1
|
An J, Zhang M, Fu Y, Zhang Q, Si Y, Zhang Y, Fang Y, Zhang D. Emerging electrochemical biosensors for lung cancer-associated protein biomarker and miRNA detection. Int J Biol Macromol 2024; 280:135972. [PMID: 39322139 DOI: 10.1016/j.ijbiomac.2024.135972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/09/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Lung cancer remains a major driver of global morbidity and mortality, and diagnosing lung tumors early in their development is vital to maximizing treatment efficacy and patient survival. Several biomarkers, including CYFRA 21-1, NSE, ProGRP, CEA, and miRNA, have been identified as reliable indicators for early lung cancer detection and monitoring treatment progress. However, the minute changes in the levels of these biomarkers during the early stages of disease necessitate advanced detection platforms. In this space, electrochemical biosensors have currently emerged as robust tools for early lung cancer screening and diagnosis owing to their low costs, rapid responses, and superior sensitivity and selectivity. This review provides an up-to-date overview of the application of electrochemiluminescence, photoelectrochemical, and other electrochemical analytical strategies for detecting lung cancer-associated protein biomarkers, and miRNA. This review compares these techniques to provide a concise overview of the principles underlying these electrochemical analytical methods, the preparation of their components, and the performance of the resulting biosensors. Lastly, a discussion of the challenges and opportunities associated with electrochemical biosensors detection of lung cancer-associated biomarkers are provided.
Collapse
Affiliation(s)
- Jiaying An
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Miao Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yu Fu
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Qingxiang Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yuxin Si
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Youlin Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 301617, PR China; Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Chinese Medicine Modernization, Tianjin 301617, PR China.
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Chinese Medicine Modernization, Tianjin 301617, PR China.
| |
Collapse
|
2
|
Tu W, Zhu L, Cai T, Li Z, Dai Z. Integrating multiple probes for simplifying signal-on photoelectrochemical biosensing of microRNA with ultrasensitivity and wide detection range based on biofunctionalized porous ferroferric oxide and hypotoxic quaternary semiconductor. Biosens Bioelectron 2024; 243:115781. [PMID: 37883844 DOI: 10.1016/j.bios.2023.115781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/23/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
A facile and signal-on photoelectrochemical (PEC) biosensing strategy was designed based on hypotoxic Cu2ZnSnS4 NPs nanoparticles (NPs) and biofunctionalized Fe3O4 NPs that integrated recognition units with signal elements, without the need for immobilization of probes on the electrode. Cu2ZnSnS4 NPs were used as the PEC substrate to produce intensive and stable photocurrent. The porous magnetic Fe3O4 NPs displayed favorable loading capacity for CdS QDs and easy biofunctionalization by negatively charged capture DNA (cDNA). cDNA sealed the pore of Fe3O4 NPs, avoiding the escape of CdS QDs as a PEC sensitizer. After hybridizing with target microRNA (miRNA), cDNA split away off Fe3O4 NPs whose porous channel might open and release sealed CdS QDs (signal element), resulting in a dramatical enhancement of PEC response. Herein, miRNA hardly contacted with CdS QDs, effectively avoiding harm to the target miRNA. This proposed strategy simplified procedures of assembly and made the biorecognition process sufficient for promoting a stationary quantity of probes, which was expected to obtain satisfactory performance for bioassay. Using miRNA-155 as a model analyte and combining with duplex-specific nuclease (DSN)-assisted amplification, a simplified and signal-on PEC biosensing platform for miRNA-155 with wonderful performance was proposed. DSN-assisted amplification further promoted PEC signal increment, leading to ulteriorly improving sensitivity (detection limit of 0.17 fM) and linear range (6.5 orders of magnitude) for miRNA-155 assay. Moreover, the developed PEC biosensing platform exhibited satisfactory stability, excellent specificity, and favorable accuracy for miRNA-155, which would have a promising prospect for monitoring miRNA expression in tumor cells.
