1
|
Liang P, Fang G, Shen F, Zhang X, Ruan S, Lai G. DNA nanowire-enhanced polymerization isomerization cyclic amplification toward photocurrent polarity switching-based PEC biosensing. Biosens Bioelectron 2025; 268:116902. [PMID: 39499972 DOI: 10.1016/j.bios.2024.116902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024]
Abstract
The photocurrent-polarity-switching signal transduction strategy has provided an effective approach to improve the performance of photoelectrochemical (PEC) biosensors. Herein, we prepared a MXene/CdS nanocomposite based PEC biosensor and combined it with the polymerization and isomerization cyclic amplification (PICA)-assisted capture of a Fe3+ and Cu2+ co-coordinating 5,10,15,20-tetrakis(4-aminophenyl)porphyrin (TFC) based signal probe to develop a novel photocurrent-polarity-switching PEC biosensing method for the detection of kanamycin antibiotic. The PICA arose from the aptamer recognition-triggered release of an Mg2+-dependent DNAzyme (MNAzyme) strand to cleave its substrate. This reaction also triggered the assembly of a DNA nanowire decorated with abundant MNAzymes through hybridization chain reaction. Due to the DNA nanowire-enhanced PICA to extremely increase the probe capture at the biosensor and the good energy level matching between TFC and MXene/CdS, a strong polarity-switching based cathodic photocurrent response was produced to construct the signal transduction strategy. This not only excluded the possible false positive or negative signal interferences but also endowed a seven-order magnitude wide linear range and a very low detection limit of 0.03 fg mL-1 to the method. In addition, it also has convenient assay manipulation, high selectivity, outstanding repeatability, and excellent reliability, which determine its high potential promising for practical applications.
Collapse
Affiliation(s)
- Pan Liang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Guopei Fang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Fazhen Shen
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Xiuwen Zhang
- Daye Public Inspection and Test Center, Daye, 435100, China
| | - Shilong Ruan
- Daye Public Inspection and Test Center, Daye, 435100, China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China.
| |
Collapse
|
2
|
Kanagavalli P, Elkaffas RA, Mohideen MIH, Eissa S. Electrochemical immunosensor for the predictive cancer biomarker SLFN11 using reduced graphene oxide/MIL-101(Cr)-NH 2 composite. Int J Biol Macromol 2025; 285:138174. [PMID: 39626816 DOI: 10.1016/j.ijbiomac.2024.138174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/05/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024]
Abstract
SLFN11 is a predictive cancer biomarker essential for identifying tumors that are sensitive to DNA-damaging agents, facilitating more personalized and effective treatment approaches. Detecting this biomarker can guide therapeutic decisions and improve outcomes for cancer patients. However, existing detection methods for SLFN11 are complex and require advanced techniques. In this study, we introduce the first immunosensor designed for on-site detection of SLFN11. An advanced electrochemical immunosensor platform utilizing a composite of graphene oxide (GO) and chromium-based metal organic framework (MIL-101 (Cr)-NH2) was developed. The integration of GO and MIL-101(Cr)-NH2 was characterized through FT-IR, XRD, SEM, and XPS, affirming the formation of the composite. The subsequent electrochemical reduction to rGO/MIL-101(Cr)-NH2 significantly improved the electrochemical performance and stability. A glutaraldehyde cross-linker was then utilized to attach the SLFN11-specific antibody to the amine groups of the MOF-modified electrodes. This led to the development of rapid, sensitive, portable, and cost-effective immunosensor for SLFN11 at concentrations as low as 8.9 pg/mL which holds promise for early cancer diagnosis. High specificity was achieved, with minimal cross-reactivity observed with other cancer biomarkers such as pepsinogen I, claudin 18.2 and Programmed cell death protein 1. Demonstrating practical applicability, the electrochemical immunosensor validated by commercial ELISA kit showed successful detection in serum samples with high recovery rates and reproducibility. This research highlights the potential of rGO/MOFs composites in electrochemical biosensors developments for early cancer diagnostics and personalized medicine.
Collapse
Affiliation(s)
- Pandiyaraj Kanagavalli
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Ragi Adham Elkaffas
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - M Infas H Mohideen
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Shimaa Eissa
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates.
| |
Collapse
|
3
|
Ma ZL, Song SY, Sun XF, Xie Y, Huang L, Luo H, Huang KJ, Tan X, Tang YL. Advancing polarity-transcendent design: Development of a photoelectrochemical sensor with extended detection range. Biosens Bioelectron 2024; 266:116736. [PMID: 39226751 DOI: 10.1016/j.bios.2024.116736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/18/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024]
Abstract
In photoelectrochemical (PEC) sensors, traditional detection modes such as "signal-on", "signal-off", and "polarity-switchable" limit target signals to a single polarity range, necessitating novel design strategies to enhance the operational scope. To overcome this limitation, we propose, for the first time, a "polarity-transcendent" design concept that enables a continuous response across the polarity spectrum, significantly broadening the sensor's concentration detection range. This concept is exemplified in our new "background-enhanced signal-off polarity-switchable" (BESOPS) mode, where the model analyte let-7a activates a cascade shearing reaction of a DNAzyme walker in conjunction with CRISPR/Cas12a, quantitatively peeling off Cu2O-H2 strands at the Cu2O/TiO2 electrode interface to expose the TiO2 surface. This exposure generates an anodic photocurrent at the expense of the cathodic photocurrent from Cu2O/TiO2, facilitating a seamless transition of the target signal from cathodic to anodic. Through systematic experiments and comparative analyses, the BESOPS sensor demonstrates highly sensitive and precise quantification of let-7a, with a detection limit of 2.5 aM and a broad operating range of 10 aM to 10 nM. Its performance exceeds most reported sensor platforms, highlighting the significant potential of our polarity-transcendent design in expanding the operational range of PEC sensors. This innovative approach paves the way for developing next-generation PEC sensors with enhanced applicability and heightened sensitivity in various critical fields.
Collapse
Affiliation(s)
- Zi-Long Ma
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530006, China
| | - Shi-Yao Song
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xu-Fei Sun
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530006, China
| | - Yi Xie
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530006, China
| | - Lei Huang
- School of Foreign Language, WuYi University, Jiangmen, 529100, China
| | - Hu Luo
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530006, China.
| | - Ke-Jing Huang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530006, China.
| | - Xuecai Tan
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530006, China.
| | - Yan-Lai Tang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
4
|
Tang S, Cai J, Zhou K, Mei Z, Huang D, Liu L, Yang L, Yin D, Hu L. Cu-MOFs@AuPtNPs nanozyme-based immunosorbent assay for colorimetric detection of alpha-fetoprotein. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6443-6450. [PMID: 39225244 DOI: 10.1039/d4ay01410c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Accurate detection of tumor biomarkers in blood is crucial for diagnosing and treating tumor disease. In this study, a metal enzyme-linked immunosorbent assay (MeLISA) was fabricated for the ultrasensitive and naked-eye detection of tumor biomarker alpha-fetoprotein (AFP) in clinical serum samples. Herein, novel copper metal-organic frameworks and gold platinum nanoparticle composites (Cu-MOFs@AuPtNPs) were synthesized for the first time by an in situ method, which showed an enormous specific surface area and excellent peroxidase (POx) mimicking properties. Cu-MOFs@AuPtNPs linked with antibodies targeting AFP served as a signal nanoprobe to amplify the detection signal. Additionally, the specificity of MeLISA was significantly enhanced through a conventional antigen-antibody reaction and efficient blocking of non-specific sites with BSA. Under optimal conditions, the sandwich-type MeLISA exhibited a wide range from 0.001 to 1000 ng mL-1 (R2 = 0.997) and a low detection limit of 0.86 pg mL-1 (S/N = 3) with acceptable stability, selectivity, and reproducibility. It is noteworthy that the suggested MeLISA performed exceptionally well in detecting clinical serum samples, which were visible to the naked eye and did not require complex platforms. To sum up, the innovative MeLISA based on Cu-MOFs@AuPtNPs provides an alternative method for early cancer diagnosis, particularly in economically backward areas where simple diagnostic apparatus is extremely desirable.
