1
|
Nguyen HV, Hwang S, Lee SW, Jin E, Lee MH. Detection of HPV 16 and 18 L1 genes by a nucleic acid amplification-free electrochemical biosensor powered by CRISPR/Cas9. Bioelectrochemistry 2025; 162:108861. [PMID: 39608317 DOI: 10.1016/j.bioelechem.2024.108861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/10/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Cervical cancer, closely linked to Human Papillomavirus (HPV) infection, remains a significant health threat for women worldwide. Conventional HPV detection methods, such as reverse transcription polymerase chain reaction (RT-PCR), rely on nucleic acid amplification (NAA), which can be costly and time-consuming. This study introduces an NAA-free electrochemical Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based biosensor designed to detect HPV 16 and HPV 18 L1 genes simultaneously. The system utilizes a Cas9-single guided RNA complex to initiate a selective cleavage reaction, releasing Methylene blue or Ferrocene-labeled fragments correlate to L1 gene concentrations. These fragments then interact with modified gold electrodes immobilized with a complementary probe, allowing precise electrochemical signal measurement during hybridization. The biosensor offers a wide detection range from 1 fM to 10 nM, with detection limits as low as 0.4 fM for HPV 16 L1 and 0.51 fM for HPV 18 L1, providing a sensitive and efficient solution for L1 gene detection. Additionally, its specificity and sensitivity closely match RT-PCR results in clinical testing, highlighting its potential for molecular diagnostics and point-of-care applications.
Collapse
Affiliation(s)
- Huynh Vu Nguyen
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City 70000, Viet Nam.
| | - Seowoo Hwang
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Sang Wook Lee
- PCL Inc, 128, Beobwon-ro, Songpa-gu, Seoul 08510, Republic of Korea
| | - Enjian Jin
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
2
|
Huang Y, Chen Z, Huang H, Ding S, Zhang M. Important applications of DNA nanotechnology combined with CRISPR/Cas systems in biotechnology. RSC Adv 2025; 15:6208-6230. [PMID: 40008014 PMCID: PMC11851101 DOI: 10.1039/d4ra08325c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
DNA nanotechnology leverages the specificity of Watson-Crick base pairing and the inherent attributes of DNA, enabling the exploitation of molecular characteristics, notably self-assembly, in nucleic acids to fabricate novel, controllable nanoscale structures and mechanisms. In the emerging field of DNA nanotechnology, DNA is not only a genetic material, but also a versatile multifunctional polymer, comprising deoxyribonucleotides, and facilitating the construction of precisely dimensioned and precise shaped two-dimensional (2D) and three-dimensional (3D) nanostructures. DNA molecules act as carriers of biological information, with notable advancements in bioimaging, biosensing, showing the profound impact. Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated systems (Cas) constitute self-defense mechanisms employed by bacteria and archaea to defend against viral invasion. With the discovery and modification of various functional Cas proteins, coupled with the identification of increasingly designable and programmable CRISPR RNAs (crRNAs), the potential of the CRISPR/Cas system in the field of molecular diagnostics is steadily being realized. Structural DNA nanotechnology provides a customizable and modular platform for accurate positioning of nanoscopic materials, for e.g., biomedical uses. This addressability has just recently been applied in conjunction with the newly developed gene engineering tools to enable impactful, programmable nanotechnological applications. As of yet, self-assembled DNA nanostructures have been mainly employed to enhance and direct the delivery of CRISPR/Cas, but lately the groundwork has also been laid out for other intriguing and complex functions. These recent advances will be described in this perspective. This review explores biosensing detection methods that combine DNA nanotechnology with CRISPR/Cas systems. These techniques are used in biosensors to detect small molecules such as DNA, RNA, and etc. The combination of 2D and 3D DNA nanostructures with the CRISPR/Cas system holds significant value and great development prospects in the detection of important biomarkers, gene editing, and other biological applications in fields like biosensing.
Collapse
Affiliation(s)
- Yuqi Huang
- Clinical Laboratory, Chongqing Jiulongpo District People's Hospital Chongqing 400050 China
| | - Zhongping Chen
- Clinical Laboratory, Chongqing Jiulongpo District People's Hospital Chongqing 400050 China
| | - Huacui Huang
- Clinical Laboratory, Chengdu Xindu District People's Hospital Sichuan 610599 China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University Chongqing 400016 China
| | - Mingjun Zhang
- Clinical Laboratory, Chongqing Jiulongpo District People's Hospital Chongqing 400050 China
| |
Collapse
|
3
|
Di Carlo E, Sorrentino C. State of the art CRISPR-based strategies for cancer diagnostics and treatment. Biomark Res 2024; 12:156. [PMID: 39696697 DOI: 10.1186/s40364-024-00701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology is a groundbreaking and dynamic molecular tool for DNA and RNA "surgery". CRISPR/Cas9 is the most widely applied system in oncology research. It is a major advancement in genome manipulation due to its precision, efficiency, scalability and versatility compared to previous gene editing methods. It has shown great potential not only in the targeting of oncogenes or genes coding for immune checkpoint molecules, and in engineering T cells, but also in targeting epigenomic disturbances, which contribute to cancer development and progression. It has proven useful for detecting genetic mutations, enabling the large-scale screening of genes involved in tumor onset, progression and drug resistance, and in speeding up the development of highly targeted therapies tailored to the genetic and immunological profiles of the patient's tumor. Furthermore, the recently discovered Cas12 and Cas13 systems have expanded Cas9-based editing applications, providing new opportunities in the diagnosis and treatment of cancer. In addition to traditional cis-cleavage, they exhibit trans-cleavage activity, which enables their use as sensitive and specific diagnostic tools. Diagnostic platforms like DETECTR, which employs the Cas12 enzyme, that cuts single-stranded DNA reporters, and SHERLOCK, which uses Cas12, or Cas13, that specifically target and cleave single-stranded RNA, can be exploited to speed up and advance oncological diagnostics. Overall, CRISPR platform has the great potential to improve molecular diagnostics and the functionality and safety of engineered cellular medicines. Here, we will emphasize the potentially transformative impact of CRISPR technology in the field of oncology compared to traditional treatments, diagnostic and prognostic approaches, and highlight the opportunities and challenges raised by using the newly introduced CRISPR-based systems for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio University" of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy.
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy.
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio University" of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy
| |
Collapse
|
4
|
Feng Y, Yang J, He Z, Liu X, Ma C. CRISPR-Cas-based biosensors for the detection of cancer biomarkers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6634-6653. [PMID: 39258950 DOI: 10.1039/d4ay01446d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Along with discovering cancer biomarkers, non-invasive detection methods have played a critical role in early cancer diagnosis and prognostic improvement. Some traditional detection methods have been used for detecting cancer biomarkers, but they are time-consuming and involve materials and human costs. With great flexibility, sensitivity and specificity, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated system provides a wide range of application prospects in this field. Herein, we introduce the background of the CRISPR-Cas (CRISPR-associated) system and comprehensively summarize the diagnosis strategies of cancer mediated by the CRISPR-Cas system, including four kinds of biochemical-based markers: nucleic acid, enzyme, tumor-specific protein and exosome. Furthermore, we discuss the challenges in implementing the CRISPR-Cas system in clinical applications.
Collapse
Affiliation(s)
- Yuxin Feng
- School of Life Sciences, Central South University, Changsha 410013, China.
- Clinical Medicine Eight-year Program, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Jinmeng Yang
- School of Life Sciences, Central South University, Changsha 410013, China.
- Clinical Medicine Eight-year Program, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Ziping He
- School of Life Sciences, Central South University, Changsha 410013, China.
- Clinical Medicine Eight-year Program, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Xinfa Liu
- School of Life Sciences, Central South University, Changsha 410013, China.
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
5
|
Wachholz Junior D, Kubota LT. CRISPR-based electrochemical biosensors: an alternative for point-of-care diagnostics? Talanta 2024; 278:126467. [PMID: 38968657 DOI: 10.1016/j.talanta.2024.126467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/07/2024]
Abstract
The combination of CRISPR technology and electrochemical sensors has sparked a paradigm shift in the landscape of point-of-care (POC) diagnostics. This review explores the dynamic convergence between CRISPR and electrochemical sensing, elucidating their roles in rapid and precise biosensing platforms. CRISPR, renowned for its remarkable precision in genome editing and programmability capability, has found a novel application in conjunction with electrochemical sensors, promising highly sensitive and specific detection of nucleic acids and biomarkers associated with diverse diseases. This article navigates through fundamental principles, research developments, and applications of CRISPR-based electrochemical sensors, highlighting their potential to revolutionize healthcare accessibility and patient outcomes. In addition, some key points and challenges regarding applying CRISPR-powered electrochemical sensors in real POC settings are presented. By discussing recent advancements and challenges in this interdisciplinary field, this review evaluates the potential of these innovative sensors as an alternative for decentralized, rapid, and accurate POC testing, offering some insights into their applications across clinical scenarios and their impact on the future of diagnostics.
Collapse
Affiliation(s)
- Dagwin Wachholz Junior
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), 13083-970, Brazil; National Institute of Science and Technology in Bioanalytic (INCTBio), Brazil
| | - Lauro Tatsuo Kubota
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), 13083-970, Brazil; National Institute of Science and Technology in Bioanalytic (INCTBio), Brazil.
| |
Collapse
|
6
|
Son H. Harnessing CRISPR/Cas Systems for DNA and RNA Detection: Principles, Techniques, and Challenges. BIOSENSORS 2024; 14:460. [PMID: 39451674 PMCID: PMC11506544 DOI: 10.3390/bios14100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
The emergence of CRISPR/Cas systems has revolutionized the field of molecular diagnostics with their high specificity and sensitivity. This review provides a comprehensive overview of the principles and recent advancements in harnessing CRISPR/Cas systems for detecting DNA and RNA. Beginning with an exploration of the molecular mechanisms of key Cas proteins underpinning CRISPR/Cas systems, the review navigates the detection of both pathogenic and non-pathogenic nucleic acids, emphasizing the pivotal role of CRISPR in identifying diverse genetic materials. The discussion extends to the integration of CRISPR/Cas systems with various signal-readout techniques, including fluorescence, electrochemical, and colorimetric, as well as imaging and biosensing methods, highlighting their advantages and limitations in practical applications. Furthermore, a critical analysis of challenges in the field, such as target amplification, multiplexing, and quantitative detection, underscores areas requiring further refinement. Finally, the review concludes with insights into the future directions of CRISPR-based nucleic acid detection, emphasizing the potential of these systems to continue driving innovation in diagnostics, with broad implications for research, clinical practice, and biotechnology.