Collapse
Affiliation(s)
- Wenwen Tu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Lingling Zhu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Tingting Cai
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Zijun Li
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Zhihui Dai
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China; School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, PR China.
| |
Collapse
|
3
|
Zhang X, Gao Y, Li J, Fan X, Song R, Song W. Self-Cleaning Recyclable Multiplexed Photoelectrochemical Sensing Strategy Based on Exonuclease III-Assisted Signal Discrimination. Anal Chem 2023. [PMID: 37261957 DOI: 10.1021/acs.analchem.3c01012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
For discriminating the signals of multi-targets, multiplexed photoelectrochemical (PEC) detection is generally accomplished by modulating the light source or voltage, which prospect is usually limited by expensive instrumentation, tedious operational steps, and time-consuming material screening. To realize multiplexed determination on single photoelectric interface using the routine technique, a non-instrument-assisted strategy for signal discrimination needs to be explored. Herein, we propose an exonuclease III-mediated multiple PEC signals resolution strategy and construct a self-cleaning recyclable multiplexed PEC sensor using a porphyrin-bipyridine-based covalent organic framework (Por-Bpy COF) photocathode. Specifically, following the dual-target recognition event, exonuclease III cleaves the DNA strand attached to the magnetic bead so that the two signal labels can be separated. Once the signal label binds to the DNA on the electrode surface (E-DNA), exonuclease III turns to excise the DNA strand of the signal label and consequently the E-DNA can repeatedly bind different signal labels. As a result, distinguishable photocurrent signals of different targets can be generated on a single photoelectric interface. The feasibility of this multiplexed sensor is verified by detecting two coexisting mycotoxins aflatoxin B1 and zearalenone. On account of eliminating the instrumentation constraints and simplifying the experimental procedures, the proposed sensing strategy may provide a brand-new idea for the exploration of portable multiplexed PEC sensing devices.
Collapse
Affiliation(s)
- Xuechen Zhang
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Yao Gao
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Jiawen Li
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Xue Fan
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Renhuan Song
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Wenbo Song
- College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
4
|
Zhang C, Zheng Z, Liu K, Debliquy M, Liu Q. Highly sensitive and selective Sb 2WO 6 microspheres in detecting VOC biomarkers in cooked rice: Experimental and density functional theory study. Food Chem 2023; 424:136323. [PMID: 37210843 DOI: 10.1016/j.foodchem.2023.136323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/23/2023]
Abstract
The palatability of cooked rice is susceptible to the flavor and effective detection of volatile organic compounds (VOCs) can avoid deterioration and improve the taste quality. Herein, hierarchical antimony tungstate (Sb2WO6) microspheres are synthesized through a solvothermal process and the effect of solvothermal temperature on the room temperature gas-sensing properties of gas sensors is investigated. Outstanding sensitivity towards VOC biomarkers (nonanal, 1-octanol, geranyl acetone and 2-pentylfuran) in cooked rice is achieved and the sensors exhibit remarkable stability and reproducibility, which are contributed to the formation of the hierarchical microsphere structure, larger specific surface area, narrower band gap and increased oxygen vacancy content. The kinetic parameters combined with principal component analysis (PCA) effectively distinguish the four VOCs while the enhanced sensing mechanism was substantiated through density functional theory (DFT) calculation. This work provides a strategy for fabricating high performance Sb2WO6 gas sensors which can be practically applied to food industry.
Collapse
Affiliation(s)
- Chao Zhang
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, PR China.