Collapse
Affiliation(s)
- Sitian Tang
- Department of Clinical Laboratory Medicine, The People's Hospital of Chongqing Liangjiang New Area, No. 199 Ren Xing Road, Yubei, Chongqing, 401121, PR China.
| | - Juan Cai
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, 400038, PR China
| | - Kai Zhou
- Department of Spine Surgery, The People's Hospital of Chongqing Liangjiang New Area, No. 199 Ren Xing Road, Yubei, Chongqing, 401121, PR China
| | - Zhu Mei
- Department of Clinical Laboratory Medicine, The People's Hospital of Chongqing Liangjiang New Area, No. 199 Ren Xing Road, Yubei, Chongqing, 401121, PR China.
| | - Dongmei Huang
- Department of Clinical Laboratory Medicine, The People's Hospital of Chongqing Liangjiang New Area, No. 199 Ren Xing Road, Yubei, Chongqing, 401121, PR China.
| | - Ling Liu
- Department of Clinical Laboratory Medicine, The People's Hospital of Chongqing Liangjiang New Area, No. 199 Ren Xing Road, Yubei, Chongqing, 401121, PR China.
| | - Lunyu Yang
- Department of Clinical Laboratory Medicine, The People's Hospital of Chongqing Liangjiang New Area, No. 199 Ren Xing Road, Yubei, Chongqing, 401121, PR China.
| | - Dan Yin
- Department of Clinical Laboratory Medicine, The People's Hospital of Chongqing Liangjiang New Area, No. 199 Ren Xing Road, Yubei, Chongqing, 401121, PR China.
| | - Liyi Hu
- Department of Clinical Laboratory Medicine, The People's Hospital of Chongqing Liangjiang New Area, No. 199 Ren Xing Road, Yubei, Chongqing, 401121, PR China.
| |
Collapse
|
5
|
Ma ZL, Chen JJ, Sun XF, Xie Y, Luo H, Huang KJ, Tan X, Tang YL. Target-Triggered Multiple-Polarity-Switchable Multiplexed Photoelectrochemical Platform. Anal Chem 2024; 96:14918-14925. [PMID: 39197157 DOI: 10.1021/acs.analchem.4c02912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Convenient and accurate quantification of disease-relevant multitargets is essential for community disease screening. However, in the field of photoelectrochemical (PEC) sensors for multisubstance detection, research on the continuous detection of multiple targets using a polarity-switching mode is scarce. In this study, a multiplexed PEC bioassay was developed based on a target-triggered "anodic-cathodic-anodic" multiple-polarity-switchable mode. Employing miRNA-21 and miRNA-141 as model analytes, the photosensitive material combinations of Cu2O/gold nanoparticles (AuNPs)/TiO2 and CdS/AuNPs/TiO2 were successively formed through the specific binding of different whisker branches of Whisker-DNA to Cu2O-H1 and the CdS-tripod DNA ring, respectively. This process reverses the photocurrent polarity from anodic to cathodic and then back to anodic upon detecting different targets, resulting in the high-sensitivity quantification of various biological targets with reduced interference. To enhance the device's utility and affordability in community disease screening, integrating a capacitor and a multimeter-smartphone connection simplifies the assembly and reduces costs. In developing the PEC sensor, the device demonstrated linear detection ranges for miRNA-21 and miRNA-141 from 0.01 fM to 10 nM. Detection limits for miRNA-21 and miRNA-141 were established at 3.2 and 4.3 aM, respectively. The innovative target-triggered multiple-polarity-switchable mode offers adaptability for other multitarget detections by simply modifying the structure of the whisker branches and the combination of photosensitive materials.
Collapse
Affiliation(s)
- Zi-Long Ma
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products; Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products; Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region. School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Jia-Jie Chen
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xu-Fei Sun
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products; Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products; Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region. School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Yi Xie
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products; Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products; Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region. School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Hu Luo
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products; Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products; Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region. School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Ke-Jing Huang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products; Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products; Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region. School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Xuecai Tan
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products; Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products; Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region. School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Yan-Lai Tang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
6
|
Wang M, Ma C, Jiang M, Guo M, Zhao C, Ren H, Lai W, Li Z, Hong C, Yu F. Construction of a Three-Dimensional-Printed Immunosensing Platform Based on Smartphone Photothermal Signal Integration. Anal Chem 2024; 96:14989-14997. [PMID: 39215687 DOI: 10.1021/acs.analchem.4c03140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The combination of the photothermal effect and immunoassay serves as a potent tool for crafting cost-effective and user-friendly biosensing systems. To ensure efficient light-to-heat conversion, we integrated three-dimensional-printed (3D printed) technology to devise a novel design. This design functions as the structural support for both the cell phone and laser probe, as well as a means for sample handling. The main body features a three-way cavity structure, securing the test sample at a fixed position to maintain consistent light distance and angle, thereby minimizing testing errors. Card slot insert facilitates precise sample positioning to ensure the adequacy of receiving light. The sample holder's wide front and narrow back design enables the accommodation of fixed samples while providing a broad field of view, with intervals therein effectively preventing cascading heat. Our design employs MB@MOF235 (methylene blue adsorbed by iron terephthalate) as the photothermal reagent, successfully enabling the detection of α-fetoprotein (AFP). The detection range spans from 0.01 to 50 ng/mL, with a lower detection limit (LOD) of 0.032 pg/mL. The detection method, combining simplicity, portability, and visualization, offers a reliable reference for furthering precision medicine toward personalized medicine. Meanwhile, to verify the method's accuracy electrochemical testing was conducted to support the proof using the electro-oxidizing activity of MB.
Collapse
Affiliation(s)
- Min Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Chaoyun Ma
- Xinjiang Key Laboratory of Coal Clean Conversion&Chemical Engineering Process School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China
| | - Mingzhe Jiang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Mengyu Guo
- School of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Chulei Zhao
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Haoyi Ren
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Wenjing Lai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Zhina Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Chenglin Hong
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Feng Yu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China
| |
Collapse
|
7
|
Lin J, Lin D, Wang S, Liao Q, Meng F, Chen J, Han Z. Improved photoelectrochemical performance of TiO2-in-MIL-101(Cr)@CDs@AgNPs and application for the detection of ultralow level AβO. MICROPOROUS AND MESOPOROUS MATERIALS 2024; 377:113214. [DOI: 10.1016/j.micromeso.2024.113214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Liu J, Wang X, Sun Y, Luo C. A novel chemiluminescence sensor for alpha-fetoprotein detection based on an aptamer-luminol modified magnetic graphene oxide and copper-based MOF composite. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5723-5732. [PMID: 39140150 DOI: 10.1039/d4ay01175a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Herein, an aptamer-luminol modified magnetic graphene oxide and copper-based MOF composite was prepared and used to build a novel target-triggered "turn on" chemiluminescence (CL) sensor for alpha-fetoprotein (AFP) detection. Magnetic graphene oxide (MGO) was functionalized with the complementary sequence of the AFP aptamer (cDNA), and then MGO-cDNA was linked to aptamer modified luminol (Apt-luminol) through the complementary base pairing effect. The functionalized magnetic graphene oxide (MGO-cDNA/Apt-luminol) was prepared as a specific magnetic separation and signal switch material. ZnONPs-Au@CuMOFs shows excellent catalytic performance and was used as a catalyst for the luminol-H2O2 reaction. AFP will specifically recognize and bind to Apt on MGO-cDNA/Apt-luminol when AFP is present, which causes luminol release and triggers the CL reaction. The released luminol encounters ZnONPs-Au@CuMOFs and produces strong CL intensity. Therefore, a novel target-triggered "turn on" CL method with high selectivity and sensitivity for detecting AFP has been established. The linear range and detection limit were 1.0 × 10-4-50 ng mL-1 and 4.2 × 10-5 ng mL-1, respectively. The sensor also exhibited good selectivity, reproducibility and stability, and was finally used for AFP detection in serum samples.
Collapse
Affiliation(s)
- Juntao Liu
- Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Xueying Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Yuanling Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Chuannan Luo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
9
|
Liu S, Meng S, Li Y, Dong N, Wei Y, Li Y, Liu D, You T. Integrated Photoelectrochemical-SERS Platform Based on Plasmonic Metal-Semiconductor Heterostructures for Multidimensional Charge Transfer Analysis and Enhanced Patulin Detection. ACS Sens 2024; 9:3377-3386. [PMID: 38783424 DOI: 10.1021/acssensors.4c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Comprehending the charge transfer mechanism at the semiconductor interfaces is crucial for enhancing the electronic and optical performance of sensing devices. Yet, relying solely on single signal acquisition methods at the interface hinders a comprehensive understanding of the charge transfer under optical excitation. Herein, we present an integrated photoelectrochemical surface-enhanced Raman spectroscopy (PEC-SERS) platform based on quantum dots/metal-organic framework (CdTe/Yb-TCPP) nanocomposites for investigating the charge transfer mechanism under photoexcitation in multiple dimensions. This integrated platform allows simultaneous PEC and SERS measurements with a 532 nm laser. The obtained photocurrent and Raman spectra of the CdTe/Yb-TCPP nanocomposites are simultaneously influenced by variable bias voltages, and the correlation between them enables us to predict the charge transfer pathway. Moreover, we integrate gold nanorods (Au NRs) into the PEC-SERS system by using magnetic separation and DNA biometrics to construct a biosensor for patulin detection. This biosensor demonstrates the voltage-driven ON/OFF switching of PEC and SERS signals, a phenomenon attributed to the plasmon resonance effect of Au NRs at different voltages, thereby influencing charge transfer. The detection of patulin in apples verified the applicability of the biosensor. The study offers an efficient approach to understanding semiconductor-metal interfaces and presents a new avenue for designing high-performance biosensors.