Collapse
Affiliation(s)
- Heyjin Son
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|
7
|
Rahimi S, Balusamy SR, Perumalsamy H, Ståhlberg A, Mijakovic I. CRISPR-Cas target recognition for sensing viral and cancer biomarkers. Nucleic Acids Res 2024; 52:10040-10067. [PMID: 39189452 PMCID: PMC11417378 DOI: 10.1093/nar/gkae736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
Nucleic acid-based diagnostics is a promising venue for detection of pathogens causing infectious diseases and mutations related to cancer. However, this type of diagnostics still faces certain challenges, and there is a need for more robust, simple and cost-effective methods. Clustered regularly interspaced short palindromic repeats (CRISPRs), the adaptive immune systems present in the prokaryotes, has recently been developed for specific detection of nucleic acids. In this review, structural and functional differences of CRISPR-Cas proteins Cas9, Cas12 and Cas13 are outlined. Thereafter, recent reports about applications of these Cas proteins for detection of viral genomes and cancer biomarkers are discussed. Further, we highlight the challenges associated with using these technologies to replace the current diagnostic approaches and outline the points that need to be considered for designing an ideal Cas-based detection system for nucleic acids.
Collapse
Affiliation(s)
- Shadi Rahimi
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University, Gwangjin-gu, Seoul, Republic of Korea
| | - Haribalan Perumalsamy
- Center for Creative Convergence Education, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, South Korea
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ivan Mijakovic
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
8
|
Zhao J, Zhu J, Wang W, Qian Z, Fan S. CRISPR/Cas12a cleavage triggered nanoflower for fluorescence-free and target amplification-free biosensing of ctDNA in the terahertz frequencies. BIOMEDICAL OPTICS EXPRESS 2024; 15:5400-5410. [PMID: 39296404 PMCID: PMC11407253 DOI: 10.1364/boe.534511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/21/2024]
Abstract
The detection of tumor biomarkers in liquid biopsies requires high sensitivity and low-cost biosensing strategies. However, few traditional techniques can satisfy the requirements of target amplification-free and fluorescence-free at the same time. In this study, we have proposed a novel strategy for ctDNA detection with the combination of terahertz spectroscopy and the CRISPR/Cas12 system. The CRISPR/Cas12a system is activated by the target ctDNA, resulting in a series of reactions leading to the formation of an Au-Fe complex. This complex is easily extracted with magnets and when dropped onto the terahertz metamaterial sensor, it can enhance the frequency shift, providing sensitive and selective sensing of the target ctDNA. Results show that the proposed terahertz biosensor exhibits a relatively low detection limit of 0.8 fM and a good selectivity over interference species. This detection limit is improved by three orders of magnitude compared with traditional biosensing methods using terahertz waves. Furthermore, a ctDNA concentration of 100 fM has been successfully detected in bovine serum (corresponding to 50 fM in the final reaction system) without amplification.
Collapse
Affiliation(s)
- Jingjing Zhao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University , Shenzhen 518060, China
| | - Jianfang Zhu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University , Shenzhen 518060, China
| | - Weiqiang Wang
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei 230601, China
| | - Zhengfang Qian
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University , Shenzhen 518060, China
| | - Shuting Fan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University , Shenzhen 518060, China
| |
Collapse
|
9
|
Park JS, Akarapipad P, Chen FE, Shao F, Mostafa H, Hsieh K, Wang TH. Digitized Kinetic Analysis Enhances Genotyping Capacity of CRISPR-Based Biosensing. ACS NANO 2024; 18:18058-18070. [PMID: 38922290 DOI: 10.1021/acsnano.4c05312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
CRISPR/Cas systems have been widely employed for nucleic acid biosensing and have been further advanced for mutation detection by virtue of the sequence specificity of crRNA. However, existing CRISPR-based genotyping methods are limited by the mismatch tolerance of Cas effectors, necessitating a comprehensive screening of crRNAs to effectively distinguish between wild-type and point-mutated sequences. To circumvent the limitation of conventional CRISPR-based genotyping, here, we introduce Single-Molecule kinetic Analysis via a Real-Time digital CRISPR/Cas12a-assisted assay (SMART-dCRISPR). SMART-dCRISPR leverages the differential kinetics of the signal increase in CRISPR/Cas systems, which is modulated by the complementarity between crRNA and the target sequence. It employs single-molecule digital measurements to discern mutations based on kinetic profiles that could otherwise be obscured by variations in the target concentrations. We applied SMART-dCRISPR to genotype notable mutations in SARS-CoV-2, point mutation (K417N) and deletion (69/70DEL), successfully distinguishing wild-type, Omicron BA.1, and Omicron BA.2 SARS-CoV-2 strains from clinical nasopharyngeal/nasal swab samples. Additionally, we introduced a portable digital real-time sensing device to streamline SMART-dCRISPR and enhance its practicality for point-of-care settings. The combination of a rapid and sensitive isothermal CRISPR-based assay with single-molecule kinetic analysis in a portable format significantly enhances the versatility of CRISPR-based nucleic acid biosensing and genotyping.
Collapse
Affiliation(s)
- Joon Soo Park
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Patarajarin Akarapipad
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Fan-En Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Fangchi Shao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Heba Mostafa
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21287, United States
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
10
|
Yan X, Zhang W, Yang J. Self-signal electrochemical identification of circulating tumor DNA employing poly-xanthurenic acid assembled on black phosphorus nanosheets. Anal Biochem 2024; 690:115512. [PMID: 38527608 DOI: 10.1016/j.ab.2024.115512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
A self-signal electrochemical identification interface was prepared for the determination of circulating tumor DNA (ctDNA) in peripheral blood based on poly-xanthurenic acid (PXTA) assembled on black phosphorus nanosheets (BPNSs) acquired through simple ultrasonication method. The BPNSs with large surface area could be integrated with the xanthurenic acid (XTA) monomers by right of physisorption, and hence improved the electropolymerization efficiency and was beneficial to the enlargement of the signal response of PXTA. The assembled PXTA/BPNSs composite with attractive electrochemical activity was adopted as a platform for the recognition of DNA immobilization and hybridization. The probe ssDNA was covalently fixed onto the PXTA/BPNSs composite with plentiful carboxyl groups through the terminate free amines of DNA probes by use of the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydrosulfosuccinimide cross-linking reaction, accompanied with the decline of the self-signal response. When the hybridization between the probe ssDNA and the target DNA was accomplished, the self-signal response of the composite interface reproduced by virtue of the shaping of helix construction. The determination limit of the assembled DNA identification interface was 2.1 × 10-19 mol/L, and the complementary target DNA concentrations varied from 1.0 × 10-18 mol/L to 1.0 × 10-12 mol/L. The DNA identification platform displayed magnificent sensitivity, specificity and stability, and was efficaciously implemented to the mensuration of ctDNA derived from colorectal cancer.
Collapse
Affiliation(s)
- Xinyu Yan
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276000, China
| | - Wei Zhang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276000, China.
| | - Jimin Yang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276000, China
| |
Collapse
|
11
|
Dong J, Li X, Hou C, Hou J, Huo D. A Novel CRISPR/Cas12a-Mediated Ratiometric Dual-Signal Electrochemical Biosensor for Ultrasensitive and Reliable Detection of Circulating Tumor Deoxyribonucleic Acid. Anal Chem 2024; 96:6930-6939. [PMID: 38652001 DOI: 10.1021/acs.analchem.3c05700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Circulating tumor DNA (ctDNA) holds great promise as a noninvasive biomarker for cancer diagnosis, treatment, and prognosis. However, the accurate and specific quantification of low-abundance ctDNA in serum remains a significant challenge. This study introduced, for the first time, a novel exponential amplification reaction (EXPAR)-assisted CRISPR/Cas12a-mediated ratiometric dual-signal electrochemical biosensor for ultrasensitive and reliable detection of ctDNA. To implement the dual-signal strategy, a signal unit (ssDNA-MB@Fc/UiO-66-NH2) was prepared, consisting of methylene blue-modified ssDNA as the biogate to encapsulate ferrocene signal molecules within UiO-66-NH2 nanocarriers. The presence of target ctDNA KRAS triggered EXPAR amplification, generating numerous activators for Cas12a activation, resulting in the cleavage of ssDNA-P fully complementary to the ssDNA-MB biogate. Due to the inability to form a rigid structure dsDNA (ssDNA-MB/ssDNA-P), the separation of ssDNA-MB biogate from the UiO-66-NH2 surface was hindered by electrostatic interactions. Consequently, the supernatant collected after centrifugation exhibited either no or only a weak presence of Fc and MB signal molecules. Conversely, in the absence of the target ctDNA, the ssDNA-MB biogate was open, leading to the leakage of Fc signal molecules. This clever ratiometric strategy with Cas12a as the "connector", reflecting the concentration of ctDNA KRAS based on the ratio of the current intensities of the two electroactive signal molecules, enhanced detection sensitivity by at least 60-300 times compared to single-signal strategies. Moreover, this strategy demonstrated satisfactory performance in ctDNA detection in complex human serum, highlighting its potential for cancer diagnosis.
Collapse
Affiliation(s)
- Jiangbo Dong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Xinyao Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
- Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, PR China
| | - Jingzhou Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing 401331, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
12
|
Luo X, Li J, Huang G, Xie F, He Z, Zeng X, Tian H, Liu Y, Fu W, Yang X. Metal-Graphene Hybrid Terahertz Metasurfaces for Circulating Tumor DNA Detection Based on Dual Signal Amplification. ACS Sens 2024; 9:2122-2133. [PMID: 38602840 DOI: 10.1021/acssensors.4c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Terahertz (THz) spectroscopy has impressive capability for label-free biosensing, but its utility in clinical laboratories is rarely reported due to often unsatisfactory detection performances. Here, we fabricated metal-graphene hybrid THz metasurfaces (MSs) for the sensitive and enzyme-free detection of circulating tumor DNA (ctDNA) in pancreatic cancer plasma samples. The feasibility and mechanism of the enhanced effects of a graphene bridge across the MS and amplified by gold nanoparticles (AuNPs) were investigated experimentally and theoretically. The AuNPs serve to boost charge injection in the graphene film and result in producing a remarkable change in the graded transmissivity index to THz radiation of the MS resonators. Assay design utilizes this feature and a cascade hybridization chain reaction initiated on magnetic beads in the presence of target ctDNA to achieve dual signal amplification (chemical and optical). In addition to demonstrating subfemtomolar detection sensitivity and single-nucleotide mismatch selectivity, the proposed method showed remarkable capability to discriminate between pancreatic cancer patients and healthy individuals by recognizing and quantifying targeted ctDNAs. The introduction of graphene to the metasurface produces an improved sensitivity of 2 orders of magnitude for ctDNA detection. This is the first study to report the combined application of graphene and AuNPs in biosensing by THz spectroscopic resonators and provides a combined identification scheme to detect and discriminate different biological analytes, including nucleic acids, proteins, and various biomarkers.
