1
|
Shah BA, Malhotra H, Papade SE, Dhamale T, Ingale OP, Kasarlawar ST, Phale PS. Microbial degradation of contaminants of emerging concern: metabolic, genetic and omics insights for enhanced bioremediation. Front Bioeng Biotechnol 2024; 12:1470522. [PMID: 39364263 PMCID: PMC11446756 DOI: 10.3389/fbioe.2024.1470522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
The perpetual release of natural/synthetic pollutants into the environment poses major risks to ecological balance and human health. Amongst these, contaminants of emerging concern (CECs) are characterized by their recent introduction/detection in various niches, thereby causing significant hazards and necessitating their removal. Pharmaceuticals, plasticizers, cyanotoxins and emerging pesticides are major groups of CECs that are highly toxic and found to occur in various compartments of the biosphere. The sources of these compounds can be multipartite including industrial discharge, improper disposal, excretion of unmetabolized residues, eutrophication etc., while their fate and persistence are determined by factors such as physico-chemical properties, environmental conditions, biodegradability and hydrological factors. The resultant exposure of these compounds to microbiota has imposed a selection pressure and resulted in evolution of metabolic pathways for their biotransformation and/or utilization as sole source of carbon and energy. Such microbial degradation phenotype can be exploited to clean-up CECs from the environment, offering a cost-effective and eco-friendly alternative to abiotic methods of removal, thereby mitigating their toxicity. However, efficient bioprocess development for bioremediation strategies requires extensive understanding of individual components such as pathway gene clusters, proteins/enzymes, metabolites and associated regulatory mechanisms. "Omics" and "Meta-omics" techniques aid in providing crucial insights into the complex interactions and functions of these components as well as microbial community, enabling more effective and targeted bioremediation. Aside from natural isolates, metabolic engineering approaches employ the application of genetic engineering to enhance metabolic diversity and degradation rates. The integration of omics data will further aid in developing systemic-level bioremediation and metabolic engineering strategies, thereby optimising the clean-up process. This review describes bacterial catabolic pathways, genetics, and application of omics and metabolic engineering for bioremediation of four major groups of CECs: pharmaceuticals, plasticizers, cyanotoxins, and emerging pesticides.
Collapse
Affiliation(s)
- Bhavik A Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sandesh E Papade
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Tushar Dhamale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Omkar P Ingale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sravanti T Kasarlawar
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| |
Collapse
|
2
|
Lee M, Kim SH, Kim D, Kim HJ. Rapid and Easy Detection of Microcystin-LR Using a Bioactivated Multi-Walled Carbon Nanotube-Based Field-Effect Transistor Sensor. BIOSENSORS 2024; 14:37. [PMID: 38248414 PMCID: PMC10813581 DOI: 10.3390/bios14010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
In this study, we developed a multi-walled carbon nanotube (MWCNT)-based field-effect transistor (MWCNT-FET) sensor with high sensitivity and selectivity for microcystin-LR (MC-LR). Carboxylated MWCNTs were activated with an MC-LR-targeting aptamer (MCTA). Subsequently the bioactivated MWCNTs were immobilized between interdigitated drain (D) and source (S) electrodes through self-assembly. The top-gated MWCNT-FET sensor was configured by dropping the sample solution onto the D and S electrodes and immersing a Ag/AgCl electrode in the sample solution as a gate (G) electrode. We believe that the FET sensor's conduction path arises from the interplay between the MCTAs, with the applied gate potential modulating this path. Using standard instruments and a personal computer, the sensor's response was detected in real-time within a 10 min time frame. This label-free FET sensor demonstrated an impressive detection capability for MC-LR in the concentration range of 0.1-0.5 ng/mL, exhibiting a lower detection limit of 0.11 ng/mL. Additionally, the MWCNT-FET sensor displayed consistent reproducibility, a robust selectivity for MC-LR over its congeners, and minimal matrix interferences. Given these attributes, this easily mass-producible FET sensor is a promising tool for rapid, straightforward, and sensitive MC-LR detection in freshwater environments.
Collapse
Affiliation(s)
- Myeongsoon Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Republic of Korea; (M.L.); (D.K.)
| | - Seong H. Kim
- Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA;
| | - Don Kim
- Department of Chemistry, Pukyong National University, Busan 48513, Republic of Korea; (M.L.); (D.K.)
| | - Hak Jun Kim
- Department of Chemistry, Pukyong National University, Busan 48513, Republic of Korea; (M.L.); (D.K.)