Collapse
Affiliation(s)
- Shuda Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Shuyun Meng
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yuye Li
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Na Dong
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Ya Wei
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yuqing Li
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471003, Henan, China
| |
Collapse
|
10
|
Zhong Z, Ding L, Man Z, Zeng Y, Pan B, Zhu JJ, Zhang M, Cheng F. Versatile Metal-Organic Framework Incorporating Ag 2S for Constructing a Photoelectrochemical Immunosensor for Two Breast Cancer Markers. Anal Chem 2024; 96:8837-8843. [PMID: 38757510 DOI: 10.1021/acs.analchem.4c02091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Breast cancer poses the significance of early diagnosis and treatment. Here, we developed an innovative photoelectrochemical (PEC) immunosensor characterized by high-level dual photocurrent signals and exceptional sensitivity. The PEC sensor, denoted as MIL&Ag2S, was constructed by incorporating Ag2S into a metal-organic framework of MIL-101(Cr). This composite not only enhanced electron-hole separation and conductivity but also yielded robust and stable dual photocurrent signals. Through the implementation of signal switching, we achieved the combined detection of cancer antigen 15-3 (CA15-3) and carcinoembryonic antigen (CEA) with outstanding stability, reproducibility, and specificity. The results revealed a linear range for CEA detection spanning 0.01-32 ng/mL, with a remarkably low detection limit of 0.0023 ng/mL. Similarly, for CA15-3 detection, the linear range extended from 0.1 to 320 U/mL, with a low detection limit of 0.014 U/mL. The proposed strategy introduces new avenues for the development of highly efficient, cost-effective, and user-friendly PEC sensors. Furthermore, it holds promising prospects for early clinical diagnosis, contributing to potential breakthroughs in medical detection and ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Zhaoxiang Zhong
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, Dongguan University of Technology, Dongguan 523808, P. R. China
| | - Lei Ding
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, Dongguan University of Technology, Dongguan 523808, P. R. China
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Zu Man
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, Dongguan University of Technology, Dongguan 523808, P. R. China
| | - Yinan Zeng
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, Dongguan University of Technology, Dongguan 523808, P. R. China
| | - Bochi Pan
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, Dongguan University of Technology, Dongguan 523808, P. R. China
| | - Jun-Jie Zhu
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, Dongguan University of Technology, Dongguan 523808, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Min Zhang
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, Dongguan University of Technology, Dongguan 523808, P. R. China
| | - Faliang Cheng
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, Dongguan University of Technology, Dongguan 523808, P. R. China
| |
Collapse
|
11
|
Shan CW, Chen Z, Han GC, Feng XZ, Kraatz HB. Electrochemical immuno-biosensors for the detection of the tumor marker alpha-fetoprotein: A review. Talanta 2024; 271:125638. [PMID: 38237279 DOI: 10.1016/j.talanta.2024.125638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 11/27/2023] [Accepted: 01/05/2024] [Indexed: 02/24/2024]
Abstract
Alpha-fetoprotein (AFP) is a glycoprotein that has many important physiological functions, including transportation, immunosuppression, and induction of apoptosis by T lymphocytes. AFP is closely related to the development of hepatocellular carcinoma and many kinds of tumors, all of which can show high concentrations, so it is used as a positive test indicator for many kinds of tumors. This paper reviews recent advances in the detection of the tumor marker AFP based on three immuno-biosensors: electrochemical (EC), photoelectrochemical (PEC), and electrochemical luminescence (ECL). The electrodes are modified by different materials or homemade composites, different signaling molecules are selected as single probes or dual probes for the detection of AFP. The detection limit was as low as 3 fg/mL, which indicated that the AFP immunosensor had achieved highly sensitive detection. In addition, we also reviewed and summarized the current development status and application prospect of AFP immunoelectrochemical sensors. There are not too many researches on immunosensors based on dual-signal ratios, and the commonly used probes are methylene blue (MB) and ferrocene (Fc). It would be more innovative to have more novel signaling molecules as probes to prepare dual-signal ratio sensors.
Collapse
Affiliation(s)
- Chen-Wei Shan
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Zhencheng Chen
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Guo-Cheng Han
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, 541004, PR China.
| | - Xiao-Zhen Feng
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, 541004, PR China.
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, Ontario, M1C 1A4, Canada.
| |
Collapse
|
12
|
Xu BF, Zhang J, Tanjung AP, Xu F, Wang AJ, Mei LP, Song P, Feng JJ. MOF-derived sandwich-structured dual Z-Scheme Co 9S 8@ZnIn 2S 4/CdSe hollow nanocages heterojunction: Target-induced ultrasensitive photoelectrochemical sensing of chlorpyrifos. Biosens Bioelectron 2024; 257:116324. [PMID: 38669844 DOI: 10.1016/j.bios.2024.116324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Exploring efficient photoactive material presents an intriguing opportunity to enhance the analytical performance of photoelectrochemical (PEC) sensor in the environmental analysis. In this work, a sandwich-structured multi-interface Co9S8@ZnIn2S4/CdSe QDs dual Z-Scheme heterojunction, derived from metal-organic framework (MOF), was synthesized as a sensing platform for chlorpyrifos detection, by integrating with enzyme-induced in situ insoluble precipitates strategy. The meticulously designed Co9S8@ZnIn2S4/CdSe QDs exhibited enhanced charge separation efficiency and was proved to be a highly effective sensing platform for the immobilization of biomolecules, attributing to the intrinsic dual Z-Scheme heterojunction and the distinctive hollow structure. The proposed PEC sensing platform combined with enzyme-induced in situ precipitate signal amplification strategy achieved superior performance for sensing of chlorpyrifos (CPF), showing in wide linear range (1.0 pg mL-1-100 ng mL-1), with a limit of detection (0.6 pg mL-1), excellent selectivity, and stability. This work offers valuable insights for the design of novel advanced photoactive materials aimed at detecting environmental pollutants with low level concentration.
Collapse
Affiliation(s)
- Ben-Fang Xu
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Jin Zhang
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Aisyah Protonia Tanjung
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Fan Xu
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ai-Jun Wang
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Li-Ping Mei
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Pei Song
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua, 321004, China; Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China.
| | - Jiu-Ju Feng
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
13
|
Li J, Jiang Y, Xu A, Luo F, Lin C, Qiu B, Lin Z, Jiang Z, Wang J. ZnO/Au/GaN heterojunction-based self-powered photoelectrochemical Sensor for alpha-fetoprotein detection. Talanta 2024; 268:125381. [PMID: 37931568 DOI: 10.1016/j.talanta.2023.125381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/14/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
In recent years, the development of miniature and portable sensors has been a major focus of research. PEC self-powered sensors have emerged as a potential solution to the power supply issue, eliminating the need for external power supplies and operating without bias voltage. This study developed a ZnO/Au/GaN sensor for highly sensitive detection of alpha-fetoprotein (AFP). The sensor uses GaN substrates with nanogold films to provide an auxiliary bias voltage, promoting high photogenerated current density. Using ZnO/Au/GaN as a photoanode resulted in significantly higher photocurrent generated by the sensor compared to Au/GaN or ZnO/ITO alone. To enable selective detection of AFP, antibody modification of the ZnO nanorod arrays was employed. The linear range of the sensor response to AFP was determined to be 0.080-5.0 ng/mL, with an impressively low detection limit of 0.027 ng/mL (S/N = 3). These results demonstrate the potential of this self-powered sensor for detecting AFP content in human serum samples. Overall, this study presents a novel approach for developing highly sensitive and selective self-powered sensors for biomarker detection, which could facilitate early detection and clinical diagnosis of various types of cancer.
Collapse
Affiliation(s)
- Jing Li
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Yifan Jiang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Aihua Xu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Fang Luo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Cuiying Lin
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zhou Jiang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| | - Jian Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
14
|
Qin Y, Liu S, Meng S, Liu D, You T. Split aptamer-based sandwich-type ratiometric biosensor for dual-modal photoelectrochemical and electrochemical detection of 17β-estradiol. Anal Chim Acta 2024; 1285:342030. [PMID: 38057051 DOI: 10.1016/j.aca.2023.342030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND As one of the most potent environmental estrogens, 17β-estradiol (E2), which can be enriched into organisms through the food chain and cause harmful biological effects in humans, has been frequently detected in the water environment of the world. High performance liquid chromatography (HPLC) and gas chromatograohy-mass spectrometry (GC/MS) have been widely used for quantification of E2. Despite excellent accuracy, tedious pretreatment and expensive instruments result in their limited application. It is clear that there is an urgent need to establish simple, sensitive and accurate methods for the determination of E2. RESULTS A split aptamer-based sandwich-type ratiometric biosensor based on split aptamer was developed by coupling photoelectrochemical and electrochemical assays for E2 detection. For analysis, the two fragments of split aptamer recognized E2 by forming sandwich structure, which triggered hybridization chain reaction (HCR) to produce double-stranded DNA (dsDNA) with CdTe quantum dots (QDs) labeled hairpin DNA. The resultant dsDNA can further absorb methylene blue (MB) to sensitize CdTe QDs for an enlarged photocurrent (IPEC) and output a redox current of IMB, and both of them acted as response signals for detection; [Fe(CN)6]3-/4- probe produced redox current of I[Fe(CN)6]3-/4- as reference signal. Using IMB/I[Fe(CN)6]3-/4- and IPEC/I[Fe(CN)6]3-/4- as yardsticks, the developed split aptamer-based sandwich-type ratiometric biosensor provides two linear ranges of 0.1-5000 pg mL-1 for IMB/I[Fe(CN)6]3-/4- and 0.1-10000 pg mL-1 for IPEC/I[Fe(CN)6]3-/4- with detection limits of 0.06 pg mL-1 and 0.02 pg mL-1, respectively. SIGNIFICANCE These results of the biosensor are benefiting from the coupling of photoelectrochemical (PEC) and electrochemical (EC) assays as well as the unique cooperative recognition mechanism of split aptamer. This method not only enabled the biosensor to be successfully applied to the determination of E2 in lake water, but also broadens the prospects for the realization of sensitive and accurate detection of E2.
