1
|
Li L, Liu Y, Wang J, Cai M, Liu S, Ma P, Wang J, Niu J. Ru Metalloligands Participate in the Construction of POM@MOF for Enhancing the Visible Photoinduced Baeyer-Villiger Oxidation Reaction. Inorg Chem 2024. [PMID: 39688152 DOI: 10.1021/acs.inorgchem.4c03064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Directed synthesis of high-efficiency visible photoinduced Baeyer-Villiger oxidation catalysts is of primary significance. Here, the isopolymolybdate anion [β-Mo8O26]4- is for the first time encapsulated with the photosensitive metalloligand [Ru(bpy)2(H2dcbpy)]2+ (bpy = 2,2'-bipyridine; H2dcbpy = 2,2'-bipyridine-5,5'-dicarboxylic acid) to synthesize polyoxometalate@metal-organic frameworks, {(CdDMF)2[Ru(bpy)2(dcbpy)]3([β-Mo8O26])}·5DMF (Ru-Mo8). The composite photocatalyst Ru-Mo8 not only has a light absorption of 700 nm but also shortens the photogenerated electron transfer distances and accelerates charge and proton transfer. Ru-Mo8 can perform the Baeyer-Villiger oxidation with high selectivity and up to 96.7% yield under visible light (λ > 400 nm) irradiation. The turnover number and turnover frequency of the reaction were computed to be 967 and 548 h-1, respectively, and the apparent quantum yield was 6.84% by 425 nm. Simultaneously, the radical mechanism of Baeyer-Villiger oxidation of Ru-Mo8 in the O2/benzaldehyde system under visible light (λ > 400 nm) irradiation was proposed.
Collapse
Affiliation(s)
- Luoning Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Yanan Liu
- Puyang Institute of Technology, Henan University, Puyang, Henan 457000, P. R. China
| | - Jing Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Minzhen Cai
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Sen Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
2
|
Ren L, Ma S, Li C, Wang D, Zhang P, Wang L, Qin Z, Jiang L. Development of a highly sensitive ampicillin sensor utilizing functionalized aptamers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3522-3529. [PMID: 38775028 DOI: 10.1039/d4ay00130c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
To develop a sensitive and simple ampicillin (AMP) sensor for trace antibiotic residue detection, the influencing factors of the modification effect of nanogold-functionalized nucleic acid sequences (Adenine: A, Thymine: T) were comprehensively analyzed in this study, including the modification method, base length and type. It was found that under the same base concentration, longer chains are more likely to reach saturation than shorter chains; and when the base concentration and length are both the same, A exhibits a higher saturation modification level compared to T. Based on these research findings, a highly sensitive fluorescence aptamer sensor for detecting ampicillin was constructed using the optimized functionalized sequence (ployA6-aptamer) and experimental conditions (6 hours binding time between nucleic acid aptamer and complementary strand, pH 7 working solution, 20 minutes detection time) based on the principle of fluorescence resonance energy transfer. The sensor has a detection range of 0.18 ng ml-1 to 3.11 ng ml-1 for ampicillin, with a detection limit of 0.04 ng ml-1. It exhibits significant selectivity and achieves an average recovery rate of 98.71% in tap water and 91.83% in milk. This method can be used not only for residual ampicillin detection, but also for highly sensitive detection of various antibiotics and small biological molecules by replacing the aptamer type. It provides a research basis for the design of highly sensitive fluorescence aptamer sensors and further applications of nanogold@DNA composite structures.