| | - Zichen Zheng
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Kewei Liu
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Marc Debliquy
- Service de Science des Matériaux, Faculté Polytechnique, Université de Mons, Mons 7000, Belgium
| | - Qiaoquan Liu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu, Yangzhou University, Yangzhou 225009, Jiangsu Province, PR China
| |
Collapse
|
5
|
Feng D, Chen L, Zhang K, Zhu S, Ying M, Jiang P, Fu M, Wei Y, Li L. Highly Sensitive Immunosensing of Carcinoembryonic Antigen Based on Gold Nanoparticles Dotted PB@PANI Core-Shell Nanocubes as a Signal Probe. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2023; 2023:7009624. [PMID: 37063701 PMCID: PMC10104734 DOI: 10.1155/2023/7009624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/01/2022] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Herein, a method was developed for the sensitive monitoring of carcinoembryonic antigen (CEA) by gold nanoparticles dotted prussian blue@polyaniline core-shell nanocubes (Au NPs/PB@PANI). First, a facile low-temperature method was used to prepare the uniform PB@PANI core-shell nanocubes with the assistance of PVP, where PB acted as the electron transfer mediator to provide electrochemical signals, and the PANI with excellent conductivity and desirable chemical stability not only played the role of a protective layer to prevent etching of PB in basic media but also effectively improved electron transfer. Importantly, to further enhance the electrical conductivity and biocompatibility of PB@PANI and to further enhance the electrochemical signal and capture a large amount of Ab2, Au NPs were doped on the surface of PB@PANI to form Au NPs/PB@PANI nanocomposites. Subsequently, benefiting from the advantages of core-shell structure nanoprobes and gold-platinum bimetallic nanoflower (AuPt NF), a sandwich-type electrochemical immunosensor for CEA detection was constructed, which provided a wide linear detection range from 1.0 pg·mL-1 to 100.0 ng·mL-1 and a low detection limit of 0.35 pg·mL-1 via DPV (at 3σ). Moreover, it displayed a satisfactory result when the core-shell structure nanoprobe-based immunosensor was applied to determine CEA in real human serum samples.
Collapse
Affiliation(s)
- Dexiang Feng
- Department of Chemistry, Wannan Medical College, Wuhu 241002, China
- Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Lingzhi Chen
- Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Ke Zhang
- Department of Chemistry, Wannan Medical College, Wuhu 241002, China
- Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Shuangshuang Zhu
- Department of Chemistry, Wannan Medical College, Wuhu 241002, China
| | - Meichen Ying
- Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Peng Jiang
- Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Menglan Fu
- Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Yan Wei
- Department of Chemistry, Wannan Medical College, Wuhu 241002, China
- Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Lihua Li
- Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
6
|
Wang Z, Li W, Wang J, Li Y, Zhang G. Novel Z-scheme AgI/Sb 2WO 6 heterostructure for efficient photocatalytic degradation of organic pollutants under visible light: Interfacial electron transfer pathway, DFT calculation and mechanism unveiling. CHEMOSPHERE 2023; 311:137000. [PMID: 36309057 DOI: 10.1016/j.chemosphere.2022.137000] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Developing highly efficient heterostructured photocatalysts with robust redox ability is of great significance to wastewater purification. Herein, a novel Z-scheme AgI/Sb2WO6 heterojunction was successfully constructed via a chemical-precipitation method. The Z-scheme system can serve as a highly efficient photocatalyst for degradation of organic pollutants in water. Under visible light illumination, the degradation efficiency of rhodamine B and tetracycline over the optimal Z-scheme heterojunction can achieve 95% in 12 min and 80% in 8 min, which is 10.8 and 11.4 times higher than that over single Sb2WO6, respectively. Interestingly, low amounts of Ag0 can be generated and attached on the surface of Sb2WO6 during the photocatalytic process, further enhancing the photocatalytic activity of the Z-scheme heterojunction. Based on theoretical calculations, the interfacial internal electric field (IEF) can facilitate the photoexcited electrons at the conduction band (CB) of AgI to consume the photoexcited holes at the valence band (VB) of Sb2WO6, which greatly promotes the Z-scheme charge transfer path. Quenching experiments and electron spin resonance analyses demonstrate superoxide radicals play a major role in the photocatalytic reactions. The concept of constructing a Z-scheme heterojunction photocatalyst with efficient interfacial charge transfer shall provide a design guide for wastewater purification.