Collapse
Affiliation(s)
- Yuanyuan Qin
- Key Lab Oratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Shuda Liu
- Key Lab Oratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Shuyun Meng
- Key Lab Oratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Dong Liu
- Key Lab Oratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Tianyan You
- Key Lab Oratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
15
|
Mobed A, Abdi B, Masoumi S, Mikaeili M, Shaterian E, Shaterian H, Kazemi ES, Shirafkan M. Advances in human reproductive biomarkers. Clin Chim Acta 2024; 552:117668. [PMID: 37992849 DOI: 10.1016/j.cca.2023.117668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Reproductive biomarkers are important regulators in women, especially during pregnancy and childbirth. Because of their essential role in women's health, the discovery and quantification of reproductive biomarkers is of great clinical importance. Nowadays, there are many detection strategies to detect these biomarkers, including VEGF, human chorionic gonadotropin (hCG), etc. Consider the limitations and problems of conventional diagnostic methods, new methods are being developed, one of the most important being methods based on nanotechnology. This review includes a review of methods for diagnosing reproductive biomarkers, ranging from mainstream to nanotechnology-based methods. The bulk of this article is an in-depth introduction to the latest advances in biosensor and nanosensor research for the detection and quantitative identification of reproductive biomarkers.
Collapse
Affiliation(s)
- Ahmad Mobed
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bita Abdi
- Department of Obstetrics and Gynecology, Alzahra Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Masoumi
- Deparment of Medical Biotechnology, National institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Mikaeili
- The faculty of medical sciences of the Islamic Azad University, Tabriz Branch, Iran
| | - Elham Shaterian
- The faculty of medical sciences of the Islamic Azad University, Tabriz Branch, Iran
| | - Hamed Shaterian
- The faculty of medical sciences of the Islamic Azad University, Tabriz Branch, Iran
| | - Esmat Sadat Kazemi
- Department of Obstetrics and Gynecology, Alzahra Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mahdiye Shirafkan
- Division of Pharmacology and toxicology Department of Basic Sciences, Faculty of Veterinary Medicine University of Tabriz, Tabriz, Iran
| |
Collapse
|
16
|
Ju Y, Yang Y, Tang Q, Wang M, Zeng Y, Zhang Z, Zhai Y, Wang H, Li L. Fluorometric detection of alpha-fetoprotein based on the use of a novel organic compound with AIE activity and aptamer-modified magnetic microparticles. Anal Chim Acta 2023; 1278:341692. [PMID: 37709445 DOI: 10.1016/j.aca.2023.341692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Liver cancer is one of the most common cancers in the world, and it seriously threatens human life and health. Alpha-fetoprotein (AFP), as a carcinogenic glycoprotein, is an important serum marker for detecting liver cancer. Therefore, the accurate and sensitive determination of AFP is crucial for the early diagnosis and treatment of liver cancer. To this end, a label-free fluorescence aptasensor for detecting AFP based on the use of a novel organic Compound D with an aggregation-induced emission activity and aptamer-modified magnetic microparticles was constructed. RESULTS Compound D could combine with the complementary short chain of the aptamer (CSC-Apt) of AFP to form the D/CSC-Apt complex and realize the fluorescence enhancement of Compound D. Then, magnetic particles modified by the Apt of AFP (Apt-Fe3O4) were prepared. When AFP (or nontarget substance) and D/CSC-Apt were successively added to the Apt-Fe3O4 solution, Apt-Fe3O4 selectively bound to AFP or the D/CSC-Apt complex. Magnetic separation technology showed the changes in the fluorescence intensity of the supernatant. The research results revealed a good linear relationship between the changes in the fluorescence intensity of the supernatant and concentration of AFP within the concentration range of 10-10000 pg mL-1. The proposed aptasensor could achieve high-sensitivity and high-specificity detection of AFP, and its limit of detection was 3 pg mL-1 (S/N = 3). SIGNIFICANCE AND NOVELTY The sensor combines the advantages of high selectivity of Apt, high sensitivity of fluorescence analysis, AIE effect and good water solubility of Compound D, and rapid separation using magnetic separation technology. And it can be directly used for the detection of AFP in actual serum samples with high accuracy, whereas most of the methods reported in the literature can only detect AFP in spiked serum samples.
Collapse
Affiliation(s)
- Yulong Ju
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Yiwen Yang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang, China.
| | - Qiukai Tang
- Clinical Laboratory, Zhejiang Sian International Hospital, Jiaxing, 314031, Zhejiang, China
| | - Mengqi Wang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Yanbo Zeng
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Zulei Zhang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Yunyun Zhai
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Hailong Wang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Lei Li
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang, China.
| |
Collapse
|
17
|
Li Y, Zhang S, Wang M, Guo C, Zhang Z, Zhou N. A novel PEC and ECL bifunctional aptasensor based on V 2CT x MXene-derived MOF embedded with silver nanoparticles for selectively aptasensing miRNA-126. J Mater Chem B 2023; 11:8657-8665. [PMID: 37609716 DOI: 10.1039/d3tb01380d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
A novel photoelectrochemical (PEC) and electrochemiluminescence (ECL) bifunctional aptasensor has been established for the detection of miRNA-126 using V2CTx MXene-derived porphyrin-based metal-organic framework embedded with Ag nanoparticles (Ag NPs) (denoted as AgNPs@V-PMOF) as a robust bioplatform. Due to the presence of V nodes in V2CTx MXene nanosheets, V-based MOF was prepared using tetrakis(4-carboxyphenyl)porphyrin as ligand, followed by the incorporation of Ag+ ions to form the AgNPs@V-PMOF Schottky heterojunction. Benefiting from the fast electron transfer of the V2CTx substrate and well-matched band-edge energy level of the photosensitive Ag NPs and V-PMOF, the constructed AgNPs@V-PMOF Schottky heterojunction exhibited the promoted transfer of the photogenerated carriers, showing superior PEC and ECL performances. Moreover, a large number of the complementary DNA strand of miRNA-126 can be immobilized over AgNPs@V-PMOF in view of the combined interaction of π-π stacking, van der Waals force, and Ag-N coordination between AgNPs@V-PMOF. Consequently, the developed AgNPs@V-PMOF-based aptasensor illustrated extremely low detection limits of 0.78 and 0.53 fM within a wide range from 1.0 fM to 1.0 nM of miRNA-126 detected by PEC and ECL techniques, respectively, superior to most reported miRNA aptasensors. Also, the provided bifunctional aptasensor demonstrated high selectivity, good stability, fine reproducibility, and acceptable regenerability, as well as promising potential for the analysis of miRNA-126 from living cancer cells. This work puts forward the development of aptasensors for the early and accurate diagnosis of cancer markers and extends the application of MOF in the biosensing field.
Collapse
Affiliation(s)
- Yu Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, P. R. China.
| | - Shuai Zhang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China.
| | - Mengfei Wang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China.
| | - Chuanpan Guo
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China.
| | - Zhihong Zhang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China.
| | - Nan Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, P. R. China.
| |
Collapse
|
18
|
Wang H, Song Y, Chai Y, Yuan R. An electrochemiluminescence immunosensor based on multipath signal catalytic amplification integrated in a Cu 2+-PEI-Pt/AuNC nanocomposite. Analyst 2023. [PMID: 37365898 DOI: 10.1039/d3an00721a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Here, the nanocomposite Cu2+-PEI-Pt/AuNCs with multipath signal catalytic amplification for a peroxydisulfate-dissolved oxygen electrochemiluminescence (ECL) system was prepared to fabricate a sensitive ECL immunosensor. Using polyethyleneimine (PEI), a linear polymer, as the reductant and template, Pt/Au nanochains (Pt/AuNCs) were prepared. Abundant PEI would adsorb on the surface of Pt/AuNCs via Pt-N or Au-N bonds, and further coordinate with Cu2+ to give the final nanocomposite Cu2+-PEI-Pt/AuNCs which possessed multipath signal catalytic amplification for the ECL of the peroxydisulfate-dissolved oxygen system in the presence of H2O2. First, PEI, as an effective co-reactant, could directly enhance the ECL intensity. Second, Pt/AuNCs could not only act as a mimicking enzyme to promote the decomposition of H2O2 to produce more oxygen in situ, but also act as an effective co-reaction accelerator to facilitate the generation of more co-reactive intermediate groups from peroxydisulfate, resulting in an obviously enhanced ECL signal. Then, Cu2+ could also accelerate the decomposition of H2O2 to produce more oxygen in situ, leading to a further improvement of the ECL response. Using Cu2+-PEI-Pt/AuNCs as a loading platform, a sandwiched ECL immunosensor was fabricated. As a result, the obtained ECL immunosensor possessed an ultra-sensitive detection performance for α-1-fetoprotein, providing effective information on the diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Haijun Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Yuhang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
19
|
Yang F, Yang B, Gu X, Li M, Qi K, Yan Y. Detection of enrofloxacin residues in dairy products based on their fluorescence quenching effect on AgInS 2 QDs. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 301:122985. [PMID: 37311364 DOI: 10.1016/j.saa.2023.122985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/29/2023] [Accepted: 06/04/2023] [Indexed: 06/15/2023]
Abstract
Water-soluble AgInS2 (AIS) quantum dots (QDs) were successfully prepared through the one-pot water phase method with thioglycolic acid (TGA) as the stabilizing agent. Because enrofloxacin (ENR) effectively quenches the fluorescence of AIS QDs, a highly-sensitive fluorescence detection method is proposed to detect ENR residues in milk. Under optimal detection conditions, there was a good linear relationship between the relative fluorescence quenching amount (ΔF/F0) of AgInS2 with ENR and ENR concentration (C). The detection range was 0.3125-20.00 μg/mL, r = 0.9964, and the detection limit (LOD) was 0.024 μg/mL (n = 11). The average recovery of ENR in milk ranged from 95.43 to 114.28%. The method established in this study has advantages including a high sensitivity, a low detection limit, simple operation and a low cost. The fluorescence quenching mechanism of AIS QDs with ENR was discussed and the dynamic quenching mechanism of light-induced electron transfer was proposed.
