed an ultra-sensitive biosensor based on MazF combining with cascaded strand displacement amplification (C-SDA) and CRISPR/Cas12a to detect m6A FzD5 mRNA. MazF toxin protein is a vital component of the bacterial mazEF toxin-antitoxin system that is sensitive to m6A RNA. Take advantage of it, the biosensor achieved antibody-independent and gene-specific detection for m6A RNA. Moreover, compared with traditional amplification methods, the more efficient C-SDA and the CRISPR/Cas12a system with trans-cleavage activity gave the fluorescent biosensor an excellent sensitivity with the detection limit of 0.64 fM. In addition, MazF, as a new antibacterial target, was detected by the biosensor based on C-SDA and CRISPR/Cas12a with the detection limit of 1.127 × 10-4 U mL-1. More importantly, the biosensor has good performance in complex samples. Therefore, the biosensor is a potential tool in detecting m6A FzD5 mRNA and MazF activity.
Collapse
Affiliation(s)
- Gaihua Cao
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Yuanyi Deng
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Xiaolong Chen
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Danqun Huo
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China
| | - Jiawei Li
- Chongqing University Three Gorges Hospital, Chongqing, 404000, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| | - Mei Yang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China.
| | - Changjun Hou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
11
|
Yu Z, Tong Y, Liang Y, Li Y, Yang H, Liu SY, Xu Y, Dai Z, Zou X. Highly Sensitive Fluorescence Detection of Global 5-Hydroxymethylcytosine from Nanogram Input with Strongly Emitting Copper Nanotags. Anal Chem 2021; 93:14031-14035. [PMID: 34637276 DOI: 10.1021/acs.analchem.1c03266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Quantitative analysis of 5-hydroxymethylcytosine (5hmC) has remarkable clinical significance to early cancer diagnosis; however, it is limited by the requirement in current assays for large amounts of starting material and expensive instruments requring expertise. Herein, we present a highly sensitive fluorescence method, termed hmC-TACN, for global 5hmC quantification from several nanogram inputs based on terminal deoxynucleotide transferase (TdT)-assisted formation of fluorescent copper (Cu) nanotags. In this method, 5hmC is labeled with click tags by T4 phage β-glucosyltransferase (β-GT) and cross-linked with a random DNA primer via click chemistry. TdT initiates the template-free extension along the primer at the modified 5hmC site and then generates a long polythymine (T) tail, which can template the production of strongly emitting Cu nanoparticles (CuNPs). Consequently, an intensely fluorescent tag containing numerous CuNPs can be labeled onto the 5hmC site, providing the sensitive quantification of 5hmC with a limit of detection (LOD) as low as 0.021% of total nucleotides (S/N = 3). With only a 5 ng input (∼1000 cells) of genomic DNA, global 5hmC levels were accurately determined in mouse tissues, human cell lines (including normal and cancer cells of breast, lung, and liver), and urines of a bladder cancer patient and healthy control. Moreover, as few as 100 cells can also be distinguished between normal and cancer cells. The hmC-TACN method has great promise of being cost effective and easily mastered, with low-input clinical utility, and even for the microzone analysis of tumor models.
Collapse
Affiliation(s)
- Zhenning Yu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yanli Tong
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yuling Liang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yunda Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hongling Yang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Si-Yang Liu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yuzhi Xu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Zong Dai
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xiaoyong Zou
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
12
|
Povedano E, Gamella M, Torrente-Rodríguez RM, Ruiz-Valdepeñas Montiel V, Montero-Calle A, Solís-Fernández G, Navarro-Villoslada F, Pedrero M, Peláez-García A, Mendiola M, Hardisson D, Feliú J, Barderas R, Pingarrón JM, Campuzano S. Multiplexed magnetic beads-assisted amperometric bioplatforms for global detection of methylations in nucleic acids. Anal Chim Acta 2021; 1182:338946. [PMID: 34602192 DOI: 10.1016/j.aca.2021.338946] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/22/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022]
Abstract
This work reports the first electrochemical bioplatform developed for the multidetection of 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) in DNA, DNA N6-methyladenine (6mA) and RNA N6-methyladenosine (m6A) methylations at global level. Direct competitive immunoassays were implemented on the surface of magnetic beads (MBs) and optimized for the single amperometric determination of different targets varying in length, sequence and number of methylations on screen-printed carbon electrodes. After evaluating the sensitivity and selectivity of such determinations and the confirmation of no cross-reactivity, a multiplexed disposable platform allowing the simultaneous determination of the mentioned four methylation events in only 45 min has been prepared. The multiplexed bioplatform was successfully applied to the determination of m6A in cellular total RNA and of 5-mC, 5-hmC and 6mA in genomic DNA extracted from tissues. The developed bioplatform showed its usefulness to discriminate the aggressiveness of cancerous cells and between healthy and tumor tissues of colorectal cancer patients.
Collapse
Affiliation(s)
- Eloy Povedano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Maria Gamella
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Rebeca M Torrente-Rodríguez
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | | | - Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Madrid, Spain
| | | | - Fernando Navarro-Villoslada
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - María Pedrero
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Alberto Peláez-García
- Department of Pathology, Hospital Universitario La Paz, IdiPAZ, 28046, Madrid, Spain
| | - Marta Mendiola
- Department of Pathology, Hospital Universitario La Paz, IdiPAZ, 28046, Madrid, Spain; Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - David Hardisson
- Department of Pathology, Hospital Universitario La Paz, IdiPAZ, 28046, Madrid, Spain; Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)), Instituto de Salud Carlos III, 28029, Madrid, Spain; Faculty of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Jaime Feliú
- Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)), Instituto de Salud Carlos III, 28029, Madrid, Spain; Translational Oncology Group Hospital Universitario La Paz IdiPAZ, 28046, Madrid, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Madrid, Spain.
| | - José M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|