Collapse
Affiliation(s)
- Linjiao Ren
- College of Electrical and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Shilin Ma
- College of Electrical and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Chenlong Li
- College of Electrical and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Diankang Wang
- College of Electrical and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Pei Zhang
- College of Electrical and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Lingli Wang
- College of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Zirui Qin
- College of Electrical and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Liying Jiang
- College of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| |
Collapse
|
3
|
Dong X, Wang H, Ren X, Ma H, Fan D, Wu D, Wei Q, Ju H. Type-I heterojunction destruction by In situ formation of Bi 2S 3 for split-type photoelectrochemical aptasensor. Anal Chim Acta 2023; 1274:341541. [PMID: 37455074 DOI: 10.1016/j.aca.2023.341541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
Development of new strategies in photoelectrochemical (PEC) sensors is an important way to realize sensitive detection of biomolecule. In this study, mesoporous silica nanospheres (MSNs)-assisted split-type PEC aptasensor with in situ generation of Bi2S3 was proposed to achieve reliable detection of prostate-specific antigen (PSA). To be more specific, this bioresponsive release system will release large amounts of Na2S by the reaction between PSA and aptamer that capped Na2S-loading MSNs. Next, the Na2S reacts with Bi to yield BiOI/BiOBr/Bi2S3 composite, which leads to an alteration in the electron-hole transfer pathway of the photoelectric material and a decrease in the response. As the PSA concentration increases, more Na2S can be released and lower photocurrent is obtained. The linear range under the optimal experimental conditions is 10 pg·mL-1-1 μg⋅mL-1, and the detection limit is 1.23 pg⋅mL-1, which has satisfactory stability and anti-interference.
Collapse
Affiliation(s)
- Xue Dong
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Hanyu Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Dawei Fan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Huangxian Ju
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; State Key Laboratory of Analytical Chemistry for Life Science, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| |
Collapse
|
4
|
Yang Q, Huang X, Gao B, Gao L, Yu F, Wang F. Advances in electrochemiluminescence for single-cell analysis. Analyst 2022; 148:9-25. [PMID: 36475529 DOI: 10.1039/d2an01159j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent years have witnessed the emergence of innovative analytical methods with high sensitivity and spatiotemporal resolution that allowed qualitative and quantitative analysis to be carried out at single-cell and subcellular levels. Electrochemiluminescence (ECL) is a unique chemiluminescence of high-energy electron transfer triggered by electrical excitation. The ingenious combination of electrochemistry and chemiluminescence results in the distinct advantages of high sensitivity, a wide dynamic range and good reproducibility. Specifically, single-cell ECL (SCECL) analysis with excellent spatiotemporal resolution has emerged as a promising toolbox in bioanalysis for revealing individual cells' heterogeneity and stochastic processes. This review focuses on advances in SCECL analysis and bioimaging. The history and recent advances in ECL probes and strategies for system design are briefly reviewed. Subsequently, the latest advances in representative SCECL analysis techniques for bioassays, bioimaging and therapeutics are also highlighted. Then, the current challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Qian Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. .,Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Xiaoyu Huang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Beibei Gao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lu Gao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Feng Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Fu Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
5
|
Wu T, Song X, Ren X, Dai L, Ma H, Wu D, Li Y, Wei Q, Ju H. Catalytic Decomposition of the Hole-Derived H 2O 2 by AgBiS 2@Ag Nanozyme to Enhance the Photocurrent of Z-Scheme BiVO 4/ZnIn 2S 4 Photoelectrode in Microfluidic Immunosensing Platform. Anal Chem 2022; 94:12127-12135. [PMID: 35998369 DOI: 10.1021/acs.analchem.2c02181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel microfluidic photoelectrochemical (PEC) analytical device based on AgBiS2@Ag nanozyme-mediated signal amplification was developed for ultrasensitive detection of cytokeratin 19 fragment 21-1 (CYFRA 21-1). First, a brand new Z-scheme BiVO4/ZnIn2S4 (BZIS) photoactive material was utilized as a sensing matrix to supply a stable photocurrent. Under anodic bias, the photoexcited holes in BiVO4 could oxidize water to produce hydrogen peroxide (H2O2), which markedly enhanced the separation efficiency of the electron-hole pairs. Besides, the Z-scheme heterojunction formed between BiVO4 and ZnIn2S4 further accelerated the transport of the electron. Second, for improving the sensitivity of the PEC sensor, a new strategy of catalytic dissociation of the hole-derived H2O2 by AgBiS2@Ag nanozyme was proposed to amplify the PEC signal. AgBiS2@Ag composites, possessing an excellent peroxidase-mimicking feature, could efficiently catalyze the H2O2 to produce hydroxyl radicals (•OH) and lead to the significant enhancement of the photocurrent. Third, automatic sample injection and detection were successfully realized by integrating the photoelectrode into microfluidic chips. Based on this advanced sensing strategy, the designed microfluidic PEC sensor displayed a wide linear range (0.1 pg/mL - 100 ng/mL) and a low detection limit of 35 fg/mL (S/N = 3), which could be efficiently applied to the ultrasensitive determination of CYFRA 21-1 in a human serum sample.