Collapse
Affiliation(s)
- Fengjiao Yang
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China
| | - Bingyu Yang
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China
| | - Xinyue Gu
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China
| | - Minghua Li
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China
| | - Kezhen Qi
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China.
| | - Ya Yan
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China.
| |
Collapse
|
20
|
Hu R, Ren XX, Song P, Wang AJ, Mei LP, Feng JJ. Hollow cage-like PtCu nanozyme-regulated photo-activity of porous CdIn 2S 4/SnO 2 heterojunctions for ultrasensitive PEC sensing of streptomycin. Biosens Bioelectron 2023; 236:115425. [PMID: 37247466 DOI: 10.1016/j.bios.2023.115425] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
Streptomycin (STR) is extensively employed for preventive and curative purposes in animals, which is accumulated in human body through food chain and induces serious health problems. Herein, highly photoactive type II heterojunctions of porous CdIn2S4/SnO2 microspheres were initially prepared, which can effectively inhibit the recombination of the charge-hole pairs. Besides, the peroxidase-mimicking catalytic property of the hollow PtCu nanocages (PtCu NCs) was carefully investigated by UV-vis spectroscopy, where catalytic oxidation of tetramethylbenzidine behaved as the benchmarked reaction. On such basis, a highly selective photoelectrochemical (PEC) aptasensor was established with the CdIn2S4/SnO2 heterojunctions for bioanalysis of streptomycin, coupled by the PtCu NCs nanozyme-catalyzed biocatalytic precipitation to achieve signal magnification. Specifically, the home-made nanozyme was applied for catalytic oxidation of 3,3'-diaminobenzidine to generate insulating precipitate in aqueous H2O2 system and thereby block the light harvesting on the photoanode, showing steeply declined PEC responses. The as-built aptasensor showed a broad linear range of 0.01-200 nM with a low limit of detection of 7.50 pM (S/N = 3) for such analysis, combined by exploring its practical detection in milk samples. This work shows excellent nanozyme-catalyzed signal amplification for fabrication of ultrasensitive PEC biosensors towards other antibiotics detection.
Collapse
Affiliation(s)
- Rui Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, College of Life Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Xin-Xin Ren
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, College of Life Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Pei Song
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, College of Life Science, Zhejiang Normal University, Jinhua, 321004, China; Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, College of Life Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Li-Ping Mei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, College of Life Science, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, College of Life Science, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
21
|
Liang W, Cong B, Lai W, Jiang M, Ma C, Zhao C, Jiang W, Zhang S, Qi Y, Hong C. An electrochemiluminescence resonance energy transfer biosensor based on Luminol-LDH and CuS@Pt for detection of alpha-fetoprotein. Talanta 2023; 261:124669. [PMID: 37210917 DOI: 10.1016/j.talanta.2023.124669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/16/2023] [Accepted: 05/12/2023] [Indexed: 05/23/2023]
Abstract
Alpha-fetoprotein (AFP) is the best diagnostic marker for hepatocellular carcinoma (HCC) and plays an important role in the general surveillance of the population. Therefore, the establishment of an ultra-sensitive AFP assay is essential for the early screening and clinical diagnosis of HCC. In this work, we designed a signal-off biosensor for ultra-sensitive detection of AFP based on an electrochemiluminescent resonance energy transfer (ECL-RET) strategy using luminol intercalated layered bimetallic hydroxide (Luminol-LDH) as an ECL donor and Pt nanoparticles-grown on copper sulfide nanospheres (CuS@Pt) as ECL acceptor. The (Au NPs/Luminol-LDH)n multilayer nanomembrane synthesized by our intercalation and layer-by-layer electrostatic assembly process not only effectively immobilizes luminol but also significantly enhances the ECL signal. The CuS@Pt composite has well visible light absorption ability and can burst the light emitted from luminol by ECL-RET. The biosensor showed good linearity in the range from 10-5 ng mL-1 to 100 ng mL-1 and a minimum detection limit of 2.6 fg mL-1. Therefore, the biosensor provides a novel and efficient strategy for the detection of AFP, which is important for the early screening and clinical diagnosis of HCC.
Collapse
Affiliation(s)
- Wenjin Liang
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, PR China
| | - Bing Cong
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, PR China
| | - Wenjing Lai
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, PR China
| | - Mingzhe Jiang
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, PR China
| | - Chaoyun Ma
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, PR China
| | - Chulei Zhao
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, PR China
| | - Wenwen Jiang
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, PR China
| | - Shaopeng Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, PR China
| | - Yu Qi
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, PR China.
| | - Chenglin Hong
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, PR China.
| |
Collapse
|
22
|
Tang X, Wang H, Zhang X, Mao C, Wu L, Zhao L. A photoelectrochemical immunosensing platform for ultrasensitive detection of alpha-fetoprotein based on a signal amplification strategy. Bioelectrochemistry 2023; 150:108351. [PMID: 36525772 DOI: 10.1016/j.bioelechem.2022.108351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
For the first time, a PEC immunosensor based on a signal amplification strategy is successfully constructed to quantitatively detect alpha-fetoprotein in serum sample. Three favorable factors explain the ultra-high sensitivity of this method. Firstly, compared with pure BiPO4, the BiPO4/BiOBr heterojunction has a narrower band gap, which expands the light absorption range and enables the light energy to be fully utilized. Secondly, the separation of photogenerated electrons and hole pairs during PEC detection is due to the efficient matching of energy levels among BiPO4, BiOBr and CdS, inhibiting the recombination of photogenerated electrons, which improves the performance of PEC immunosensor. Thirdly, due to the presence of CdS, the light absorption capability of the sensor is enhanced, more electron-hole pairs are generated, and the photocurrent signal is increase. Under the optimal conditions, the PEC immunosensor shows a wide linear range of 0.001-1000 ng/mL for AFP and a low detection limit of 0.82 pg/mL. The PEC immunosensor developed in this experiment has excellent reproducibility, stability and high sensitivity, and also achieves satisfactory results in the analysis of human serum samples, establishing a new analytical method for biomarker detection.
Collapse
Affiliation(s)
- Ximing Tang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, P. R. China
| | - Haiwei Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, P. R. China
| | - Xinan Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, P. R. China
| | - Chunling Mao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, P. R. China
| | - Lei Wu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, P. R. China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, P. R. China.
| |
Collapse
|
23
|
Lamiel C, Hussain I, Rabiee H, Ogunsakin OR, Zhang K. Metal-organic framework-derived transition metal chalcogenides (S, Se, and Te): Challenges, recent progress, and future directions in electrochemical energy storage and conversion systems. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
24
|
Qu L, Wu M, Zhao L, Li J, Pan H. A sandwich electrochemical immunosensor based on MXene@dual MOFs for detection of tumor marker CA125. Mikrochim Acta 2023; 190:147. [PMID: 36947252 DOI: 10.1007/s00604-023-05719-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/24/2023] [Indexed: 03/23/2023]
Abstract
The detection signal of carbohydrate antigen 125 (CA125) can be quantitatively amplified via the dual metal-organic framework (MOF) sandwich strategy. We propose a versatile method for synthesizing uniform MXene and MIL-101(Fe)-NH2 composites that combine the advantages of both materials to build a base layer with superb performance. MXene exhibits excellent electrical conductivity and high surface area. The mesoporous MIL-101(Fe)-NH2 not only increases the loading capacity of the primary antibody but also possesses the catalytic activity of the metal center (Fe). UiO66 loaded with methylene blue (MB) was fabricated as an electrochemical immunosensor signal tag to enable the detection of CA125. The mixture of MXene and MIL-101(Fe)-NH2 prepared as the substrate was fixed by chitosan rich in amino groups. As the signal amplification sector, UiO66@MB enhanced secondary antibody loading capacity and generated a redox signal enabling the detection of antigenic substances. The proposed electrochemical immunosensor demonstrated high sensitivity with a low limit of detection (LOD) of 0.006 U/mL. Therefore, the dual MOF sandwich-based immunosensor provides a novel method for the early diagnosis of CA125.
Collapse
Affiliation(s)
- Lingli Qu
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Mengdie Wu
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lu Zhao
- School of Materials Science and Engineering, Chang' an University, Xi'an, 710062, Shaanxi, China
| | - Jiang Li
- School of Materials Science and Engineering, Chang' an University, Xi'an, 710062, Shaanxi, China.
| | - Hongzhi Pan
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
25
|
Cao Q, Jiang D, Zheng L, Xu F, Shiigi H, Shan X, Wang W, Chen Z. Dual-binding domain electrochemiluminescence biosensing platform with self-checking function for sensitive detection of synthetic cathinone in e-cigarettes. Biosens Bioelectron 2023; 224:114963. [PMID: 36603282 DOI: 10.1016/j.bios.2022.114963] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
Current single signal electrochemiluminescence (ECL) sensors are susceptible to false positive or false negative phenomena due to experimental conditions. Therefore, sensors with "self-checking" function are attracting democratic attention. In quick succession, a highly sensitive single-cathode dual ECL signal aptasensor with self-checking function to improve the shortcomings mentioned above was designed. This aptasensor used In-based metal-organic framework (MIL-68) as load and stabilizer to effectively attenuate the aggregation-induced quenching (ACQ) effect of porphyrin derivatives (Sn-TCPP) while improve ECL stability. The introduction of cooperative-binding split-aptamers" (CBSAs) aptamers increased the specificity of the aptasensor and its unique double-binding domains detection accelerated the detection efficiency. When analyzing 3,4-methylenedioxypyrovalerone (MDPV), we could calculate two concentrations based on the strength of ECL 1 and ECL 2. If the concentrations are the same, the result would be obtained; if not, it should be retested. Depending on the above operation, the results achieve self-check. It was found that the designed aptasensor could quantify the concentration of MDPV between 1.0 × 10-12 g/L and 1.0 × 10-6 g/L with the limit of detection (LOD) of 1.4 × 10-13 g/L and 2.0 × 10-13 g/L, respectively (3 σ/slope). This study not only improves the detection technology of MDPV, but also explores the dual-signal detection of porphyrin for the first time and enriches the definition of self-checking sensor.