Collapse
Affiliation(s)
- Xizi Luo
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jining Li
- Institute of Laser and Optoelectronics, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Guorong Huang
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Fengxin Xie
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhe He
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xiaojun Zeng
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Huiyan Tian
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yu Liu
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Weiling Fu
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xiang Yang
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
13
|
Kong H, Yi K, Mintz RL, Wang B, Xu Y, Lao YH, Tao Y, Li M. CRISPR/Cas detection with nanodevices: moving deeper into liquid biopsy. Chem Commun (Camb) 2024; 60:2301-2319. [PMID: 38251733 DOI: 10.1039/d3cc05375j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
The emerging field of liquid biopsy has garnered significant interest in precision diagnostics, offering a non-invasive and repetitive method for analyzing bodily fluids to procure real-time diagnostic data. The precision and accuracy offered by the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas) technology have advanced and broadened the applications of liquid biopsy. Significantly, when combined with swiftly advancing nanotechnology, CRISPR/Cas-mediated nanodevices show vast potential in precise liquid biopsy applications. However, persistent challenges are still associated with off-target effects, and the current platforms also constrain the performance of the assays. In this review, we highlight the merits of CRISPR/Cas systems in liquid biopsy, tracing the development of CRISPR/Cas systems and their current applications in disease diagnosis particularly in liquid biopsies. We also outline ongoing efforts to design nanoscale devices with improved sensing and readout capabilities, aiming to enhance the performance of CRISPR/Cas detectors in liquid biopsy. Finally, we identify the critical obstacles hindering the widespread adoption of CRISPR/Cas liquid biopsy and explore potential solutions. This feature article presents a comprehensive overview of CRISPR/Cas-mediated liquid biopsies, emphasizing the progress in integrating nanodevices to improve specificity and sensitivity. It also sheds light on future research directions in employing nanodevices for CRISPR/Cas-based liquid biopsies in the realm of precision medicine.
Collapse
Affiliation(s)
- Huimin Kong
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Rachel L Mintz
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Bin Wang
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130061, China
| | - Yanteng Xu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Yeh-Hsing Lao
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
14
|
Hii ARK, Qi X, Wu Z. Advanced strategies for CRISPR/Cas9 delivery and applications in gene editing, therapy, and cancer detection using nanoparticles and nanocarriers. J Mater Chem B 2024; 12:1467-1489. [PMID: 38288550 DOI: 10.1039/d3tb01850d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Cancer remains one of the deadliest diseases, and is characterised by the uncontrolled growth of modified human cells. Unlike infectious diseases, cancer does not originate from foreign agents. Though a variety of diagnostic procedures are available; their cost-effectiveness and accessibility create significant hurdles. Non-specific cancer symptoms further complicate early detection, leading to belated recognition of certain cancer. The lack of reliable biomarkers hampers effective treatment, as chemotherapy, radiation therapy, and surgery often result in poor outcomes and high recurrence rates. Genetic and epigenetic mutations play a crucial role in cancer pathogenesis, necessitating the development of alternate treatment methods. The advent of CRISPR/Cas9 technology has transformed molecular biology and exhibits potential for gene modification and therapy in various cancer types. Nonetheless, obstacles such as safe transport, off-target consequences, and potency must be overcome before widespread clinical use. Notably, this review delves into the multifaceted landscape of cancer research, highlighting the pivotal role of nanoparticles in advancing CRISPR/Cas9-based cancer interventions. By addressing the challenges associated with cancer diagnosis and treatment, this integrated approach paves the way for innovative solutions and improved patient outcomes.
Collapse
Affiliation(s)
| | - Xiaole Qi
- Industrial Technology Innovation Platform, Zhejiang Center for Safety Study of Drug Substances, China Pharmaceutical University, 210009, 310018, Nanjing, Hangzhou, P. R. China.
| | - Zhenghong Wu
- Pharmaceutical University, 210009, Nanjing, P. R. China.
| |
Collapse
|
15
|
Bartosik M, Moranova L, Izadi N, Strmiskova J, Sebuyoya R, Holcakova J, Hrstka R. Advanced technologies towards improved HPV diagnostics. J Med Virol 2024; 96:e29409. [PMID: 38293790 DOI: 10.1002/jmv.29409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 02/01/2024]
Abstract
Persistent infection with high-risk types of human papillomaviruses (HPV) is a major cause of cervical cancer, and an important factor in other malignancies, for example, head and neck cancer. Despite recent progress in screening and vaccination, the incidence and mortality are still relatively high, especially in low-income countries. The mortality and financial burden associated with the treatment could be decreased if a simple, rapid, and inexpensive technology for HPV testing becomes available, targeting individuals for further monitoring with increased risk of developing cancer. Commercial HPV tests available in the market are often relatively expensive, time-consuming, and require sophisticated instrumentation, which limits their more widespread utilization. To address these challenges, novel technologies are being implemented also for HPV diagnostics that include for example, isothermal amplification techniques, lateral flow assays, CRISPR-Cas-based systems, as well as microfluidics, paperfluidics and lab-on-a-chip devices, ideal for point-of-care testing in decentralized settings. In this review, we first evaluate current commercial HPV tests, followed by a description of advanced technologies, explanation of their principles, critical evaluation of their strengths and weaknesses, and suggestions for their possible implementation into medical diagnostics.
Collapse
Affiliation(s)
- Martin Bartosik
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ludmila Moranova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Nasim Izadi
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Johana Strmiskova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ravery Sebuyoya
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jitka Holcakova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Roman Hrstka
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| |
Collapse
|
16
|
Qi J, Qi Q, Zhou Z, Wu Y, Cai A, Wu J, Chen B, Wang Q, Chen L, Wang F. PER-CRISPR/Cas14a system-based electrochemical biosensor for the detection of ctDNA EGFR L858R. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 16:51-61. [PMID: 38058174 DOI: 10.1039/d3ay01615c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The detection of epidermal growth factor receptor (EGFR) mutation L858R in circulating tumor DNA (ctDNA) is beneficial for the clinical diagnosis and personalized therapy of non-small cell lung cancer (NSCLC). Herein, for the first time, the combination of the primer exchange reaction (PER) and clustered regularly interspaced short palindromic repeats (CRISPR) and its associated nucleases (Cas) 14a was used in electrochemical biosensor construction for the detection of ctDNA EGFR L858R. EGFR L858R, as the target, induced the isothermal amplification of the PER reaction, and then the CRISPR/Cas14a system was activated; subsequently, the substrate ssDNA-MB was cleaved and the electron on the surface of the gold electrode transferred, resulting in the fluctuation of the electrochemical redox signal on the electrode surface, whereas the electrochemical signal will be stable when EGFR L858R is absent. Therefore, the concentration of EGFR L858R can be quantified by electrochemical signal analysis. The low detection limit is 0.34 fM and the dynamic detection range is from 1 fM to 1 μM in this work. The PER-CRISPR/Cas14a electrochemical biosensor greatly improved the analytical sensitivity. In addition, this platform also exhibited excellent specificity, reproducibility, stability and good recovery. This study provides an efficient and novel strategy for the detection of ctDNA EGFR L858R, which has great potential for application in the diagnosis and treatment of NSCLC.
Collapse
Affiliation(s)
- Jing Qi
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Qianyi Qi
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Zhou Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yixuan Wu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Aiting Cai
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Jinran Wu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Bairong Chen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Qingxiang Wang
- College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000, China
- Nantong Institute of Liver Diseases, Nantong Third People's Hospital Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, China.
| | - Lin Chen
- Nantong Institute of Liver Diseases, Nantong Third People's Hospital Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, China.
| | - Feng Wang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| |
Collapse
|
17
|
Liang T, Qin X, Zhang Y, Yang Y, Chen Y, Yuan L, Liu F, Chen Z, Li X, Yang F. CRISPR/dCas9-Mediated Specific Molecular Assembly Facilitates Genotyping of Mutant Circulating Tumor DNA. Anal Chem 2023; 95:16305-16314. [PMID: 37874695 DOI: 10.1021/acs.analchem.3c03481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Breakthroughs in circulating tumor DNA (ctDNA) analysis are critical in tumor liquid biopsies but remain a technical challenge due to the double-stranded structure, extremely low abundance, and short half-life of ctDNA. Here, we report an electrochemical CRISPR/dCas9 sensor (E-dCas9) for sensitive and specific detection of ctDNA at a single-nucleotide resolution. The E-dCas9 design harnesses the specific capture and unzipping of target ctDNA by dCas9 to introduce a complementary reporter probe for specific molecular assembly and signal amplification. By efficient homogeneous assembly and interfacial click reaction, the assay demonstrates superior sensitivity (up to 2.86 fM) in detecting single-base mutant ctDNA and a broad dynamic range spanning 6 orders of magnitude. The sensor is also capable of measuring 10 fg/μL of a mutated target in excess of wild-type ones (1 ng/μL), equivalent to probing 0.001% of the mutation relative to the wild type. In addition, our sensor can monitor the dynamic expression of cellular genomic DNA and allows accurate analysis of blood samples from patients with nonsmall cell lung cancer, suggesting the potential of E-dCas9 as a promising tool in ctDNA-based cancer diagnosis.