Collapse
Affiliation(s)
- Tingting Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xianzhen Song
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiang Ren
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Li Dai
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Dan Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yuyang Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Huangxian Ju
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.,State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Xin Y, Wang Z, Yao C, Shen H, Miao Y. Bismuth, a Previously Less‐studied Element, Is Bursting into New Hotspots. ChemistrySelect 2022. [DOI: 10.1002/slct.202201220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yanmei Xin
- Institute of Bismuth Science School of Materials and Chemistry University of Shanghai for Science and Technology Jungong Rd 334# Shanghai 200093 China
| | - Zhuo Wang
- Institute of Bismuth Science School of Materials and Chemistry University of Shanghai for Science and Technology Jungong Rd 334# Shanghai 200093 China
| | - Congfei Yao
- Institute of Bismuth Science School of Materials and Chemistry University of Shanghai for Science and Technology Jungong Rd 334# Shanghai 200093 China
| | - Haocheng Shen
- Institute of Bismuth Science School of Materials and Chemistry University of Shanghai for Science and Technology Jungong Rd 334# Shanghai 200093 China
| | - Yuqing Miao
- Institute of Bismuth Science School of Materials and Chemistry University of Shanghai for Science and Technology Jungong Rd 334# Shanghai 200093 China
| |
Collapse
|
7
|
Gawrońska M, Kowalik M, Makowski M. Recent advances in medicinal chemistry of ampicillin: Derivatives, metal complexes, and sensing approaches. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Ding H, Feng Y, Xu Y, Xue X, Feng R, Yan T, Yan L, Wei Q. Self-powered photoelectrochemical aptasensor based on MIL-68(In) derived In 2O 3 hollow nanotubes and Ag doped ZnIn 2S 4 quantum dots for oxytetracycline detection. Talanta 2022; 240:123153. [PMID: 34973550 DOI: 10.1016/j.talanta.2021.123153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/11/2021] [Accepted: 12/11/2021] [Indexed: 02/07/2023]
Abstract
A self-powered photoelectrochemical (PEC) aptasensor was constructed based on MIL-68(In) derived indium oxide hollow nanotubes (In2O3 HNs) and Ag-doped ZnIn2S4 quantum dots (QDs) as sensing matrix for the ultrasensitive detection of oxytetracycline (OTC). The hollow tube structure of the designed photoelectric active platform provided abundant active sites and a larger specific surface area for the immobilization of target recognition unit. The coupling of Ag:ZnIn2S4 QDs and In2O3 HNs can accelerate the transmit and separation of photoinduced charge, and thus greatly increasing the intensity of photocurrent signal. Then, the well-constructed OTC-aptamer was anchored on the modified photoelectrode as an accurate capturing element, achieving the specific detection of analyte. Under optimal conditions, the photocurrent intensity of the PEC aptasensor decreases linearly, with a linear response range of 10-4 -10 nmol/L, and a limit of detection (LOD) of 3.3 × 10-5 nmol/L (S/N = 3). The developed self-powered aptasensor with excellent reproducibility, stability, and selectivity, provides a potential way to detect antibiotic residues in environmental media.
Collapse
Affiliation(s)
- Haolin Ding
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Yixuan Feng
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Yifei Xu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Xiaodong Xue
- Shandong Academy of Environmental Science Co., Ltd, Jinan, 250013, PR China
| | - Rui Feng
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Tao Yan
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China.
| | - Liangguo Yan
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| |
Collapse
|
9
|
Dong J, Chen F, Xu L, Yan P, Qian J, Chen Y, Yang M, Li H. Fabrication of sensitive photoelectrochemical aptasensor using Ag nanoparticles sensitized bismuth oxyiodide for determination of chloramphenicol. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107317] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Chen G, Li Y, Miao Y, Liu B. Recent developments on bismuth oxyhalide-based functional nanomaterials for biomedical applications. Biomater Sci 2022; 10:5809-5830. [DOI: 10.1039/d2bm01182d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multifunctional bismuth oxyhalide (BiOX, X = F, Cl, Br, and I) nanomaterials have great potential advantages in medical diagnostic and therapeutic applications. Pure BiOX nanomaterials have some limitations such as...