Collapse
Affiliation(s)
- Qianying Cao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Ding Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Lingli Zheng
- Changzhou Institute of Mechatronic Technology, Changzhou, 213164, China
| | - Fangmin Xu
- Institute of Forensic Science, Public Security Bureau of Jiangyin, Wuxi, 214431, China
| | - Hiroshi Shiigi
- Osaka Prefecture University, Department of Applied Chemistry, Naka Ku, 1-2 Gakuen, Sakai, Osaka, 5998570, Japan
| | - Xueling Shan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
26
|
Wang M, Jiang M, Li P, Yuan M, Zhao C, Lai W, Li J, Hong C, Qi Y. Construction of a competitive electrochemical immunosensor based on sacrifice of Prussian blue and its ultrasensitive detection of alpha-fetoprotein. Anal Chim Acta 2023; 1257:341143. [PMID: 37062562 DOI: 10.1016/j.aca.2023.341143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
Abstract
Effective signal amplification is a prerequisite for ultrasensitive detection by electrochemical immunosensors. For quantitative and ultrasensitive detection of alpha-fetoprotein (AFP), we designed a competitive electrochemical immunosensor and transferred the immunoreactivity from the electrode surface to the cuvette. AFP antigen was captured using AFP primary antibody (Ab1) immobilized on magnetic nanobeads (MBs), and ZIF-8 nanomaterials attached to secondary antibody (Ab2) were used as probes. MBs helped retain the sandwich structure in the test tube through incubation and washing steps. Then, an appropriately fixed excess of sodium ethylenediaminetetraacetic acid (EDTA) solution was added to the cuvettes, resulting in etching of Zn ions from ZIF-8 and formation of Zn-EDTA complexes. After magnetic separation, a certain amount of supernatant is added dropwise to the Prussian blue (PB)-modified electrode (GCE), and Fe ions (from PB) complex with the remaining EDTA in the supernatant, thus reducing the signal response value of PB. The higher the AFP concentration, the lower the amount of free EDTA in the supernatant, the less the destruction of PB, and therefore the higher the current. Under optimal conditions, the immunosensor achieved ultra-sensitive detection of AFP in the range of 10-4 ng/mL-100 ng/mL with a limit of detection (LOD) as low as 0.032 pg/mL (S/N = 3). The excellent performance provides an important tool for the early screening and detection of AFP.
Collapse
|
27
|
Tan R, Qin Y, Liu M, Wang H, Li J, Luo Z, Hu L, Gu W, Zhu C. Nickel Single-Atom Catalyst-Mediated Efficient Redox Cycle Enables Self-Checking Photoelectrochemical Biosensing with Dual Photocurrent Readouts. ACS Sens 2023; 8:263-269. [PMID: 36624088 DOI: 10.1021/acssensors.2c02125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Developing a self-checking photoelectrochemical biosensor with dual photocurrent signals could efficiently eliminate false-positive or false-negative signals. Herein, a novel biosensor with dual photocurrent responses was established for the detection of acetylcholinesterase activity. To achieve photocurrent polarity-switchable behavior, the iodide/tri-iodide redox couple was innovatively introduced to simultaneously consume the photoexcited electrons and holes, which circumvents the inconvenience caused by the addition of different hole- and electron-trapping agents in the electrolyte. Importantly, benefiting from the high catalytic activity, the enhanced photoelectric responsivity can be realized after decorating the counter electrode with nickel single-atom catalysts, which promotes a more efficient iodide/tri-iodide redox reaction under low applied voltages. It is envisioned that the proposed photocurrent polarity switching system offers new routes to sensitive and reliable biosensing.
Collapse
Affiliation(s)
- Rong Tan
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P.R. China
| | - Ying Qin
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P.R. China
| | - Mingwang Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P.R. China
| | - Hengjia Wang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P.R. China
| | - Jinli Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P.R. China
| | - Zhen Luo
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P.R. China
| | - Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan, Hubei 430205, P.R. China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P.R. China
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P.R. China
| |
Collapse
|
28
|
A novel electrochemical immunosensor that amplifies Poly(o-phenylenediamine) signal by pH-driven cascade reaction used for alpha-foetoprotein detection. Anal Chim Acta 2023; 1239:340647. [PMID: 36628745 DOI: 10.1016/j.aca.2022.340647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
The present protocol develops an electrochemical immunosensor with poly(o-phenylene diamine) attached gold nanoparticles (PPD@Au NPs) as the immune platform, polydopamine-loaded cobalt ions (Co2+-PDA) as the immune probe, and K2S2O8 as the signal amplifying substance with pH-driven cascade reaction. The application of conventional immunosensors often leads to easy leakage of the current signal and increases the impedance due to assembly. However, this new immunosensor offers the following advantages: (1) The signal substance PPD is modified on the electrode surface, effectively reducing the signal loss and leakage of the immunosensor; (2) The pH response reduces the impedance of the immunosensor while destroying the Co2+-PDA secondary antibody label; (3) The pH response releases a small amount of Co2+, leading to SO4-· generation by K2S2O8 through a cascade reaction, further amplifying the PPD response current signal; (4) The pH response generates excess Co2+ and the by-product PDA fragments can consume the SO4-· generated by K2S2O8, so that the final response signal decreases with the increasing antigen concentration. The experimental results showed that the immunosensor exhibited good selectivity, long-term stability, and reproducibility for AFP detection in the range of 1 pg/mL-100 ng/mL, with a detection limit of 0.214 pg/mL. Interestingly, it is expected to be used for detecting AFP in actual blood samples.
Collapse
|
29
|
Tan AYS, Lo NW, Cheng F, Zhang M, Tan MTT, Manickam S, Muthoosamy K. 2D carbon materials based photoelectrochemical biosensors for detection of cancer antigens. Biosens Bioelectron 2023; 219:114811. [PMID: 36308836 DOI: 10.1016/j.bios.2022.114811] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/23/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022]
Abstract
Cancer is a leading cause of death globally and early diagnosis is of paramount importance for identifying appropriate treatment pathways to improve cancer patient survival. However, conventional methods for cancer detection such as biopsy, CT scan, magnetic resonance imaging, endoscopy, X-ray and ultrasound are limited and not efficient for early cancer detection. Advancements in molecular technology have enabled the identification of various cancer biomarkers for diagnosis and prognosis of the deadly disease. The detection of these biomarkers can be done by biosensors. Biosensors are less time consuming compared to conventional methods and has the potential to detect cancer at an earlier stage. Compared to conventional biosensors, photoelectrochemical (PEC) biosensors have improved selectivity and sensitivity and is a suitable tool for detecting cancer agents. Recently, 2D carbon materials have gained interest as a PEC sensing platform due to their high surface area and ease of surface modifications for improved electrical transfer and attachment of biorecognition elements. This review will focus on the development of 2D carbon nanomaterials as electrode platform in PEC biosensors for the detection of cancer biomarkers. The working principles, biorecognition strategies and key parameters that influence the performance of the biosensors will be critically discussed. In addition, the potential application of PEC biosensor in clinical settings will also be explored, providing insights into the future perspective and challenges of exploiting PEC biosensors for cancer diagnosis.
Collapse
Affiliation(s)
- Adriel Yan Sheng Tan
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China; Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia
| | - Newton Well Lo
- Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia
| | - Faliang Cheng
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Min Zhang
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Michelle T T Tan
- Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Kasturi Muthoosamy
- Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
30
|
Lin J, Zhuang Y, Chen J, Han Z, Chen J. TiO 2-In-MIL-101(Cr) with Visible Light-Induced Peroxidase Activity for Colorimetric Detection of Blood Glucose. ACS OMEGA 2022; 7:45527-45534. [PMID: 36530260 PMCID: PMC9753185 DOI: 10.1021/acsomega.2c06176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
In this work, metal-organic framework MIL-101(Cr) with regular morphology, stable structure, and good dispersion was prepared by the hydrothermal method. MIL-101(Cr) has two different sizes of pores, but after TiO2 nanoparticles (NPs) were in situ prepared, the two pores disappear. The result demonstrates that TiO2 NPs were located in the pores of MIL-101(Cr). TiO2-decorated MIL-101(Cr) forms an inside type II heterojunction and the band gap energy is narrowed, which can promote electron-hole separation and enhance the light absorption. Therefore, the heterojunction shows a high visible light-induced peroxidase-like activity. Kinetic studies exhibit that the K m value of TiO2-in-MIL-101(Cr) to TMB is 0.17 mM, and the affinity of TiO2-in-MIL-101(Cr) is higher than that of natural horseradish peroxidase (HRP). Then, a "turn-on" colorimetric assay based on TiO2-in-MIL-101(Cr) was constructed for the detection of blood glucose. The detection range is 1-100 μM (R 2 = 0.9950) with a limit of detection (LOD) of 1.17 μM. Compared with the clinical method, the constructed colorimetric method has accurate and reliable results for the clinical detection. The anti-interference experiment confirms that the method has high selectivity to glucose.
