1
|
Li Y, Liu M, Yang C, Fu H, Wang J. Engineering microbial metabolic homeostasis for chemicals production. Crit Rev Biotechnol 2025; 45:373-392. [PMID: 39004513 DOI: 10.1080/07388551.2024.2371465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024]
Abstract
Microbial-based bio-refining promotes the development of a biotechnology revolution to encounter and tackle the enormous challenges in petroleum-based chemical production by biomanufacturing, biocomputing, and biosensing. Nevertheless, microbial metabolic homeostasis is often incompatible with the efficient synthesis of bioproducts mainly due to: inefficient metabolic flow, robust central metabolism, sophisticated metabolic network, and inevitable environmental perturbation. Therefore, this review systematically summarizes how to optimize microbial metabolic homeostasis by strengthening metabolic flux for improving biotransformation turnover, redirecting metabolic direction for rewiring bypass pathway, and reprogramming metabolic network for boosting substrate utilization. Future directions are also proposed for providing constructive guidance on the development of industrial biotechnology.
Collapse
Affiliation(s)
- Yang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Mingxiong Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Changyang Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Hongxin Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
2
|
Khandelwal H, Mutyala S, Kim M, Kong DS, Kim JR. Whole-cell redox biosensor for triclosan detection: Integrating spectrophotometric and electrochemical detection. Bioelectrochemistry 2025; 164:108921. [PMID: 39904301 DOI: 10.1016/j.bioelechem.2025.108921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Organic pollutants like bisphenol, acetaminophen, and triclosan, widely used in healthcare products, pose environmental risks and act as endocrine disruptors. These pollutants can alter the intracellular redox balance, making engineered whole-cell redox biosensors valuable for their detection. This study utilized the SoxRS regulatory system in bacteria, which responds to oxidative stress through NADP+/NADPH levels by modulating gene expression of SoxS through the SoxS promoter (pSoxS). A plasmid containing SoxR-pSoxS and the LacZ reporter gene was constructed and introduced into E. coli BL21 (ΔLacZ SoxRS+). The LacZ gene enabled dual detection using O-nitrophenyl-β-galactopyranoside (ONPG) for spectrophotometric detection or p-aminophenyl β-D-galactopyranoside (PAPG) for electrochemical detection. The whole-cell pRUSL12 redox biosensor was activated by redox inducers such as pyocyanin and methyl viologen, measurable via β-galactosidase assays. Among pollutants tested, triclosan specifically repressed SoxR:pSoxS::lacZ activity in the presence of pyocyanin or methyl viologen. Optimization identified pyocyanin as the more effective inducer for triclosan detection, with the biosensor capable of detecting triclosan in the 100-400 µg/L range. These redox-based biosensors offer a powerful tool for monitoring metabolic redox changes and identifying specific organic pollutants in the environment.
Collapse
Affiliation(s)
- Himanshu Khandelwal
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sakuntala Mutyala
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Minsoo Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Da Seul Kong
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea; Institute for Environmental Energy, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
3
|
Wu C, Guo Y, Xie YX, Hu SY, Ou JM, Li BX, Zhang NX, Hui CY. Visual signal transduction for environmental stewardship: A novel biosensing approach to identify and quantify chlorpyrifos-related residues in aquatic environments. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136213. [PMID: 39442304 DOI: 10.1016/j.jhazmat.2024.136213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
The pervasive presence of organophosphate pesticides (OPs), such as chlorpyrifos (CPF), in aquatic ecosystems underscores the urgent need for sensitive and reliable detection methods to safeguard environmental and public health. This study addressed the critical need for a novel biosensor capable of detecting CPF and its toxic metabolite, 3,5,6-trichloro-2-pyridinol (TCP), with high sensitivity and selectivity, suitable for field applications in environmental monitoring. The study engineered a whole-cell biosensor based on E. coli strains that utilize the ChpR transcriptional regulator and the vioABCE gene cluster, providing a distinct visual and colorimetric response to CPF and TCP. The biosensor's performance was optimized and evaluated across various water matrices, including freshwater, seawater, and soil leachate. The biosensor demonstrated high sensitivity with a broad linear detection range, achieving limits of detection (LODs) at 0.8 μM for CPF and 7.813 nM for TCP. The linear regression concentration ranges were 1.6-12.5 μM for CPF and 15.6-125 nM for TCP, aligning with environmental standard limits and ensuring the biosensor's effectiveness in real-world scenarios. This innovative biosensing approach offers a robust, user-friendly tool for on-site environmental monitoring, significantly mitigating OPs contamination and advancing current detection technologies to meet environmental protection standards.