Collapse
Affiliation(s)
- Tingting Liang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
- Department of Pharmacy, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China
| | - Xiaojie Qin
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yuyuan Zhang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yu Yang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yu Chen
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Lin Yuan
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rhumatic Diseases, Hubei Minzu University, Enshi 445000, China
| | - Feng Liu
- Department of Blood Transfusion, the First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Zhizhong Chen
- Department of Clinical Laboratory, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Xinchun Li
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Fan Yang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rhumatic Diseases, Hubei Minzu University, Enshi 445000, China
| |
Collapse
|
18
|
Kaushal JB, Raut P, Kumar S. Organic Electronics in Biosensing: A Promising Frontier for Medical and Environmental Applications. BIOSENSORS 2023; 13:976. [PMID: 37998151 PMCID: PMC10669243 DOI: 10.3390/bios13110976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
The promising field of organic electronics has ushered in a new era of biosensing technology, thus offering a promising frontier for applications in both medical diagnostics and environmental monitoring. This review paper provides a comprehensive overview of organic electronics' remarkable progress and potential in biosensing applications. It explores the multifaceted aspects of organic materials and devices, thereby highlighting their unique advantages, such as flexibility, biocompatibility, and low-cost fabrication. The paper delves into the diverse range of biosensors enabled by organic electronics, including electrochemical, optical, piezoelectric, and thermal sensors, thus showcasing their versatility in detecting biomolecules, pathogens, and environmental pollutants. Furthermore, integrating organic biosensors into wearable devices and the Internet of Things (IoT) ecosystem is discussed, wherein they offer real-time, remote, and personalized monitoring solutions. The review also addresses the current challenges and future prospects of organic biosensing, thus emphasizing the potential for breakthroughs in personalized medicine, environmental sustainability, and the advancement of human health and well-being.
Collapse
Affiliation(s)
- Jyoti Bala Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.B.K.); (P.R.)
| | - Pratima Raut
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.B.K.); (P.R.)
| | - Sanjay Kumar
- Durham School of Architectural Engineering and Construction, Scott Campus, University of Nebraska-Lincoln, Omaha, NE 68182, USA
| |
Collapse
|
19
|
Jiang L, Lin X, Chen F, Qin X, Yan Y, Ren L, Yu H, Chang L, Wang Y. Current research status of tumor cell biomarker detection. MICROSYSTEMS & NANOENGINEERING 2023; 9:123. [PMID: 37811123 PMCID: PMC10556054 DOI: 10.1038/s41378-023-00581-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/26/2023] [Accepted: 07/23/2023] [Indexed: 10/10/2023]
Abstract
With the annual increases in the morbidity and mortality rates of tumors, the use of biomarkers for early diagnosis and real-time monitoring of tumor cells is of great importance. Biomarkers used for tumor cell detection in body fluids include circulating tumor cells, nucleic acids, protein markers, and extracellular vesicles. Among them, circulating tumor cells, circulating tumor DNA, and exosomes have high potential for the prediction, diagnosis, and prognosis of tumor diseases due to the large amount of valuable information on tumor characteristics and evolution; in addition, in situ monitoring of telomerase and miRNA in living cells has been the topic of extensive research to understand tumor development in real time. Various techniques, such as enzyme-linked immunosorbent assays, immunoblotting, and mass spectrometry, have been widely used for the detection of these markers. Among them, the detection of tumor cell markers in body fluids based on electrochemical biosensors and fluorescence signal analysis is highly preferred because of its high sensitivity, rapid detection and portable operation. Herein, we summarize recent research progress in the detection of tumor cell biomarkers in body fluids using electrochemical and fluorescence biosensors, outline the current research status of in situ fluorescence monitoring and the analysis of tumor markers in living cells, and discuss the technical challenges for their practical clinical application to provide a reference for the development of new tumor marker detection methods.
Collapse
Affiliation(s)
- Liying Jiang
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Xinyi Lin
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Fenghua Chen
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Xiaoyun Qin
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Yanxia Yan
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Linjiao Ren
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Hongyu Yu
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Lingqian Chang
- key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083 China
| | - Yang Wang
- key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083 China
- School of Engineering Medicine, Beihang University, Beijing, 100083 China
| |
Collapse
|
20
|
Alijani HQ, Khatami M, Torkzadeh-Mahani M, Michalička J, Wang W, Wang D, Heydari A. Biosynthesis of ternary NiCoFe 2O 4 nanoflowers: investigating their 3D structure and potential use in gene delivery. J Biol Eng 2023; 17:61. [PMID: 37784189 PMCID: PMC10546742 DOI: 10.1186/s13036-023-00381-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023] Open
Abstract
Multicomponent nanoparticle systems are known for their varied properties and functions, and have shown potential as gene nanocarriers. This study aims to synthesize and characterize ternary nickel-cobalt-ferrite (NiCoFe2O4) nanoparticles with the potential to serve as gene nanocarriers for cancer/gene therapy. The biogenic nanocarriers were prepared using a simple and eco-friendly method following green chemistry principles. The physicochemical properties of the nanoparticles were analyzed by X-ray diffraction, vibrating sample magnetometer, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller. To evaluate the morphology of the nanoparticles, the field emission scanning electron microscopy with energy dispersive X-Ray spectroscopy, high-resolution transmission electron microscopy imaging, and electron tomography were conducted. Results indicate the nanoparticles have a nanoflower morphology with a mesoporous nature and a cubic spinel structure, where the rod and spherical nanoparticles became rose-like with a specific orientation. These nanoparticles were found to have minimal toxicity in human embryonic kidney 293 (HEK-293 T) cells at concentrations of 1 to 250 µg·mL-1. We also demonstrated that the nanoparticles could be used as gene nanocarriers for delivering genes to HEK-293 T cells using an external magnetic field, with optimal transfection efficiency achieved at an N/P ratio of 2.5. The study suggests that biogenic multicomponent nanocarriers show potential for safe and efficient gene delivery in cancer/gene therapy.
Collapse
Affiliation(s)
- Hajar Q Alijani
- Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Mehrdad Khatami
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares, University, Tehran, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Jan Michalička
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic
| | - Wu Wang
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-Von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Di Wang
- Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, Hermann-Von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Abolfazl Heydari
- Polymer Institute of the Slovak Academy of Science, Dúbravská Cesta 9, 845 41, Bratislava, Slovakia
| |
Collapse
|
21
|
Yang X, Huang Y, Yang S, Tang M, Liu J, Shen J, Fa H, Huo D, Hou C, Yang M. A label-free fluorescent sensor for rapid and sensitive detection of ctDNA based on fluorescent PDA nanoparticles. Analyst 2023; 148:4885-4896. [PMID: 37650747 DOI: 10.1039/d3an01169k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Technological advances in the detection of circulating tumor DNA (ctDNA) have made new options available for diagnosis, classification, biological studies, and treatment selection. However, effective and practical methods for analyzing this emerging class of biomarkers are still lacking. In this work, a fluorescent biosensor was designed for the label-free detection of ctDNA (EGFR 19 del for non-small cell lung cancer, NSCLC). The biosensor was based on the fact that MnO2 nanosheets (MnO2 NSs) have stronger affinity towards single-stranded DNA (ssDNA), as compared with double-stranded DNA (dsDNA). As a high-performance nanoenzyme, MnO2 NSs could oxidize dopamine (DA) into fluorescent polydopamine nanoparticles (FL-PDA NPs), which could be used as a fluorescence signal. The probe ssDNA could be adsorbed on the surface of MnO2 NSs through π-π stacking, and the active site would be masked, causing a lower fluorescence. After the targets were recognized by probe ssDNA to form dsDNA, its affinity for MnO2 NSs decreased and the active site recovered, causing a restored fluorescence. It was verified that Mn ions, •OH radicals and electron transfer were the important factors in the catalytic oxidation of DA. Under the optimal experimental conditions, this biosensor exhibited a detection limit of 380 pM and a linear range of 25-125 nM, providing reliable readout in a short time (45 min). This sensor exhibited outstanding specificity, stability and reproducibility. In addition, this sensor was applied to the detection of ctDNA in serum samples and cell lysates. It is demonstrated that FL-PDA NPs can be used as a fluorescence signal for easy, rapid and label-free detection of ctDNA without any other amplification strategies, and the proposed strategy has great potential for biomarker detection in the field of liquid biopsy.
Collapse
Affiliation(s)
- Xiao Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
| | - Yang Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
| | - Siyi Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
| | - Miao Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
| | - Juan Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
| | - Jinhui Shen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
| | - Huanbao Fa
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Danqun Huo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
- College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Changjun Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
- College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Mei Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
- College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
22
|
Fu R, Xianyu Y. Gold Nanomaterials-Implemented CRISPR-Cas Systems for Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300057. [PMID: 36840654 DOI: 10.1002/smll.202300057] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/04/2023] [Indexed: 05/25/2023]
Abstract
Due to their superiority in the simple design and precise targeting, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems have attracted significant interest for biosensing. On the one hand, CRISPR-Cas systems have the capacity to precisely recognize and cleave specific DNA and RNA sequences. On the other hand, CRISPR-Cas systems such as orthologs of Cas9, Cas12, and Cas13 exhibit cis-cleavage or trans-cleavage activities after recognizing the target sequence. Owing to the cleavage activities, CRISPR-Cas systems can be designed for biosensing by degrading tagged nucleic acids to produce detectable signals. To meet the requirements of point-of-care detection and versatile signal readouts, gold nanomaterials with excellent properties such as high extinction coefficients, easy surface functionalization, and biocompatibility are implemented in CRISPR-Cas-based biosensors. In combination with gold nanomaterials such as gold nanoparticles, gold nanorods, and gold nanostars, great efforts are devoted to fabricating CRISPR-Cas-based biosensors for the detection of diverse targets. This review focuses on the current advances in gold nanomaterials-implemented CRISPR-Cas-based biosensors, particularly the working mechanism and the performance of these biosensors. CRISPR-Cas systems, including CRISPR-Cas9, CRISPR-Cas12a, and CRISPR-Cas13a are discussed and highlighted. Meanwhile, prospects and challenges are also discussed in the design of biosensing strategies based on gold nanomaterials and CRISPR-Cas systems.
Collapse
Affiliation(s)
- Ruijie Fu
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yunlei Xianyu
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, P. R. China
- Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang, 315100, P. R. China
| |
Collapse
|
23
|
Chen Z, Wu C, Yuan Y, Xie Z, Li T, Huang H, Li S, Deng J, Lin H, Shi Z, Li C, Hao Y, Tang Y, You Y, Al-Hartomy OA, Wageh S, Al-Sehemi AG, Lu R, Zhang L, Lin X, He Y, Zhao G, Li D, Zhang H. CRISPR-Cas13a-powered electrochemical biosensor for the detection of the L452R mutation in clinical samples of SARS-CoV-2 variants. J Nanobiotechnology 2023; 21:141. [PMID: 37120637 PMCID: PMC10148006 DOI: 10.1186/s12951-023-01903-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/19/2023] [Indexed: 05/01/2023] Open
Abstract
Since the end of 2019, a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has deprived numerous lives worldwide, called COVID-19. Up to date, omicron is the latest variant of concern, and BA.5 is replacing the BA.2 variant to become the main subtype rampaging worldwide. These subtypes harbor an L452R mutation, which increases their transmissibility among vaccinated people. Current methods for identifying SARS-CoV-2 variants are mainly based on polymerase chain reaction (PCR) followed by gene sequencing, making time-consuming processes and expensive instrumentation indispensable. In this study, we developed a rapid and ultrasensitive electrochemical biosensor to achieve the goals of high sensitivity, the ability of distinguishing the variants, and the direct detection of RNAs from viruses simultaneously. We used electrodes made of MXene-AuNP (gold nanoparticle) composites for improved sensitivity and the CRISPR/Cas13a system for high specificity in detecting the single-base L452R mutation in RNAs and clinical samples. Our biosensor will be an excellent supplement to the RT-qPCR method enabling the early diagnosis and quick distinguishment of SARS-CoV-2 Omicron BA.5 and BA.2 variants and more potential variants that might arise in the future.