| |
Collapse
|
3
|
Huang Q, Gu R, Zhao Y, Fu H, Liu H. Electrochemical biosensor using SnO 2 colloidal quantum wire for monitoring the interaction of microcystin antigen-antibody. Bioelectrochemistry 2023; 154:108504. [PMID: 37459748 DOI: 10.1016/j.bioelechem.2023.108504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/20/2023] [Accepted: 07/06/2023] [Indexed: 09/16/2023]
Abstract
Electrochemical sensors that incorporate immunoassay principles have the ability to monitor dynamic processes of antigen-antibody interactions in real time. In this study, a gold electrode was modified with tin dioxide colloidal quantum wire (SnO2 QWs) and then coated with the leucine/arginine subtype microcystin (MC-LR) antibody. The active site of SnO2 QWs that was not bound by MC-LR antibody was then passivated with bovine serum protein (BSA). When the MC-LR antigen binds specifically to the antibodies on the electrode's surface, it triggers electrochemical reactions and generates electrical signals at specific voltage conditions. The SnO2 QW exhibits excellent electron transport ability, and its ability to form a loose and porous microstructure on the gold electrode surface, which is conducive to the receptor function of the biosensor. The results show a high affinity between the MC-LR antigen and antibody, ranging from 1 pg/mL to 10 ng/mL of MC-LR antigen concentration. The kinetic characteristics of the immune reaction between MC-LR antigen and antibody were elucidated, obtaining a binding constant of 1.399 × 1011 M-1 and a dissociation constant of 7.147 pM, demonstrating the potential of electrochemical biosensing technology in biomolecular interactions.
Collapse
Affiliation(s)
- Qing Huang
- School of Integrated Circuits, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Wenzhou Advanced Manufacturing Institute, Huazhong University of Science and Technology, Wenzhou, Zhejiang 325035, China
| | - RuiQin Gu
- School of Integrated Circuits, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yunong Zhao
- School of Integrated Circuits, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Huibing Fu
- Zhengzhou Winsen Electronic Technology Co., LTD, Zhengzhou, Henan 450001, China
| | - Huan Liu
- School of Integrated Circuits, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Wenzhou Advanced Manufacturing Institute, Huazhong University of Science and Technology, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
4
|
Lee D, Jang J, Jang J. Sensitive and highly rapid electrochemical measurement of airborne coronaviruses through condensation-based direct impaction onto carbon nanotube-coated porous paper working electrodes. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131972. [PMID: 37399725 DOI: 10.1016/j.jhazmat.2023.131972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
Rapid detection of indoor airborne viruses is critical to prevent the spread of respiratory diseases. Herein, we present sensitive, highly rapid electrochemical measurement of airborne coronaviruses through condensation-based direct impaction onto antibody-immobilized, carbon nanotube-coated porous paper working electrodes (PWEs). Carboxylated carbon nanotubes are drop-cast on paper fibers to make three-dimensional (3D) porous PWEs. These PWEs have higher active surface area-to-volume ratios and electron transfer characteristics than conventional screen-printed electrodes. The limit of detection and detection time of the PWEs for liquid-borne coronaviruses OC43 are 65.7 plaque-forming units (PFU)/mL and 2 min, respectively. The PWEs showed sensitive and rapid detection of whole coronaviruses, which can be ascribed to the 3D porous electrode structure of the PWEs. Moreover, water molecules condense on airborne virus particles during air sampling, and these water-encapsulated virus particles (<4 µm) are impacted on the PWE for direct measurement without virus lysis and elution. The whole detection takes ∼10 min, including air sampling, at virus concentrations of 1.8 and 11.5 PFU/L of air, which can be due to the highly enriching and minimally damaging virus capture on a soft and porous PWE, demonstrating the potential for the rapid and low-cost airborne virus monitoring system.
Collapse
Affiliation(s)
- Daesoon Lee
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Junbeom Jang
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaesung Jang
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Department of Biomedical Engineering & Department of Urban and Environmental Engineering, UNIST, Ulsan 44919, Republic of Korea.
| |
Collapse
|
5
|
Wang T, Xie H, Cao Y, Xu Q, Gan N. Magnetic solid phase extraction coupled with high-performance liquid chromatography-diode array detection based on assembled magnetic covalent organic frameworks for selective extraction and detection of microcystins in aquatic foods. J Chromatogr A 2022; 1685:463614. [DOI: 10.1016/j.chroma.2022.463614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
6
|
García Y, Vera M, Giraldo JD, Garrido-Miranda K, Jiménez VA, Urbano BF, Pereira ED. Microcystins Detection Methods: A Focus on Recent Advances Using Molecularly Imprinted Polymers. Anal Chem 2021; 94:464-478. [PMID: 34874146 DOI: 10.1021/acs.analchem.1c04090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yadiris García
- Departamento de Química Analítica e Inorgánica Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| | - Myleidi Vera
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| | - Juan D Giraldo
- Instituto de Acuicultura, Universidad Austral de Chile, Sede Puerto Montt, Los Pinos s/n Balneario Pelluco, 5480000 Puerto Montt, Chile
| | - Karla Garrido-Miranda
- Center of Waste Management and Bioenergy, Scientific and Technological Bioresource Nucleus, BIOREN-UFRO, Universidad de La Frontera, P.O. Box 54-D, 4811230 Temuco, Chile
| | - Verónica A Jiménez
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Sede Concepción, Autopista Concepción-Talcahuano, 4260000 Talcahuano, Chile
| | - Bruno F Urbano
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| | - Eduardo D Pereira
- Departamento de Química Analítica e Inorgánica Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| |
Collapse
|