Collapse
Affiliation(s)
- Zhuangzhuang Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, People's Republic of China
| | - Wenxuan Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, People's Republic of China
| | - Junting Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, People's Republic of China.
| | - Yuan Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, People's Republic of China
| | - Gaoke Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, People's Republic of China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
7
|
Highly sensitive electrochemiluminescent immunoassay for detecting neuron-specific enolase (NSE) based on polyluminol and glucose oxidase-conjugated glucose-encapsulating liposome. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Wang Y, Yang M, Ge S, Wang X, Yu J. Piezotronic Effect-Assisted Photoelectrochemical Exosomal MicroRNA Monitoring Based on an Electron Donor Self-Supplying Strategy. Anal Chem 2022; 94:13522-13532. [PMID: 36125354 DOI: 10.1021/acs.analchem.2c02821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Exosomal microRNAs (miRNAs) as newly emerging reliable and noninvasive biomarkers have demonstrated a significant function in early cancer diagnosis. Photoelectrochemical (PEC) biosensing has attracted unprecedented attention in exosomal miRNA monitoring due to its inherent advantages of both electrochemical and optical techniques; however, the severe charge carrier recombination greatly restricts the PEC assay performance. Herein, a high-sensitive PEC strategy assisted by the piezoelectric effect is designed based on Bi2WO6/Cu2S heterojunctions and implemented for the monitoring of exosomal miRNAs. The introduction of the piezoelectric effect enables promoted electron-hole transfer and separation, thereby improving the analytical sensitivity. In addition, a target reprogramming metal-organic framework-capped CaO2 (MOF@CaO2) hybrids is prepared, in which MOF@CaO2 being responsive to exosomal miRNAs induces exposure of the capped CaO2 to H2O and then triggers self-supplying of H2O2, which effectively suppresses the electron-hole recombination, giving rise to an amplified photocurrent and a decrease in the cost of the reaction. Benefiting from the coupled sensitization strategy, the as-fabricated PEC strategy exhibits high sensitivity, specificity, low cost, and ease of use for real-time analysis of exosomal miRNAs within the effectiveness linear range of 0.1 fM-1 μM. The present work demonstrates promising external field coupling-enhanced PEC bioassay and offers innovative thoughts for applying this strategy in other fields.
Collapse
Affiliation(s)
- Yanhu Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China.,School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Mengchun Yang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Shenguang Ge
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Xiao Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
9
|
Xing Z, Zhang S, Wang H, Ma H, Wu D, Fan D, Ren X, Wei Q, Ju H. Addressable Label-Free Photoelectric Sensor Array with Self-Calibration for Detection of Neuron Specific Enolase. Anal Chem 2022; 94:6996-7003. [PMID: 35512395 DOI: 10.1021/acs.analchem.1c05577] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An addressable label-free photoelectric immunosensor array was designed for detection of neuron specific enolase (NSE) based on TiO2/CdS as substrate materials. In this work, the hydrothermal synthesized TiO2 nanorod film is evenly grown on the surface of the fluorine-doped tin oxide (FTO), and then CdS with a narrow band gap is added for sensitization through successive ionic layer adsorption reactions. The obtained TiO2/CdS composite materials with matched energy band structures promote the rapid electron transfer and effectively reduce the recombination of electron hole pairs, which greatly enhance the visible light absorption and increased photocurrent intensity. In order to construct a suitable sensor array, the sensitized FTO electrode is divided into multiple regions of equal size by insulating stickers, and then the addressable and continuous detection of multiple samples can be achieved. Because multiple detection regions are prepared and tested under the same conditions, the difference effectively reduces, and the sensor can realize self-calibration and obtain more accurate results. Under optimal conditions, this sensor array can detect NSE in the linear range of 0.01-100 ng mL-1 with a detection limit of 2.49 pg mL-1 (S/N = 3). The sensor array has good selectivity, stability, and reproducibility, making it a viable approach for real sample detection.
Collapse
Affiliation(s)
- Zhenyuan Xing
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, P.R. China
| | - Shuo Zhang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, P.R. China
| | - Huan Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, P.R. China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, P.R. China
| | - Dan Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, P.R. China
| | - Dawei Fan
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, P.R. China
| | - Xiang Ren
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, P.R. China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, P.R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|