Collapse
Affiliation(s)
- Zhi Chen
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, 511518, People's Republic of China
- International Collaborative Laboratory of 2D, Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Chenshuo Wu
- International Collaborative Laboratory of 2D, Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, People's Republic of China
| | - Yuxuan Yuan
- International Collaborative Laboratory of 2D, Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Zhongjian Xie
- Institute of Pediatrics, Shenzhen Children's Hospital, Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen, Guangdong, 518038, P. R. China
| | - Tianzhong Li
- International Collaborative Laboratory of 2D, Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Hao Huang
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, 511518, People's Republic of China
| | - Shuang Li
- College of Pharmacy, Dali University, Dali, 671000, P. R. China
| | - Jiefeng Deng
- College of Pharmacy, Dali University, Dali, 671000, P. R. China
| | - Huiling Lin
- Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Zhe Shi
- School of Physics & New Energy, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, People's Republic of China
| | - Chaozhou Li
- International Collaborative Laboratory of 2D, Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Yabin Hao
- International Collaborative Laboratory of 2D, Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Yuxuan Tang
- Shenzhen Metasensing Tech Limited Company, Shenzhen, 518000, People's Republic of China
| | - Yuehua You
- Department of Stomatology, Longhua People's Hospital Affiliated to Southern Medical University, Shenzhen, 518109, People's Republic of China
- School of Stomatology, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Omar A Al-Hartomy
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Swelm Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Ruitao Lu
- Shenzhen International Institute for Biomedical Research, Shenzhen, 518110, China
| | - Ling Zhang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Xuechun Lin
- Laboratory of All-Solid-State Light Sources, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Yaqing He
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, P. R. China.
| | - Guojun Zhao
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, 511518, People's Republic of China.
| | - Defa Li
- Department of Laboratory Medicine, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518038, People's Republic of China.
| | - Han Zhang
- International Collaborative Laboratory of 2D, Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
24
|
Liu FX, Cui JQ, Wu Z, Yao S. Recent progress in nucleic acid detection with CRISPR. LAB ON A CHIP 2023; 23:1467-1492. [PMID: 36723235 DOI: 10.1039/d2lc00928e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Recent advances in CRISPR-based biotechnologies have greatly expanded our capabilities to repurpose CRISPR for the development of molecular diagnostic systems. The key attribute that allows CRISPR to be widely utilized is its programmable and highly specific nature. In this review, we first illustrate the principle of the class 2 CRISPR nucleases for molecular diagnostics which originates from their immunologic defence systems. Next, we present the CRISPR-based schemes in the application of diagnostics with amplification-assisted or amplification-free strategies. By highlighting some of the recent advances we interpret how general bioengineering methodologies can be integrated with CRISPR. Finally, we discuss the challenges and exciting prospects for future CRISPR-based biosensing development. We hope that this review will guide the reader to systematically learn the start-of-the-art development of CRISPR-mediated nucleic acid detection and understand how to apply the CRISPR nucleases with different design concepts to more general applications in diagnostics and beyond.
Collapse
Affiliation(s)
- Frank X Liu
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Johnson Q Cui
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Zhihao Wu
- IIP-Advanced Materials, Interdisciplinary Program Office (IPO), Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Shuhuai Yao
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
25
|
CRISPR-Cas assisted diagnostics: A broad application biosensing approach. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
26
|
Electrochemical biosensors for analysis of DNA point mutations in cancer research. Anal Bioanal Chem 2023; 415:1065-1085. [PMID: 36289102 DOI: 10.1007/s00216-022-04388-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 02/07/2023]
Abstract
Cancer is a genetic disease induced by mutations in DNA, in particular point mutations in important driver genes that lead to protein malfunctioning and ultimately to tumorigenesis. Screening for the most common DNA point mutations, especially in such genes as TP53, BRCA1 and BRCA2, EGFR, KRAS, or BRAF, is crucial to determine predisposition risk for cancer or to predict response to therapy. In this review, we briefly depict how these genes are involved in cancer, followed by a description of the most common techniques routinely applied for their analysis, including high-throughput next-generation sequencing technology and less expensive low-throughput options, such as real-time PCR, restriction fragment length polymorphism, or high resolution melting analysis. We then introduce benefits of electrochemical biosensors as interesting alternatives to the standard methods in terms of cost, speed, and simplicity. We describe most common strategies involved in electrochemical biosensing of point mutations, relying mostly on PCR or isothermal amplification techniques, and critically discuss major challenges and obstacles that, until now, prevented their more widespread application in clinical settings.
Collapse
|
27
|
Guo Y, Guo L, Su Y, Xiong Y. CRISPR-Cas system manipulating nanoparticles signal transduction for cancer diagnosis. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1851. [PMID: 36199268 DOI: 10.1002/wnan.1851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/30/2022] [Accepted: 08/10/2022] [Indexed: 11/05/2022]
Abstract
Early diagnosis of cancer is important to improve the survival rate and relieve patient pain. Sensitive detection of cancer related biomarkers in body fluids is a critical approach for the early diagnosis of cancer. The clustered regularly interspaced short palindromic repeat-associated protein (CRISPR-Cas) system has emerged as a molecular manipulation technology because of its simple detection procedure, high base resolution, and isothermal signal amplification. Recently, various nanomaterials with unique optical and electrical characteristics have been introduced as the novel signal transducers to enhance the detection performance of CRISPR-Cas-based nanosensors. This review summarizes the working mechanisms of the CRISPR-Cas system for biosensing. It also enumerates the strategies of CRISPR-manipulated nanosensors based on various signal models for cancer diagnosis, including colorimetric, fluorescence, electrochemical, electrochemiluminescence, pressure, and other signals. Finally, the prospects and challenges of CRISPR-Cas-based nanosensors for cancer diagnostic are also discussed. This article is categorized under: Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Yuqian Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
| | - Liang Guo
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, People's Republic of China
| | - Yu Su
- School of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China.,School of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
28
|
Thenrajan T, Alwarappan S, Wilson J. Molecular Diagnosis and Cancer Prognosis-A Concise Review. Diagnostics (Basel) 2023; 13:766. [PMID: 36832253 PMCID: PMC9955694 DOI: 10.3390/diagnostics13040766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Cancer is a complicated disease. Globally, it is one of the major causes for morbidity and mortality. A critical challenge associated with it is the difficulty to accurately diagnose it at an early stage. The malignancy due to multistage and heterogeneity that result from genetic and epigenetic modifications poses critical challenge to diagnose and monitor the progress at an early stage. Current diagnostic techniques normally suggest invasive biopsy procedure that can cause further infections and bleeding. Therefore, noninvasive diagnostic methods with high accuracy, safety and earliest detection are the needs of the hour. Herein, we provide a detailed review on the advanced methodologies and protocols developed for the detection of cancer biomarkers based on proteins, nucleic acids and extracellular vesicles. Furthermore, existing challenges and the improvements essential for the rapid, sensitive and noninvasive detection have also been discussed.
Collapse
Affiliation(s)
- Thatchanamoorthy Thenrajan
- Polymer Electronics Lab., Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Subbiah Alwarappan
- CSIR-Central Electrochemical Research Institute, Karaikudi 630003, Tamilnadu, India
| | - Jeyaraj Wilson
- Polymer Electronics Lab., Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
29
|
Wu NJW, Aquilina M, Qian BZ, Loos R, Gonzalez-Garcia I, Santini CC, Dunn KE. The Application of Nanotechnology for Quantification of Circulating Tumour DNA in Liquid Biopsies: A Systematic Review. IEEE Rev Biomed Eng 2023; 16:499-513. [PMID: 35302938 DOI: 10.1109/rbme.2022.3159389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Technologies for quantifying circulating tumour DNA (ctDNA) in liquid biopsies could enable real-time measurements of cancer progression, profoundly impacting patient care. Sequencing methods can be too complex and time-consuming for regular point-of-care monitoring, but nanotechnology offers an alternative, harnessing the unique properties of objects tens to hundreds of nanometres in size. This systematic review was performed to identify all examples of nanotechnology-based ctDNA detection and assess their potential for clinical use. Google Scholar, PubMed, Web of Science, Google Patents, Espacenet and Embase/MEDLINE were searched up to 23rd March 2021. The review identified nanotechnology-based methods for ctDNA detection for which quantitative measures (e.g., limit of detection, LOD) were reported and biologically relevant samples were used. The pre-defined inclusion criteria were met by 66 records. LODs ranged from 10 zM to 50nM. 25 records presented an LOD of 10fM or below. Nanotechnology-based approaches could provide the basis for the next wave of advances in ctDNA diagnostics, enabling analysis at the point-of-care, but none are currently used clinically. Further work is needed in development and validation; trade-offs are expected between different performance measures e.g., number of sequences detected and time to result.
Collapse
|
30
|
Hefnawy MA, Fadlallah SA, El-Sherif RM, Medany SS. Competition between enzymatic and non-enzymatic electrochemical determination of cholesterol. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117169] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
31
|
Ashraf G, Aziz A, Iftikhar T, Zhong ZT, Asif M, Chen W. The Roadmap of Graphene-Based Sensors: Electrochemical Methods for Bioanalytical Applications. BIOSENSORS 2022; 12:1183. [PMID: 36551150 PMCID: PMC9775289 DOI: 10.3390/bios12121183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Graphene (GR) has engrossed immense research attention as an emerging carbon material owing to its enthralling electrochemical (EC) and physical properties. Herein, we debate the role of GR-based nanomaterials (NMs) in refining EC sensing performance toward bioanalytes detection. Following the introduction, we briefly discuss the GR fabrication, properties, application as electrode materials, the principle of EC sensing system, and the importance of bioanalytes detection in early disease diagnosis. Along with the brief description of GR-derivatives, simulation, and doping, classification of GR-based EC sensors such as cancer biomarkers, neurotransmitters, DNA sensors, immunosensors, and various other bioanalytes detection is provided. The working mechanism of topical GR-based EC sensors, advantages, and real-time analysis of these along with details of analytical merit of figures for EC sensors are discussed. Last, we have concluded the review by providing some suggestions to overcome the existing downsides of GR-based sensors and future outlook. The advancement of electrochemistry, nanotechnology, and point-of-care (POC) devices could offer the next generation of precise, sensitive, and reliable EC sensors.