Collapse
Affiliation(s)
- Can Wu
- Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou, China; Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Yan Guo
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Yu-Xuan Xie
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Shun-Yu Hu
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jia-Ming Ou
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Bo-Xin Li
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Nai-Xing Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China.
| | - Chang-Ye Hui
- Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou, China; Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China.
| |
Collapse
|
4
|
Zhang T, Zhu K, Zhang X, Yu X, Shen L, Gao D, Chen Y, Wang Q, Chen S, Bao L. Development of CadR-based cadmium whole cell biosensor for visual detection of environmental Cd 2. Anal Chim Acta 2024; 1330:343299. [PMID: 39489979 DOI: 10.1016/j.aca.2024.343299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND As a threat to human health and public health, cadmium (Cd) pollution has received widespread social concern. Our previously constructed CadR-based bacterial whole cell biosensor (WCB) epCadR5 showed high sensitivity and specificity in cadmium detection. However, the application of the sensor is still hindered by the need for laboratory equipment to read the fluorescence signal output. In this study, we aimed to optimizing the sensor to make it available for visual detection of environmental cadmium and simplify the detection process to advance practical application of the sensor. RESULTS By replacing the constitutive promoter with J110, the fluorescence signal output of the sensor was significantly increased and the fluorescence leakage was decreased. In addition, the fluorescence signal output of green fluorescence protein (GFP) was enhanced by the addition of a 5' untranslated region (5'-UTR) mlcR10. The fluorescence signal output of the WCB is sufficiently robust to be visible and distinguishable to the naked eye, which is of paramount importance for visual detection. The sensor readout can be conveniently recorded by mobile phone camera and quantified. For ease of on-site application, the WCB's visual detection procedures and conditions were further optimized and simplified. The WCB demonstrated good linearity and detection limit (1.81 μg/L) for visual detection of Cd2+ without the assistance of bulky laboratory equipment. For the detection of real environmental samples, the WCB visual detection results were close to those of WCB-flow cytometry (FACS) and graphite furnace atomic absorption spectroscopy (GFAAS). SIGNIFICANCE In this work, we developed an easy-to-use, on-site and visual detection biosensor for monitoring environmental Cd2+. It will advance the utilization of cadmium WCBs in practical settings. The optimization and simplification strategy in the study also provide new insights into the visualization of other bacterial biosensors, and will advance the practical application of WCBs.
Collapse
Affiliation(s)
- Tianyi Zhang
- School of Public Health, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - KaiLi Zhu
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, Anhui, China
| | - Xia Zhang
- School of Public Health, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Xin Yu
- School of Public Health, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Liang Shen
- School of Public Health, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Defeng Gao
- School of Public Health, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Yiwen Chen
- School of Public Health, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Qinghua Wang
- School of Public Health, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Shaopeng Chen
- School of Public Health, Wannan Medical College, 241002, Wuhu, Anhui, China.
| | - Lingzhi Bao
- School of Public Health, Wannan Medical College, 241002, Wuhu, Anhui, China; Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, 230039, Hefei, Anhui, China.