Collapse
|
11
|
Ouyang X, Feng C, Tang L, Zhu X, Peng B, Fan X, Liao Y, Zhou Z, Zhang Z. A flexible photoelectrochemical aptasensor using heterojunction architecture of α-Fe 2O 3/d-C 3N 4 for ultrasensitive detection of penbritin. Biosens Bioelectron 2021; 197:113734. [PMID: 34736113 DOI: 10.1016/j.bios.2021.113734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 01/19/2023]
Abstract
The performance of photoelectrochemical (PEC) analysis system relies closely on the properties of the photoelectric electrodes. It is of great significance to integrate photoactive materials with flexible substrates to construct ultra-sensitive PEC sensors for practical application. This work reports a novel photoelectrode developed by immobilizing α-Fe2O3 nanoparticles (NPs)/defect-rich carbon nitride (d-C3N4), an excellent Z-scheme heterojunction photoelectric material, onto three-dimensional (3D) flexible carbon fiber textile. Specifically, 3D hierarchical structure of flexible carbon fiber textile provides larger specific surface area and higher mechanical strength than traditional electrodes, resulting in more reaction sites and faster reaction kinetics to achieve signal amplification. Simultaneously, α-Fe2O3/d-C3N4 Z-scheme heterojunction exhibits enhanced light absorption capability and high redox ability, thus dramatically improving the PEC performance. This photoelectrode was used to construct a flexible PEC aptasensor for ultrasensitive detection of penbritin, demonstrating excellent performance in terms of wide linear range (0.5 pM-50 nM), low detection limit (0.0125 pM) and high stability. The design principle is applicable to the manufacture of other photoelectric sensing systems, which provides an avenue for the development of portable environmental analysis and field diagnostics equipment.
Collapse
Affiliation(s)
- Xilian Ouyang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Chengyang Feng
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China.
| | - Xu Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Bo Peng
- College of Geographic Science, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xinyang Fan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Yibo Liao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Zheping Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Ziling Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| |
Collapse
|
12
|
Liu J, Huang L, Li Y, Yang L, Wang C, Liu J, Song Y, Yang M, Li H. Construction of oxygen vacancy assisted Z-scheme BiO 2-x/BiOBr heterojunction for LED light pollutants degradation and bacteria inactivation. J Colloid Interface Sci 2021; 600:344-357. [PMID: 34022730 DOI: 10.1016/j.jcis.2021.04.143] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022]
Abstract
It is well known that the most important task of photocatalytic technology is to synthesize photocatalysts with compact heterojunction structure and high redox ability. To achieve the goal, a novel Z-scheme BiO2-x/BiOBr heterojunction containing oxygen vacancy was synthesized by an in-situ generation process. Several techniques, X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) have verified the BiO2-x/BiOBr heterojunction. XPS and electron spin resonance (ESR) reveals the presence of oxygen vacancy in the BiO2-x/BiOBr composite. As expected, the BiO2-x/BiOBr composite showed good performance in removing Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Rhodamine B (RhB) and tetracycline (TC). The effects of inorganic ions, pH value and water matrix were investigated with many details. The active species and proposed mechanism were revealed by trapping experiment and related characterizations. The synergistic effect of oxygen vacancy and Z-scheme heterojunction makes the BiO2-x/BiOBr composite possess excellent photocatalytic activity.