Collapse
Affiliation(s)
- Ghazala Ashraf
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ayesha Aziz
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tayyaba Iftikhar
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zi-Tao Zhong
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
32
|
Wen X, Pu H, Liu Q, Guo Z, Luo D. Circulating Tumor DNA-A Novel Biomarker of Tumor Progression and Its Favorable Detection Techniques. Cancers (Basel) 2022; 14:6025. [PMID: 36551512 PMCID: PMC9775401 DOI: 10.3390/cancers14246025] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Cancer is the second leading cause of death in the world and seriously affects the quality of life of patients. The diagnostic techniques for tumors mainly include tumor biomarker detection, instrumental examination, and tissue biopsy. In recent years, liquid technology represented by circulating tumor DNA (ctDNA) has gradually replaced traditional technology with its advantages of being non-invasive and accurate, its high specificity, and its high sensitivity. ctDNA may carry throughout the circulatory system through tumor cell necrosis, apoptosis, circulating exosome secretion, etc., carrying the characteristic changes in tumors, such as mutation, methylation, microsatellite instability, gene rearrangement, etc. In this paper, ctDNA mutation and methylation, as the objects to describe the preparation process before ctDNA analysis, and the detection methods of two gene-level changes, including a series of enrichment detection techniques derived from PCR, sequencing-based detection techniques, and comprehensive detection techniques, are combined with new materials. In addition, the role of ctDNA in various stages of cancer development is summarized, such as early screening, diagnosis, molecular typing, prognosis prediction, recurrence monitoring, and drug guidance. In summary, ctDNA is an ideal biomarker involved in the whole process of tumor development.
Collapse
Affiliation(s)
- Xiaosha Wen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
- Laboratory Medicine Centre, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Huijie Pu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
- Laboratory Medicine Centre, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Quan Liu
- Laboratory Medicine Centre, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Zifen Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Dixian Luo
- Laboratory Medicine Centre, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| |
Collapse
|
33
|
Cai A, Yang L, Kang X, Liu J, Wang F, Ji H, Wang Q, Wu M, Li G, Zhou X, Qin Y, Wu L. Target Recognition- and HCR Amplification-Induced In Situ Electrochemical Signal Probe Synthesis Strategy for Trace ctDNA Analysis. BIOSENSORS 2022; 12:bios12110989. [PMID: 36354498 PMCID: PMC9688549 DOI: 10.3390/bios12110989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 05/31/2023]
Abstract
An electrochemical-DNA (E-DNA) sensor was constructed by using DNA metallization to produce an electrochemical signal reporter in situ and hybridization chain reaction (HCR) as signal amplification strategy. The cyclic voltammetry (CV) technique was used to characterize the electrochemical solid-state Ag/AgCl process. Moreover, the enzyme cleavage technique was introduced to reduce background signals and further improve recognition accuracy. On the basis of these techniques, the as-prepared E-DNA sensor exhibited superior sensing performance for trace ctDNA analysis with a detection range of 0.5 fM to 10 pM and a detection limit of 7 aM. The proposed E-DNA sensor also displayed excellent selectivity, satisfied repeatability and stability, and had good recovery, all of which supports its potential applications for future clinical sample analysis.
Collapse
Affiliation(s)
- Aiting Cai
- School of Public Health, Nantong University, No.9 Seyuan Road, Nantong 226019, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Luxia Yang
- School of Public Health, Nantong University, No.9 Seyuan Road, Nantong 226019, China
| | - Xiaoxia Kang
- School of Public Health, Nantong University, No.9 Seyuan Road, Nantong 226019, China
| | - Jinxia Liu
- School of Public Health, Nantong University, No.9 Seyuan Road, Nantong 226019, China
| | - Feng Wang
- School of Public Health, Nantong University, No.9 Seyuan Road, Nantong 226019, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Haiwei Ji
- School of Public Health, Nantong University, No.9 Seyuan Road, Nantong 226019, China
| | - Qi Wang
- School of Public Health, Nantong University, No.9 Seyuan Road, Nantong 226019, China
| | - Mingmin Wu
- School of Public Health, Nantong University, No.9 Seyuan Road, Nantong 226019, China
| | - Guo Li
- School of Public Health, Nantong University, No.9 Seyuan Road, Nantong 226019, China
| | - Xiaobo Zhou
- School of Public Health, Nantong University, No.9 Seyuan Road, Nantong 226019, China
| | - Yuling Qin
- School of Public Health, Nantong University, No.9 Seyuan Road, Nantong 226019, China
| | - Li Wu
- School of Public Health, Nantong University, No.9 Seyuan Road, Nantong 226019, China
| |
Collapse
|
34
|
Zhang X, Shi Y, Chen G, Wu D, Wu Y, Li G. CRISPR/Cas Systems-Inspired Nano/Biosensors for Detecting Infectious Viruses and Pathogenic Bacteria. SMALL METHODS 2022; 6:e2200794. [PMID: 36114150 DOI: 10.1002/smtd.202200794] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Infectious pathogens cause severe human illnesses and great deaths per year worldwide. Rapid, sensitive, and accurate detection of pathogens is of great importance for preventing infectious diseases caused by pathogens and optimizing medical healthcare systems. Inspired by a microbial defense system (i.e., CRISPR/ CRISPR-associated proteins (Cas) system, an adaptive immune system for protecting microorganisms from being attacked by invading species), a great many new biosensors have been successfully developed and widely applied in the detection of infectious viruses and pathogenic bacteria. Moreover, advanced nanotechnologies have also been integrated into these biosensors to improve their detection stability, sensitivity, and accuracy. In this review, the recent advance in CRISPR/Cas systems-based nano/biosensors and their applications in the detection of infectious viruses and pathogenic bacteria are comprehensively reviewed. First of all, the categories and working principles of CRISPR/Cas systems for establishing the nano/biosensors are simply introduced. Then, the design and construction of CRISPR/Cas systems-based nano/biosensors are comprehensively discussed. In the end, attentions are focused on the applications of CRISPR/Cas systems-based nano/biosensors in the detection of infectious viruses and pathogenic bacteria. Impressively, the remaining opportunities and challenges for the further design and development of CRISPR/Cas system-based nano/biosensors and their promising applications are proposed.
Collapse
Affiliation(s)
- Xianlong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yiheng Shi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Guang Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Di Wu
- Institute for Global Food Security, Queen's University Belfast, Belfast, BT95DL, UK
| | - Yongning Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, 100021, P. R. China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| |
Collapse
|
35
|
Liu J, Yang S, Shen J, Fa H, Hou C, Yang M. Conductive metal-organic framework based label-free electrochemical detection of circulating tumor DNA. Mikrochim Acta 2022; 189:391. [PMID: 36138259 DOI: 10.1007/s00604-022-05482-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022]
Abstract
An ultrasensitive electrochemical biosensor was designed for the rapid label-free detection of circulating tumor DNA (ctDNA, EGFR 19 Dels for non-small cell lung cancer, NSCLC). We linked the highly conjugated tricatecholate, 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) with Ni(II) ions into the two-dimensional porous conductive metal-organic frameworks (MOFs), which is termed Ni-catecholates (Ni-CAT). Then, the AuNPs/Ni-catecholates/carbon black/polarized pencil graphite electrode (AuNPs/Ni-CAT/CB/PPGE) was obtained by electrodeposition of AuNPs on the surface of PPGE modified with Ni-CAT/CB composite materials. The AuNPs/Ni-CAT/CB/PPGE were used for label-less detection of ctDNA, with a total detection time of only 30 min. Under optimal detection conditions, the AuNPs/Ni-CAT/CB/PPGE sensor exhibited excellent detection performance with good linear response to ctDNA over a wide concentration range and the detection limit down to the femtomolar level. The sensor was applied to the determination of ctDNA in serum samples with high sensitivity. This simple, efficient, and expeditious method has practical value in liquid biopsy of ctDNA and has potential for development in early detection, treatment, and prognosis of tumors. Herein, an ultrasensitive electrochemical biosensor was designed for the rapid label-free detection of ctDNA (EGFR 19 Dels for non-small cell lung cancer, NSCLC). We linked the highly conjugated tricatecholate, 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) with Ni(II) ions into the two-dimensional porous conductive metal-organic frameworks (MOFs), which is termed as Ni-catecholates (Ni-CAT). Then, the AuNPs/Ni-catecholates/carbon black/polarized pencil graphite electrode (AuNPs/Ni-CAT/CB/PPGE) was obtained by electrodeposition of AuNPs on the surface of PPGE modified with Ni-CAT/CB composite materials. The AuNPs/Ni-CAT/CB/PPGEs were used for label-less detection of ctDNA, with a total detection time of only 30 min. Under optimal detection conditions, the AuNPs/Ni-CAT/CB/PPGE sensor exhibited excellent detection performance with good linear response to ctDNA in the concentration range of 1 × 10-15 M to 1 × 10-6 M and with a detection limit as low as 0.32 fM. The sensor was applied for determination of ctDNA in serum samples and gave high sensitivity. This simple, efficient and expeditious method has practical value in liquid biopsy of ctDNA and has potential for development in early detection, treatment and prognosis of tumors.