| |
Collapse
|
5
|
Luo B, Wu S, Liu W, Zhang D, Liu R, Liu T, Sun Z, Wei Z, Liu M, Shi Z, Huang N, Teng Y. Mechanistic insights into the orthogonal functionality of an AHL-mediated quorum-sensing circuit in Yersinia pseudotuberculosis. Synth Syst Biotechnol 2024; 10:174-184. [PMID: 39552757 PMCID: PMC11564790 DOI: 10.1016/j.synbio.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 11/19/2024] Open
Abstract
YpsR, a pivotal regulatory protein in the quorum-sensing (QS) of Yersinia pseudotuberculosis(Y. pstb), is essential for molecular signaling, yet its molecular mechanisms remain poorly understood. Herein, this study systematically investigates the interactions between YpsR and acyl-homoserine lactones (AHLs), shedding light on the selective mechanism of YpsR to various AHL molecules. Using molecular docking and surface plasmon resonance (SPR) analysis, we confirmed YpsR's binding affinities, with the strongest observed for 3OC6-HSL, which notably inhibited Y. pstb growth. Additionally, we engineered a whole-cell biosensor based on YpsR-AHL interaction, which exhibited sensitivity to the signal molecule 3OC6-HSL produced by Y. pstb. Furthermore, key YpsR residues (S32, Y50, W54, D67) involved in AHL binding were identified and validated. Overall, this research elucidates the mechanisms of QS signal recognition in Y. pstb, providing valuable insights that support the development of diagnostic tools for detecting Y. pstb infections.
Collapse
Affiliation(s)
- Boyu Luo
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Shanshan Wu
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Wei Liu
- Laboratory Department in Second Medical Center of PLA General Hospital, Beijing, 100089, China
| | - Dongdong Zhang
- Western Medical Branch of PLA General Hospital, Beijing, 100041, China
| | - Ruicun Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Tuoyu Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Zhi Sun
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Ziqun Wei
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Mingyu Liu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Zhiyuan Shi
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Niu Huang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Yue Teng
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| |
Collapse
|
6
|
Mendoza ASG, Acosta MFM, Sánchez JAM, Vázquez LEC. Principles and challenges of whole cell microbial biosensors in the food industry. J Food Sci 2024; 89:5255-5269. [PMID: 39175184 DOI: 10.1111/1750-3841.17294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024]
Abstract
Whole cell microbial biosensors (WCMB) are mostly genetically modified microorganisms used to detect target molecules as indicators of biological and chemical contaminants as well as in the identification of compounds of interest in the food industry. The specificity and sensitivity of these biosensors are achieved through the design of genetic circuits that make use of genetic sequences such as promoters, terminators, genes encoding regulatory proteins or reporter proteins, among others. Despite the advances of WCMBs for their application, significant challenges are faced, such as cell stability, regulatory restrictions, and the need to optimize response times so that they can be a competitive detection tool in the market. This review explores the technological progress, potential and limitations of WCMBs in the food industry, starting by reviewing the operating principles of biosensors. The importance of selecting appropriate chassis cells and the integration of recognition elements and transducers to maximize their effectiveness in the detection of contaminants and compounds of interest in the food industry is highlighted.
Collapse
Affiliation(s)
- América Selene Gaona Mendoza
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, Guanajuato, México
- Food Department, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, Guanajuato, México
| | - María Fernanda Mendoza Acosta
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, Guanajuato, México
- Food Department, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, Guanajuato, México
| | - Julio Armando Massange Sánchez
- Plant Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco A.C. (CIATEJ), Guadalajara, Mexico
| | - Luz Edith Casados Vázquez
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, Guanajuato, México
- Food Department, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, Guanajuato, México
- CONAHCyT-University of Guanajuato, Guanajuato, México
| |
Collapse
|
7
|
Cravo F, Függer M, Nowak T. An Allee-based distributed algorithm for microbial whole-cell sensors. NPJ Syst Biol Appl 2024; 10:43. [PMID: 38649364 PMCID: PMC11035582 DOI: 10.1038/s41540-024-00363-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Reliable detection of substances present at potentially low concentrations is a problem common to many biomedical applications. Complementary to well-established enzyme-, antibody-antigen-, and sequencing-based approaches, so-called microbial whole-cell sensors, i.e., synthetically engineered microbial cells that sense and report substances, have been proposed as alternatives. Typically these cells operate independently: a cell reports an analyte upon local detection.In this work, we analyze a distributed algorithm for microbial whole-cell sensors, where cells communicate to coordinate if an analyte has been detected. The algorithm, inspired by the Allee effect in biological populations, causes cells to alternate between a logical 0 and 1 state in response to reacting with the particle of interest. When the cells in the logical 1 state exceed a threshold, the algorithm converts the remaining cells to the logical 1 state, representing an easily-detectable output signal. We validate the algorithm through mathematical analysis and simulations, demonstrating that it works correctly even in noisy cellular environments.