Collapse
Affiliation(s)
- Jianwei Lin
- School
of Pharmacy, Fujian Medical University, Fuzhou350122, P R China
- Fujian
Key Laboratory of Drug Target Discovery and Structural and Functional
Research, Fuzhou350122, P R China
| | - Yafeng Zhuang
- School
of Pharmacy, Fujian Medical University, Fuzhou350122, P R China
- Fujian
Key Laboratory of Drug Target Discovery and Structural and Functional
Research, Fuzhou350122, P R China
| | - Jing Chen
- School
of Pharmacy, Fujian Medical University, Fuzhou350122, P R China
- Fujian
Key Laboratory of Drug Target Discovery and Structural and Functional
Research, Fuzhou350122, P R China
| | - Zhizhong Han
- School
of Pharmacy, Fujian Medical University, Fuzhou350122, P R China
- Fujian
Key Laboratory of Drug Target Discovery and Structural and Functional
Research, Fuzhou350122, P R China
| | - Jinghua Chen
- School
of Pharmacy, Fujian Medical University, Fuzhou350122, P R China
- Fujian
Key Laboratory of Drug Target Discovery and Structural and Functional
Research, Fuzhou350122, P R China
| |
Collapse
|
31
|
Recent advances in metal/covalent organic framework-based materials for photoelectrochemical sensing applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116793] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Jia W, Han Y, Mao X, Xu W, Zhang Y. Nanotechnology strategies for hepatocellular carcinoma diagnosis and treatment. RSC Adv 2022; 12:31068-31082. [PMID: 36349046 PMCID: PMC9621307 DOI: 10.1039/d2ra05127c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/20/2022] [Indexed: 10/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy threatening human health, and existing diagnostic and therapeutic techniques are facing great challenges. In the last decade or so, nanotechnology has been developed and improved for tumor diagnosis and treatment. For example, nano-intravenous injections have been approved for malignant perivascular epithelioid cell tumors. This article provides a comprehensive review of the applications of nanotechnology in HCC in recent years: (I) in radiological imaging, magnetic resonance imaging (MRI), fluorescence imaging (FMI) and multimodality imaging. (II) For diagnostic applications in HCC serum markers. (III) As embolic agents in transarterial chemoembolization (TACE) or directly as therapeutic drugs. (IV) For application in photothermal therapy and photodynamic therapy. (V) As carriers of chemotherapeutic drugs, targeted drugs, and natural plant drugs. (VI) For application in gene and immunotherapy. Compared with the traditional methods for diagnosis and treatment of HCC, nanoparticles have high sensitivity, reduce drug toxicity and have a long duration of action, and can also be combined with photothermal and photodynamic multimodal combination therapy. These summaries provide insights for the further development of nanotechnology applications in HCC.
Collapse
Affiliation(s)
- WeiLu Jia
- Medical School, Southeast University Nanjing 210009 China
| | - YingHui Han
- Outpatient Department, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| | - XinYu Mao
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| | - WenJing Xu
- Medical School, Southeast University Nanjing 210009 China
| | - YeWei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| |
Collapse
|
33
|
Feng S, Hu W, Pei F, Liu Z, Du B, Mu X, Liu B, Hao Q, Lei W, Tong Z. A Highly Sensitive Fluorescence and Screen-Printed Electrodes—Electrochemiluminescence Immunosensor for Ricin Detection Based on CdSe/ZnS QDs with Dual Signal. Toxins (Basel) 2022; 14:toxins14100710. [PMID: 36287978 PMCID: PMC9608998 DOI: 10.3390/toxins14100710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/23/2022] Open
Abstract
A sensitive dual-readout immunosensor for fluorescence and electrochemiluminescence (ECL) detection of ricin was established, which was combined with a streptavidin–biotin signal amplification system. CdSe/ZnS quantum dots with fine fluorescence and ECL properties were used as the dual-signal function probes of the sandwich immunocomplex. Under the optimum experimental conditions, the dual signal intensity increased significantly with the rise in ricin concentration. The fluorescence intensity of the senor exhibited a good liner relationship toward the ricin concentrations with 0.1~100 ng/mL and the limit of detection (LOD) was 81.7 pg/mL; taking ECL as the detection signal, the sensor showed a linear relationship with the ricin concentrations ranging from 0.01 ng/mL to 100 ng/mL and the LOD was 5.5 pg/mL. The constructed sensor with high sensitivity had been successfully applied to the detection of ricin in complex matrices with satisfactory recoveries. The proposed immunosensor model can be extended to the analysis and detection of others target proteins.
Collapse
Affiliation(s)
- Shasha Feng
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wei Hu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Fubin Pei
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhiwei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Bin Du
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xihui Mu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Bing Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Qingli Hao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wu Lei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Correspondence: (W.L.); (Z.T.)
| | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
- Correspondence: (W.L.); (Z.T.)
| |
Collapse
|
34
|
Chen X, Wu W, Zhang Q, Wang C, Fan Y, Wu H, Zhang Z. Z-scheme Bi 2O 3/CuBi 2O 4 heterojunction enabled sensitive photoelectrochemical detection of aflatoxin B1 for health care, the environment, and food. Biosens Bioelectron 2022; 214:114523. [PMID: 35803155 DOI: 10.1016/j.bios.2022.114523] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/17/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022]
Abstract
Designing a photoelectrochemical (PEC) biosensor with preponderant sensitivity and anti-interference is a challenge for detecting small molecules in real samples with complex matrices. To this end, the Bi2O3/CuBi2O4 was synthesized in one step to enhance visible light's absorption ability, transferring the interfacial carrier's efficiency, a high-active Z-scheme heterojunction, and a photocathode biosensor was proposed. For the first time, we used the density functional theory to verify a Z-scheme transfer pathway of photogenerated electrons in Bi2O3/CuBi2O4 and the energy band structure of Bi2O3 and CuBi2O4, respectively. Bi2O3/CuBi2O4-based PEC biosensor was developed for competive immunoassay of small molecular, aflatoxin B1 (AFB1) as an example, resulting in a low detection limit of 297.4 fg/mL and a linear range of 1.4 pg/mL-280 ng/mL in urine, water, peanut, and wheat samples. Using spiked experiments, the satisfied repeatability, reproducibility, stability, and specificity of the Bi2O3/CuBi2O4-based PEC biosensor indicated a promise for application in health care, the environment, and food.
Collapse
Affiliation(s)
- Xiao Chen
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, PR China; Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Lab for Biotoxin Test, Hubei Hongshan Laboratory, Wuhan, 430062, PR China
| | - Wenqin Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Lab for Biotoxin Test, Hubei Hongshan Laboratory, Wuhan, 430062, PR China
| | - Qi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Lab for Biotoxin Test, Hubei Hongshan Laboratory, Wuhan, 430062, PR China
| | - Cheng Wang
- Key Laboratory of Agro-products Quality and Safety of Xinjiang, Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), MOA, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, PR China
| | - Yingying Fan
- Key Laboratory of Agro-products Quality and Safety of Xinjiang, Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), MOA, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, PR China
| | - Huimin Wu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Lab for Biotoxin Test, Hubei Hongshan Laboratory, Wuhan, 430062, PR China.
| |
Collapse
|
35
|
Photocurrent quenching by competitive consumption of surface electron donor and light absorption for immunosensing. Anal Chim Acta 2022; 1221:340095. [DOI: 10.1016/j.aca.2022.340095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022]
|
36
|
Wang M, Jiang M, Liao X, Wang X, Lai W, Li P, Li J, Hong C, Qi Y. Preparation of an electrochemical immunosensor based on a Cu/Cu 2O-rGO@Au signal synergistic amplification strategy and efficient and sensitive detection of alpha-fetoprotein. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2703-2713. [PMID: 35770823 DOI: 10.1039/d2ay00734g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The effective amplification of the signal is the prerequisite for the ultrasensitive detection of electrochemical immunosensors. To quantitatively detect alpha-fetoprotein (AFP), we prepared a sandwich-type electrochemical immunosensor. Using a gold nanoparticles (Au NPs) modified glassy carbon electrode (GCE) as the sensing platform and Cu/Cu2O-rGO@Au as the signal label, differential pulse voltammetry (DPV) was used to achieve sensitive detection of AFP. We found that the nanomaterials can undergo electro-oxidation and electro-reduction reactions between Cu(I) and Cu(II) in a buffer solution of pH = 6.0. It is worth mentioning that the incorporation of metals into metal oxide substrates is a new strategy to combine the catalytic activity of metal oxides with the electrical conductivity of metals. Reduced graphene oxide (rGO), which is rich in oxygen-containing groups, can load more Cu/Cu2O and Au NPs and increase the conductivity. The modification of Au NPs makes them have better biocompatibility and conductivity. Under the best detection conditions, the prepared immunosensor realizes the specific and ultrasensitive detection of AFP. The detection range is 0.01-50 ng mL-1 and the limit of detection (LOD) was as low as 0.589 pg mL-1 (S/N = 3); meanwhile it also has good practical application ability. Therefore, this immunosensor provides an important means for the early screening and detection of AFP.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| | - Mingzhe Jiang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| | - Xiaochen Liao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| | - Xiao Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| | - Wenjing Lai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| | - Pengli Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| | - Jiajia Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| | - Chenglin Hong
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| | - Yu Qi
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| |
Collapse
|
37
|
Bölükbaşi ÖS, Yola BB, Karaman C, Atar N, Yola ML. Electrochemical α-fetoprotein immunosensor based on Fe 3O 4NPs@covalent organic framework decorated gold nanoparticles and magnetic nanoparticles including SiO 2@TiO 2. Mikrochim Acta 2022; 189:242. [PMID: 35654985 DOI: 10.1007/s00604-022-05344-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/15/2022] [Indexed: 01/09/2023]
Abstract
The early diagnosis of major diseases such as cancer is typically a major issue for humanity. Human α-fetoprotein (AFP) as a sialylated glycoprotein is of approximately 68 kD molecular weight and is considered to be a key biomarker, and an increase in its level indicates the presence of liver, testicular, or gastric cancer. In this study, an electrochemical AFP immunosensor based on Fe3O4NPs@covalent organic framework decorated gold nanoparticles (Fe3O4 NPs@COF/AuNPs) for the electrode platform and double-coated magnetic nanoparticles (MNPs) based on SiO2@TiO2 (MNPs@SiO2@TiO2) nanocomposites for the signal amplification was fabricated. The immobilization of anti-AFP capture antibody was successfully performed on Fe3O4 NPs@COF/AuNPs modified electrode surface by amino-gold affinity, while the conjugation of anti-AFP secondary antibody on MNPs@SiO2@TiO2 was achieved by the electrostatic/ionic interactions. Transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) analysis, cyclic voltammetry (CV), square wave voltammetry (SWV), and electrochemical impedance spectroscopy (EIS) techniques were used to characterize the nanostructures in terms of physical and electrochemical features. The limit of detection (LOD) was 3.30 fg mL-1. The findings revealed that the proposed electrochemical AFP immunosensor can be effectively used to diagnose cancer.