Collapse
Affiliation(s)
- Juan Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Siyi Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Jinhui Shen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Huanbao Fa
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Changjun Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, People's Republic of China. .,College of Bioengineering, Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Mei Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, People's Republic of China. .,College of Bioengineering, Chongqing University, Chongqing, 400044, People's Republic of China.
| |
Collapse
|
36
|
Yang J, Hu X, Zhang W. Electrochemical self-signal identification of Kirsten rat sarcoma virus oncogene based on riboflavin 5′-(trihydrogen diphosphate) functionalized WS2 nanosheets. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01739-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
An ultrasensitive electrochemical self-signal circulating tumor DNA recognition strategy employing black phosphorous nanosheets assembled with flavin adenine dinucleotide. Bioelectrochemistry 2022; 148:108231. [DOI: 10.1016/j.bioelechem.2022.108231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/19/2022]
|
38
|
Wang D, Zhou H, Shi Y, Sun W. A FEN 1-assisted swing arm DNA walker for electrochemical detection of ctDNA by target recycling cascade amplification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1922-1927. [PMID: 35527509 DOI: 10.1039/d2ay00364c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A flap endonuclease 1 (FEN 1)-assisted swing arm DNA walker was constructed to achieve the signal amplification detection of ctDNA. The MB-labeled hairpin DNA was designed as the track and a long swing-arm DNA strand as the capture probe. The introduction of ctDNA unlocked a helper hairpin DNA, which could be captured to form the DNA duplex walker with the capture probe, and also activated the catalyst hairpin assembly. The DNA duplex walker opened the hairpin track and formed a three-base overlapping DNA structure, which was recognized and cleaved by FEN 1. Driven by the FEN 1 and the high reaction temperature, the DNA walker was initiated to hybridize with the track DNA and release multiple MB-labeled flaps for signal amplification. Owing to the excellent amplification capacity of the target recycling-induced DNA walker and programmed catalysis hairpin assembly, the one-step biosensor showed a linear detection range from 1 fM to 100 pM with a detection limit of 0.33 fM. Moreover, the sensitive detection of ctDNA in serum samples was verified, suggesting its potential application in liquid biopsy for clinical diagnosis.
Collapse
Affiliation(s)
- Dongmei Wang
- School of Laboratory Medicine, Wannan Medical College, Wuhu, 241000, P. R. China.
| | - Huan Zhou
- School of Laboratory Medicine, Wannan Medical College, Wuhu, 241000, P. R. China.
| | - Yundong Shi
- School of Laboratory Medicine, Wannan Medical College, Wuhu, 241000, P. R. China.
| | - Wanjun Sun
- School of Laboratory Medicine, Wannan Medical College, Wuhu, 241000, P. R. China.
| |
Collapse
|
39
|
Li SS, Wang AJ, Yuan PX, Mei LP, Zhang L, Feng JJ. Heterometallic nanomaterials: activity modulation, sensing, imaging and therapy. Chem Sci 2022; 13:5505-5530. [PMID: 35694355 PMCID: PMC9116289 DOI: 10.1039/d2sc00460g] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
Heterometallic nanomaterials (HMNMs) display superior physicochemical properties and stability to monometallic counterparts, accompanied by wider applications in the fields of catalysis, sensing, imaging, and therapy due to synergistic effects between multi-metals in HMNMs. So far, most reviews have mainly concentrated on introduction of their preparation approaches, morphology control and applications in catalysis, assay of heavy metal ions, and antimicrobial activity. Therefore, it is very important to summarize the latest investigations of activity modulation of HMNMs and their recent applications in sensing, imaging and therapy. Taking the above into consideration, we briefly underline appealing chemical/physical properties of HMNMs chiefly tailored through the sizes, shapes, compositions, structures and surface modification. Then, we particularly emphasize their widespread applications in sensing of targets (e.g. metal ions, small molecules, proteins, nucleic acids, and cancer cells), imaging (frequently involving photoluminescence, fluorescence, Raman, electrochemiluminescence, magnetic resonance, X-ray computed tomography, photoacoustic imaging, etc.), and therapy (e.g. radiotherapy, chemotherapy, photothermal therapy, photodynamic therapy, and chemodynamic therapy). Finally, we present an outlook on their forthcoming directions. This timely review would be of great significance for attracting researchers from different disciplines in developing novel HMNMs.
Collapse
Affiliation(s)
- Shan-Shan Li
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Pei-Xin Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Li-Ping Mei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Lu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| |
Collapse
|
40
|
Yang J, Hu X, Zhang W. Electrochemical self-signal switch for determination of KRAS gene employing riboflavin 5’-adenosine diphosphate functionalized MoS2 nanosheets. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05186-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
You J, Park C, Jang K, Park J, Na S. Novel Detection Method for Circulating EGFR Tumor DNA Using Gravitationally Condensed Gold Nanoparticles and Catalytic Walker DNA. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3301. [PMID: 35591635 PMCID: PMC9101948 DOI: 10.3390/ma15093301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023]
Abstract
The detection of circulating tumor DNA is a major challenge in liquid biopsies for cancer. Conventionally, quantitative polymerase chain reactions or next-generation sequencing are used to detect circulating tumor DNA; however, these techniques require significant expertise, and are expensive. Owing to the increasing demand for a simple diagnostic method and constant monitoring of cancer, a cost-effective detection technique that can be conducted by non-experts is required. The aim of this study was to detect the circulating tumor DNA containing the epidermal growth factor receptor (EGFR) exon 19 deletion, which frequently occurs in lung cancer. By applying walker DNA to a catalytic hairpin assembly and using the differential dispersibility of gold nanoparticles, we detected EGFR exon 19 deletion mutant #2 DNA associated with lung cancer. Our sensing platform exhibited a limit of detection of 38.5 aM and a selectivity of 0.1% for EGFR exon 19 wild-type DNA. Moreover, we tested and compared EGFR exon 19 deletion mutants #1 and #3 to evaluate the effect of base pair mismatches on the performance of the said technique.
Collapse
Affiliation(s)
- Juneseok You
- Department of Mechanical Engineering, Korea University, Seoul 02841, Korea;
| | - Chanho Park
- Division of Foundry, Samsung Electronics, Hwaseong-si 18448, Korea;
| | - Kuewhan Jang
- School of Mechanical Engineering, Hoseo University, Asan 31499, Korea;
| | - Jinsung Park
- Department of Biomechatronics Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Suwon 16419, Korea
| | - Sungsoo Na
- Department of Mechanical Engineering, Korea University, Seoul 02841, Korea;
| |
Collapse
|
42
|
Habimana JDD, Huang R, Muhoza B, Kalisa YN, Han X, Deng W, Li Z. Mechanistic insights of CRISPR/Cas nucleases for programmable targeting and early-stage diagnosis: A review. Biosens Bioelectron 2022; 203:114033. [DOI: 10.1016/j.bios.2022.114033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/21/2022]
|
43
|
Chen B, Li Y, Xu F, Yang X. Powerful CRISPR-Based Biosensing Techniques and Their Integration With Microfluidic Platforms. Front Bioeng Biotechnol 2022; 10:851712. [PMID: 35284406 PMCID: PMC8905290 DOI: 10.3389/fbioe.2022.851712] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
In the fight against the worldwide pandemic coronavirus disease 2019 (COVID-19), simple, rapid, and sensitive tools for nucleic acid detection are in urgent need. PCR has been a classic method for nucleic acid detection with high sensitivity and specificity. However, this method still has essential limitations due to the dependence on thermal cycling, which requires costly equipment, professional technicians, and long turnover times. Currently, clustered regularly interspaced short palindromic repeats (CRISPR)-based biosensors have been developed as powerful tools for nucleic acid detection. Moreover, the CRISPR method can be performed at physiological temperature, meaning that it is easy to assemble into point-of-care devices. Microfluidic chips hold promises to integrate sample processing and analysis on a chip, reducing the consumption of sample and reagent and increasing the detection throughput. This review provides an overview of recent advances in the development of CRISPR-based biosensing techniques and their perfect combination with microfluidic platforms. New opportunities and challenges for the improvement of specificity and efficiency signal amplification are outlined. Furthermore, their various applications in healthcare, animal husbandry, agriculture, and forestry are discussed.
Collapse
Affiliation(s)
- Bing Chen
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ya Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Feng Xu, ; Xiaonan Yang,
| | - Xiaonan Yang
- Institute of Intelligent Sensing, Zhengzhou University, Zhengzhou, China
- *Correspondence: Feng Xu, ; Xiaonan Yang,
| |
Collapse
|
44
|
Ashrafizadeh M, Saebfar H, Gholami MH, Hushmandi K, Zabolian A, Bikarannejad P, Hashemi M, Daneshi S, Mirzaei S, Sharifi E, Kumar AP, Khan H, Heydari Sheikh Hossein H, Vosough M, Rabiee N, Thakur Kumar V, Makvandi P, Mishra YK, Tay FR, Wang Y, Zarrabi A, Orive G, Mostafavi E. Doxorubicin-loaded graphene oxide nanocomposites in cancer medicine: Stimuli-responsive carriers, co-delivery and suppressing resistance. Expert Opin Drug Deliv 2022; 19:355-382. [PMID: 35152815 DOI: 10.1080/17425247.2022.2041598] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The application of doxorubicin (DOX) in cancer therapy has been limited due to its drug resistance and poor internalization. Graphene oxide (GO) nanostructures have the capacity for DOX delivery while promoting its cytotoxicity in cancer. AREAS COVERED The favorable characteristics of GO nanocomposites, preparation method, and application in cancer therapy are described. Then, DOX resistance in cancer is discussed. The GO-mediated photothermal therapy and DOX delivery for cancer suppression are described. Preparation of stimuli-responsive GO nanocomposites, surface functionalization, hybrid nanoparticles, and theranostic applications are emphasized in DOX chemotherapy. EXPERT OPINION Graphene oxide nanoparticle-based photothermal therapy maximizes the anti-cancer activity of DOX against cancer cells. Apart from DOX delivery, GO nanomaterials are capable of loading anti-cancer agents and genetic tools to minimize drug resistance and enhance the cytolytic impact of DOX in cancer eradication. To enhance DOX accumulation in cancer cells, stimuli-responsive (redox-, light-, enzyme- and pH-sensitive) GO nanoparticles have been developed for DOX delivery. Further development of targeted delivery of DOX-loaded GO nanomaterials against cancer cells may be achieved by surface modification of polymers such as polyethylene glycol, hyaluronic acid, and chitosan. Doxorubicin-loaded GO nanoparticles have demonstrated theranostic potential for simultaneous diagnosis and therapy. Hybridization of GO with other nanocarriers such as silica and gold nanoparticles further broadens their potential anti-cancer therapy applications.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Hamidreza Saebfar
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hossein Gholami
- DVM. Graduated, Faculty of Veterinary Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | - Pooria Bikarannejad
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, 6517838736 Hamadan, Iran
| | - Alan Prem Kumar
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.,Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | | | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran.,School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Vijay Thakur Kumar
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.,School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interface, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, 6400 Sønderborg, Denmark
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, USA
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer 34396, Istanbul, Turkey
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Vitoria-Gasteiz, Spain.,University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHUFundación Eduardo Anitua). Vitoria-Gasteiz, Spain.,Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.,Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
45
|
Meng Y, Qin N, Hun X. ZnSe nanodisks:Ti 3C 2 MXenes-modified electrode for nucleic acid liquid biopsy with photoelectrochemical strategy. Mikrochim Acta 2021; 189:2. [PMID: 34855037 DOI: 10.1007/s00604-021-05117-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/20/2021] [Indexed: 01/13/2023]
Abstract
ZnSe nanodisks:Ti3C2 MXene complex was prepared for the first time. Based on its remarkable photoelectrochemical performance, combined with the enzyme-free toehold-mediated strand displacement reaction, a photoelectrochemical biosensor for the detection of the non-small-cell cancer biomarker ctDNA KRAS G12D was developed. ZnSe nanodisks were in situ grown on Ti3C2 MXene surface by two-step hydrothermal method. The high conductivity and adjustable band gap of MXene significantly enhanced the photoelectric response of ZnSe. Subsequently, the photoelectrochemical biosensor was prepared by combining with the signal amplification function of p-aminophenol and the enzyme-free toehold-mediated strand displacement reaction on the modified ITO electrode surface. Under the optimized conditions, the linear detection range is 0.5 ~ 100.0 fM, and the detection limit is 0.2 fM, which realizes the sensitive detection of KRAS G12D. The photoelectrochemical biosensor constructed opens up a new pathway for the preparation of new Mxene-based composite materials and the research of photoelectrochemical biosensor. Nucleic acid liquid biopsy with ZnSe nanodisks:Ti3C2 MXene photoelectroactive modified electrode.