Collapse
Affiliation(s)
- Fabricio Cravo
- LMF, Université Paris-Saclay, CNRS, ENS Paris-Saclay, Gif-sur-Yvette, France
- LISN, Université Paris-Saclay, CNRS, Gif-sur-Yvette, France
| | - Matthias Függer
- LMF, Université Paris-Saclay, CNRS, ENS Paris-Saclay, Gif-sur-Yvette, France.
| | - Thomas Nowak
- LMF, Université Paris-Saclay, CNRS, ENS Paris-Saclay, Gif-sur-Yvette, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
8
|
Lami R, Urios L, Molmeret M, Grimaud R. Quorum sensing in biofilms: a key mechanism to target in ecotoxicological studies. Crit Rev Microbiol 2023; 49:786-804. [PMID: 36334083 DOI: 10.1080/1040841x.2022.2142089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Our environment is heavily contaminated by anthropogenic compounds, and this issue constitutes a significant threat to all life forms, including biofilm-forming microorganisms. Cell-cell interactions shape microbial community structures and functions, and pollutants that affect intercellular communications impact biofilm functions and ecological roles. There is a growing interest in environmental science fields for evaluating how anthropogenic pollutants impact cell-cell interactions. In this review, we synthesize existing literature that evaluates the impacts of quorum sensing (QS), which is a widespread density-dependent communication system occurring within many bacterial groups forming biofilms. First, we examine the perturbating effects of environmental contaminants on QS circuits; and our findings reveal that QS is an essential yet underexplored mechanism affected by pollutants. Second, our work highlights that QS is an unsuspected and key resistance mechanism that assists bacteria in dealing with environmental contamination (caused by metals or organic pollutants) and that favors bacterial growth in unfavourable environments. We emphasize the value of considering QS a critical mechanism for monitoring microbial responses in ecotoxicology. Ultimately, we determine that QS circuits constitute promising targets for innovative biotechnological approaches with major perspectives for applications in the field of environmental science.
Collapse
Affiliation(s)
- Raphaël Lami
- Sorbonne Université, USR3579, LBBM, Observatoire Océanologique, Banyuls-sur-Mer, France
- Centre National de la Recherche Scientifique, USR 3579, LBBM, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Laurent Urios
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Maëlle Molmeret
- Université de Toulon, Laboratoire MAPIEM, EA4323, Avenue de l'université, BP 20132, La Garde Cedex, France
| | - Régis Grimaud
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| |
Collapse
|
9
|
Rafeeq H, Afsheen N, Rafique S, Arshad A, Intisar M, Hussain A, Bilal M, Iqbal HMN. Genetically engineered microorganisms for environmental remediation. CHEMOSPHERE 2023; 310:136751. [PMID: 36209847 DOI: 10.1016/j.chemosphere.2022.136751] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/12/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
In the recent era, the increasing persistence of hazardous contaminants is badly affecting the globe in many ways. Due to high environmental contamination, almost every second species on earth facing the worst issue in their survival. Advances in newer remediation approaches may help enhance bioremediation's quality, while conventional procedures have failed to remove hazardous compounds from the environment. Chemical and physical waste cleanup approaches have been used in current circumstances; however, these methods are costly and harmful to the environment. Thus, there has been a rise in the use of bioremediation due to an increase in environmental contamination, which led to the development of genetically engineered microbes (GEMs). It is safer and more cost-effective to use engineered microorganisms rather than alternative methods. GEMs are created by introducing a stronger protein into bacteria through biotechnology or genetic engineering to enhance the desired trait. Biodegradation of oil spills, halobenzoates naphthalenes, toluenes, trichloroethylene, octanes, xylenes etc. has been accomplished using GEMs such bacteria, fungus, and algae. Biotechnologically induced microorganisms are more powerful than naturally occurring ones and may degrade contaminants faster because they can quickly adapt to new pollutants they encounter or co-metabolize. Genetic engineering is a worthy process that will benefit the environment and ultimately the health of our people.