Collapse
Affiliation(s)
- Jiawei Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Liying Huang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Yeping Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Lei Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Chaobao Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Juan Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Yanhua Song
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Mengxin Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Huaming Li
- Institute for Energy Research of Jiangsu University, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
13
|
Feng R, Zhang X, Xue X, Xu Y, Ding H, Yan T, Yan L, Wei Q. [Ru(bpy) 3] 2+@Ce-UiO-66/Mn:Bi 2S 3 Heterojunction and Its Exceptional Photoelectrochemical Aptasensing Properties for Ofloxacin Detection. ACS APPLIED BIO MATERIALS 2021; 4:7186-7194. [PMID: 35006950 DOI: 10.1021/acsabm.1c00749] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A photoelectrochemical (PEC) aptasensor on basis of [Ru(bpy)3]2+@Ce-UiO-66/Mn:Bi2S3 composites was constructed for detecting ofloxacin (OFL). First, Ce-UiO-66, prepared by a solvothermal method, had Zr4+-Zr3+ and Ce4+-Ce3+ intervalence cycles to increase the charge separation efficiency. Subsequently, Ce-UiO-66 was further modified by [Ru(bpy)3]2+ and Mn:Bi2S3 cosensitization to improve the photoelectric activity. [Ru(bpy)3]2+ not only broadened the range of light absorbed but also reacted with an electron donor to maintain the photoelectric conversion process. Among the [Ru(bpy)3]2+@Ce-UiO-66/Mn:Bi2S3 heterojunction, Mn:Bi2S3 was a photosensitizer, which maximized the efficiency of the electron-hole separation and significantly improved photocurrent. Then, an aptamer was used as a biorecognition unit for OFL-specific detection. Under the best conditions, the PEC aptasensor realized the sensitive detection of OFL, with a detection range of 0.01-100 nmol/L and a detection limit of 6 pmol/L. In addition, the constructed PEC OFL sensor showed good reproducibility, stability, and specificity.
Collapse
Affiliation(s)
- Rui Feng
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P. R. China
| | - Xue Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P. R. China
| | - Xiaodong Xue
- Shandong Academy of Environmental Science Co., Ltd., Jinan 250013, P. R. China
| | - Yifei Xu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P. R. China
| | - Haolin Ding
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P. R. China
| | - Tao Yan
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P. R. China
| | - Liangguo Yan
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P. R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
14
|
Li T, Dong H, Hao Y, Zhang Y, Chen S, Xu M, Zhou Y. Near‐infrared Responsive Photoelectrochemical Biosensors. ELECTROANAL 2021. [DOI: 10.1002/elan.202100355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ting Li
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering Hunan University of Science and Technology Xiangtan 411201 China
| | - Hui Dong
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering Shangqiu Normal University Shangqiu 476000 China
| | - Yuanqiang Hao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering Hunan University of Science and Technology Xiangtan 411201 China
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering Shangqiu Normal University Shangqiu 476000 China
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering Shangqiu Normal University Shangqiu 476000 China
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering Hunan University of Science and Technology Xiangtan 411201 China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering Shangqiu Normal University Shangqiu 476000 China
| | - Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering Shangqiu Normal University Shangqiu 476000 China
| |
Collapse
|
15
|
Zou HY, Kong FY, Lu XY, Lu MJ, Zhu YC, Ban R, Zhao WW, Wang W. Enzymatic photoelectrochemical bioassay based on hierarchical CdS/NiO heterojunction for glucose determination. Mikrochim Acta 2021; 188:243. [PMID: 34231032 DOI: 10.1007/s00604-021-04882-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/31/2021] [Indexed: 01/19/2023]
Abstract
The design and development of a 3D hierarchical CdS/NiO heterojunction and its application in a self-powered cathodic photoelectrochemical (PEC) bioanalysis is introduced. Specifically, NiO nanoflakes (NFs) were in situ formed on carbon fibers via a facile liquid-phase deposition method followed by an annealing step and subsequent integration with CdS quantum dots (QDs). The glucose oxidase (GOx) was then coated on the photocathode to allow the determination of glucose. Under 5 W 410 nm LED light and at a working voltage of 0.0 V (vs. Ag/AgCl), this method can assay glucose concentrations down to 1.77×10-9 M. The linear range was 5×10-7 M to 1×10-3 M, and the relative standard deviation (RSD) was below 5%. The photocathodic biosensor achieved target detection with high sensitivity and selectivity. This work is expected to stimulate more passion in the development of innovative hierarchical heterostructures for advanced self-powered photocathodic bioanalysis. Design of 3D hierarchical CdS/NiO heterojunction and its application in a self-powered cathodic photoelectrochemical (PEC) bioanalysis.
Collapse
Affiliation(s)
- Hui-Yu Zou
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Fen-Ying Kong
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China. .,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Xin-Yang Lu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Meng-Jiao Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.,School of Chemical Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Yuan-Cheng Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China. .,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210023, China.
| | - Rui Ban
- School of Chemical Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China. .,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|