Collapse
Affiliation(s)
- Yuchan Meng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Qingdao University of Science and Technology, 266042, Qingdao, People's Republic of China
| | - Nana Qin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Qingdao University of Science and Technology, 266042, Qingdao, People's Republic of China
| | - Xu Hun
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Qingdao University of Science and Technology, 266042, Qingdao, People's Republic of China.
| |
Collapse
|
46
|
Priya Swetha PD, Sonia J, Sapna K, Prasad KS. Towards CRISPR powered electrochemical sensing for smart diagnostics. CURRENT OPINION IN ELECTROCHEMISTRY 2021; 30:100829. [PMID: 34909513 PMCID: PMC8660062 DOI: 10.1016/j.coelec.2021.100829] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Even though global health has been steadily improved, the global disease burden associated with communicable and non-communicable diseases extensively increased healthcare expenditure. The present COVID-19 pandemic scenario has again ascertained the importance of clinical diagnostics as a basis to make life-saving decisions. In this context, there is a need for developing next-generation integrated smart real-time responsive biosensors with high selectivity and sensitivity. The emergence of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas biosensing systems has shown remarkable potential for developing next-generation biosensors. CRISPR/Cas integrated electrochemical biosensors (E-CRISPR) stands out with excellent properties. In this opinionated review, we illustrate the rapidly evolving applications for E-CRISPR-integrated detection systems towards biosensing and the future scope associated with E-CRISPR based diagnostics.
Collapse
Affiliation(s)
- Poyye Dsouza Priya Swetha
- Nanomaterial Research Laboratory (NMRL), Nano Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575 018, India
| | - Jospeh Sonia
- Nanomaterial Research Laboratory (NMRL), Nano Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575 018, India
| | - Kannan Sapna
- Nanomaterial Research Laboratory (NMRL), Nano Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575 018, India
| | - K Sudhakara Prasad
- Nanomaterial Research Laboratory (NMRL), Nano Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575 018, India
- Centre for Nutrition Studies, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575 018, India
| |
Collapse
|
47
|
Engineering entropy-driven based multiple signal amplification strategy for visualized assay of miRNA by naked eye. Talanta 2021; 235:122810. [PMID: 34517667 DOI: 10.1016/j.talanta.2021.122810] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 11/21/2022]
Abstract
MicroRNAs (miRNAs) are currently recognized as novel biomarkers for cancer early diagnosis, therapy selection, and progression monitoring. Herein, we developed an ultrasensitive and label-free homogeneous colorimetric strategy for miRNA detection based on engineering entropy-driven amplification (EDA) coupled with nicking enzyme-assisted AuNP aggregation. In our design, the target miRNA could specifically trigger the EDA recycling process. One of the EDA products could open the hairpin probe and form a dual strand containing a nicking endonuclease (Nb.BbvCl) cleavage region. After adding nicking endonuclease in the sensing solution, the product DNA fragments could act as two linkers, inducing the aggregation of ssDNA-modified AuNPs. Simultaneously, the liberating complementary strands continued to cyclic hybridization with the hairpin probe. This multiple signal amplification colorimetric strategy showed a wide linear range from 10 fM to 100 pM with a much lower detection limit of 3.13 fM for miRNA let-7a, which also performed well in a complex sample matrix. Most importantly, the naked eye could clearly distinguish the 10 fM color change caused by let-7a to be measured. Moreover, this approach could easily extend to multiple miRNAs with target-specific sequence substitutions. Therefore, this ultrasensitive visual strategy for miRNA demonstrated attractive potentials for promising applications in clinical diagnosis.
Collapse
|
48
|
Wang SY, Du YC, Wang DX, Ma JY, Tang AN, Kong DM. Signal amplification and output of CRISPR/Cas-based biosensing systems: A review. Anal Chim Acta 2021; 1185:338882. [PMID: 34711321 DOI: 10.1016/j.aca.2021.338882] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/30/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated) proteins are powerful gene-editing tools because of their ability to accurately recognize and manipulate nucleic acids. Besides gene-editing function, they also show great promise in biosensing applications due to the superiority of easy design and precise targeting. To improve the performance of CRISPR/Cas-based biosensing systems, various nucleic acid-based signal amplification techniques are elaborately incorporated. The incorporation of these amplification techniques not only greatly increases the detection sensitivity and specificity, but also extends the detectable target range, as well as makes the use of various signal output modes possible. Therefore, summarizing the use of signal amplification techniques in sensing systems and elucidating their roles in improving sensing performance are very necessary for the development of more superior CRISPR/Cas-based biosensors for various applications. In this review, CRISPR/Cas-based biosensors are summarized from two aspects: the incorporation of signal amplification techniques in three kinds of CRISPR/Cas-based biosensing systems (Cas9, Cas12 and Cas13-based ones) and the signal output modes used by these biosensors. The challenges and prospects for the future development of CRISPR/Cas-based biosensors are also discussed.
Collapse
Affiliation(s)
- Si-Yuan Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Yi-Chen Du
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Dong-Xia Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Jia-Yi Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - An-Na Tang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
49
|
Kim JH, Suh YJ, Park D, Yim H, Kim H, Kim HJ, Yoon DS, Hwang KS. Technological advances in electrochemical biosensors for the detection of disease biomarkers. Biomed Eng Lett 2021; 11:309-334. [PMID: 34466275 PMCID: PMC8396145 DOI: 10.1007/s13534-021-00204-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/15/2022] Open
Abstract
With an increasing focus on health in contemporary society, interest in the diagnosis, treatment, and prevention of diseases has grown rapidly. Accordingly, the demand for biosensors for the early diagnosis of disease is increasing. However, the measurement range of existing electrochemical sensors is relatively high, which is not suitable for early disease diagnosis, requiring the detection of small amounts of biocomponents. Various attempts have been made to overcome this and amplify the signal, including binding with various labeling molecules, such as DNA, enzymes, nanoparticles, and carbon materials. Efforts are also being made to increase the sensitivity of electrochemical sensors, and the combination of nanomaterials, materials, and biotechnology offers the potential to increase sensitivity in a variety of ways. Recent studies suggest that electrochemical sensors can be a powerful tool in providing comprehensive insights into the targeting and detection of disease-associated biomarkers. Significant advances in nanomaterial and biomolecule approaches for improved sensitivity have resulted in the development of electrochemical biosensors capable of detecting multiple biomarkers in real time in clinically relevant samples. In this review, we have discussed the recent studies on electrochemical sensors for detection of diseases such as diabetes, degenerative diseases, and cancer. Further, we have highlighted new technologies to improve sensitivity using various materials, including DNA, enzymes, nanoparticles, and carbon materials.
Collapse
Affiliation(s)
- Jae Hyun Kim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| | - Young Joon Suh
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| | - Dongsung Park
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul, 02447 Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul, 02841 Republic of Korea
| | - Hyoju Yim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| | - Hongrae Kim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul, 02447 Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul, 02841 Republic of Korea
| | - Hye Jin Kim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, Seoul, 02841 Republic of Korea
| | - Kyo Seon Hwang
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| |
Collapse
|
50
|
Phan QA, Truong LB, Medina-Cruz D, Dincer C, Mostafavi E. CRISPR/Cas-powered nanobiosensors for diagnostics. Biosens Bioelectron 2021; 197:113732. [PMID: 34741959 DOI: 10.1016/j.bios.2021.113732] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/16/2021] [Accepted: 10/24/2021] [Indexed: 12/26/2022]
Abstract
CRISPR diagnostics (CRISPR-Dx) offer a wide range of enhancements compared to traditional nanobiosensors by taking advantage of the excellent trans-cleavage activity of the CRISPR/Cas systems. However, the single-stranded DNA/RNA reporters of the current CRISPR-Dx suffer from poor stability and limited sensitivity, which make their application in complex biological environments difficult. In comparison, nanomaterials, especially metal nanoparticles, exhibits robust stability and desirable optical and electrocatalytical properties, which make them ideal as reporter molecules. Therefore, biosensing research is moving towards the use of the trans-cleavage activity of CRISPR/Cas effectors on metal nanoparticles and apply the new phenomenon to develop novel nanobiosensors to target various targets such as viral infections, genetic mutations and tumor biomarkers, by using different sensing methods, including, but not limited to fluorescence, luminescence resonance, colorimetric and electrochemical signal readout. In this review, we explore some of the most recent advances in the field of CRISPR-powered nanotechnological biosensors. Demonstrating high accuracy, sensitivity, selectivity and versatility, nanobiosensors along with CRISPR/Cas technology offer tremendous potential for next-generation diagnostics of multiple targets, especially at the point of care and without any target amplification.
Collapse
Affiliation(s)
- Quynh Anh Phan
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA; Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - Linh B Truong
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - David Medina-Cruz
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Can Dincer
- Department of Microsystems Engineering - IMTEK, University of Freiburg, Freiburg, 79110, Germany; FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, 79110, Germany
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|