Collapse
Affiliation(s)
- Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad Campus, Faisalabad, 38000, Pakistan
| | - Nadia Afsheen
- Department of Biochemistry, Riphah International University, Faisalabad Campus, Faisalabad, 38000, Pakistan
| | - Sadia Rafique
- Departement of Pharmacy, Riphah International University, Faisalabad Campus, Faisalabad, 38000, Pakistan
| | - Arooj Arshad
- Department of Biochemistry, University of Agriculture Faisalabad, 38000, Pakistan
| | - Maham Intisar
- Department of Biochemistry, University of Agriculture Faisalabad, 38000, Pakistan
| | - Asim Hussain
- Department of Biochemistry, University of Agriculture Faisalabad, 38000, Pakistan
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695 Poznan, Poland.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
10
|
Zhou T, Liang Z, Marchisio MA. Engineering a two-gene system to operate as a highly sensitive biosensor or a sharp switch upon induction with β-estradiol. Sci Rep 2022; 12:21791. [PMID: 36526685 PMCID: PMC9758199 DOI: 10.1038/s41598-022-26195-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The human estrogen receptor has been used for about thirty years, in the yeast S. cerevisiae, as a component of chimeric transcription factors. Its ligand, β-estradiol, permits to control the protein translocation into the nucleus and, as a consequence, the expression of the gene(s) targeted by the synthetic transcription factor. Activators that are orthogonal to the yeast genome have been realized by fusing the human estrogen receptor to an activation and a DNA-binding domain from bacteria, viruses, or higher eukaryotes. In this work, we optimized the working of a β-estradiol-sensing device-in terms of detection range and maximal output signal-where the human estrogen receptor is flanked by the bacterial protein LexA and either the strong VP64 (from herpes simplex virus) or the weaker B42 (from E. coli) activation domain. We enhanced the biosensor performance by thoroughly engineering both the chimeric activator and the reporter protein expression cassette. In particular, we constructed a synthetic promoter-where transcription is induced by the chimeric activators-based on the core sequence of the yeast CYC1 promoter, by tuning parameters such as the length of the 5' UTR, the distance between adjacent LexA binding sites (operators), and the spacing between the whole operator region and the main promoter TATA box. We found a configuration that works both as a highly sensitive biosensor and a sharp switch depending on the concentration of the chimeric activator and the strength of its activation domain.
Collapse
Affiliation(s)
- Tian Zhou
- grid.33763.320000 0004 1761 2484School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin, 300072 China
| | - Zhiying Liang
- grid.19373.3f0000 0001 0193 3564School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Street, Harbin, 150080 China
| | - Mario Andrea Marchisio
- grid.33763.320000 0004 1761 2484School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin, 300072 China
| |
Collapse
|
11
|
Wang T, Lu Y. Advances, Challenges and Future Trends of Cell-Free Transcription-Translation Biosensors. BIOSENSORS 2022; 12:bios12050318. [PMID: 35624619 PMCID: PMC9138237 DOI: 10.3390/bios12050318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 11/16/2022]
Abstract
In recent years, the application of cell-free protein synthesis systems in biosensing has been developing rapidly. Cell-free synthetic biology, with its advantages of high biosafety, fast material transport, and high sensitivity, has overcome many defects of cell-based biosensors and provided an abiotic substitute for biosensors. In addition, the application of freeze-drying technology has improved the stability of such systems, making it possible to realize point-of-care application of field detection and broadening the application prospects of cell-free biosensors. However, despite these advancements, challenges such as the risk of sample interference due to the lack of physical barriers, maintenance of activity during storage, and poor robustness still need to be addressed before the full potential of cell-free biosensors can be realized on a larger scale. In this review, current strategies and research results for improving the performance of cell-free biosensors are summarized, including a comprehensive discussion of the existing challenges, future trends, and potential investments needed for improvement.
Collapse
|