Collapse
Affiliation(s)
- Ömer Saltuk Bölükbaşi
- Department of Metallurgical and Materials Engineering, Faculty of Engineering and Natural Sciences, Iskenderun Technical University, Iskenderun, Hatay, Turkey
| | - Bahar Bankoğlu Yola
- Department of Engineering Basic Sciences, Faculty of Engineering and Natural Sciences, Gaziantep Islam Science and Technology University, Gaziantep, Turkey
| | - Ceren Karaman
- Department of Electricity and Energy, Vocational School of Technical Sciences, Akdeniz University, Antalya, Turkey
| | - Necip Atar
- Department of Chemical Engineering, Faculty of Engineering, Pamukkale University, Denizli, Turkey
| | - Mehmet Lütfi Yola
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep, Turkey.
| |
Collapse
|
38
|
Ultrasensitive photoelectrochemical aptasensor for carbendazim detection based on in-situ constructing Schottky junction via photoreducing Pd nanoparticles onto CdS microsphere. Biosens Bioelectron 2022; 203:114036. [DOI: 10.1016/j.bios.2022.114036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 12/21/2022]
|
39
|
Chen Y, Chen X, Lin J, Zhuang Y, Han Z, Chen J. Electrochemical Detection of Alpha-Fetoprotein Based on Black Phosphorus Nanosheets Modification with Iron Ions. MICROMACHINES 2022; 13:673. [PMID: 35630141 PMCID: PMC9146063 DOI: 10.3390/mi13050673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 12/10/2022]
Abstract
Black phosphorus nanosheets (BPNSs) were synthesized with liquid exfoliation combined with the ultrasonic method and loaded with Fe3+ by simply mixing. The morphology, structure and electrochemical properties of the synthesized Fe3+/BPNSs were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV), etc. The load of Fe3+ can improve the electrochemical performance of BPNSs and enhance the sensitivity of the detection. Additionally, Fe3+/BPNSs display good biocompatibility. In this study, immunosensors based on Fe3+/BPNSs were constructed to detect alpha-fetoprotein (AFP). The detection is due to the specific binding between the AFP antigen and antibody on the surface of the immunosensors, which can reduce the current response of Fe3+/BPNSs. The immunosensors have a good linear relationship in the range of 0.005 ng·mL-1 to 50 ng·mL-1, and the detection limit is 1.2 pg·mL-1. The results show that surface modification with metal ions is a simple and effective way to improve the electrochemical properties of BPNSs, which will broaden the prospects for the future application of BPNSs in the electrochemical field.
Collapse
Affiliation(s)
- Yiyan Chen
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; (Y.C.); (X.C.); (J.L.); (Y.Z.); (J.C.)
| | - Xiaoping Chen
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; (Y.C.); (X.C.); (J.L.); (Y.Z.); (J.C.)
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou 350122, China
| | - Jianwei Lin
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; (Y.C.); (X.C.); (J.L.); (Y.Z.); (J.C.)
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou 350122, China
| | - Yafeng Zhuang
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; (Y.C.); (X.C.); (J.L.); (Y.Z.); (J.C.)
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou 350122, China
| | - Zhizhong Han
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; (Y.C.); (X.C.); (J.L.); (Y.Z.); (J.C.)
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou 350122, China
| | - Jinghua Chen
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; (Y.C.); (X.C.); (J.L.); (Y.Z.); (J.C.)
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou 350122, China
| |
Collapse
|
40
|
Gao Y, Zeng Y, Liu X, Tang D. Liposome-Mediated In Situ Formation of Type-I Heterojunction for Amplified Photoelectrochemical Immunoassay. Anal Chem 2022; 94:4859-4865. [PMID: 35263077 DOI: 10.1021/acs.analchem.2c00283] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exploiting innovative sensing mechanisms and their rational implementation for selective and sensitive detection has recently become one of the mainstream research directions of photoelectrochemical (PEC) bioanalysis. In contrast to existing conventional strategies, this study presents a new liposome-mediated method via in situ combining ZnInS nanosheets (ZIS NSs) with SnS2 to form a ZIS NSs/SnS2 type-I heterojunction on fluorine-doped tin oxide (FTO) electrodes for highly sensitive PEC immunoassays. Specifically, alkaline phosphatase (ALP)-encapsulated liposomes were confined within 96-well plates by sandwich immunorecognition and subsequently subjected to lysis treatment. Enzymatically produced H2S by the released ALP was then directed to react with Sn(IV) to engender the ZIS NSs/SnS2 type-I heterojunction on the FTO/ZIS NSs-Sn(IV) electrode, resulting in a change in the photogenerated electron-hole transfer path of the photoelectrode and reduction in current signaling. Exemplified by heart-type fatty acid binding protein (h-FABP) as a target, the constructed PEC sensor showed good stability and selectivity in a biosensing system. Under optimal conditions, the as-prepared sensing platform displayed high sensitivity for h-FABP with a dynamic linear response range of 0.1-1000 pg/mL and a lower detection limit of 55 fg/mL. This research presents the liposome-mediated PEC immunoassay based on in situ type-I heterojunction establishment, providing a new protocol for analyzing various targets of interest.
Collapse
Affiliation(s)
- Yuan Gao
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
41
|
Lin J, Liu G, Qiu Z, Huang L, Weng S. Etching reaction of carbon quantum dot-functionalized MnO 2 nanosheets with an enzymatic product for photoelectrochemical immunoassay of alpha-fetoprotein. NEW J CHEM 2022. [DOI: 10.1039/d2nj01954j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An etching reaction-based photoelectrochemical (PEC) immunoassay was developed to monitor alpha-fetoprotein (AFP) by coupling with the enzymatic product toward the dissolution of MnO2 nanosheets.
Collapse
Affiliation(s)
- Junshan Lin
- Department of Pediatric Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Guozhong Liu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Zhixin Qiu
- The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Lihong Huang
- The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Shangeng Weng
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, China
| |
Collapse
|
42
|
Rational design of a mesoporous silica@ZIF-8 based molecularly imprinted electrochemical sensor with high sensitivity and selectivity for atropine monitoring. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Wang X, Sun C, Zhang C, Cheng S, Hu W. Organic Field-Effect Transistor-Based Biosensors with Enhanced Sensitivity and Reliability under Illumination for Carcinoembryonic Antigen Bioassay. Anal Chem 2021; 93:15167-15174. [PMID: 34723486 DOI: 10.1021/acs.analchem.1c03683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Achieving biosensors of high sensitivity and reliability is extremely significant for early diagnosis and treatment of tumor diseases. Herein, a novel organic field-effect transistor (OFET)-based biosensor was developed and applied for carcinoembryonic antigen (CEA) bioassay. This OFET-based biosensor can respond sensitively to the antigen-antibody immune-recognition reaction under illumination and darkness, respectively, thereby generating electrical signal changes of source-drain current (IDS) and threshold voltage (Vth). The OFET-based biosensor exhibits detection limits for CEA detection of 0.5 and 0.2 pM, respectively, using IDS and Vth as the response signals under darkness. When a specific intensity of light is applied, light will influence the charge-carrier transport process in the conductive channel, thus causing biosignals to turn into higher electrical signal changes of photocurrent and threshold voltage under illumination. Compared with the detection results in the dark, the biosensor exhibits higher sensitivity for CEA detection under illumination with detection limits of 13.5 and 16.9 fM. Also, multisignal outputs effectively improve the reliability of the biosensor for CEA detection. Consequently, with powerful detection functions, this OFET-based biosensor is expected to become a high-performance biosensing platform for the detection of various biological substances in the future.
Collapse
Affiliation(s)
- Xue Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Chenfang Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Congcong Zhang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250011, P. R. China
| | - Shanshan Cheng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China.,Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institution of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus, Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| |
Collapse
|