1
|
Navarro J, Cepriá G, Camacho-Aguayo J, Martín S, González Orive A, de Marcos S, Galbán J. Towards new fluorometric methodologies based on the in-situ generation of gold nanoclusters. Talanta 2024; 266:125119. [PMID: 37657379 DOI: 10.1016/j.talanta.2023.125119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
In this manuscript a method for the fluorometric determination of tyramine is described. It is based on the direct reaction between Au(III) and tyramine in a phosphate buffer which produces fluorescent gold nanoclusters (AuNC) (λexc = 320 nm, λem = 410 nm) with a diameter of 1.50 ± 0.06 nm. The Au(III) and buffer solutions are mixed and after 140 s, tyramine solution is added; which produces a fast and stable fluorescence signal. The formation of AuNC is demonstrated by STEM and, more importantly, this reaction could be followed by Atomic Fluorescence Microscopy (AFM). The method allows the determination of tyramine in the range from 6.0x10-7 M (limit of quantification) up to 1.2x10-4 M; with a relative standard deviation (RSD) ranges from 1.8% to 4.4% depending on the tyramine concentration. The mechanism of AuNC formation involves the Au(III) reduction via the phenol group and the complexation with the amine group. Putrescine and cadaverine do not produce interference, meanwhile histamine causes a proportional decrease in the signal which can be overcome by the standard addition method. The method was applied to the determination of tyramine in a tuna and cheese samples and the results obtained are in statistical agreement with these obtained using a validated or standard method.
Collapse
Affiliation(s)
- Jesús Navarro
- Analytical Biosensors Group (GBA), Analytical Chemistry Department, Faculty of Sciences, Instituto de Nanociencia y Materiales de Aragón (INMA), University of Zaragoza-CSIC, C/Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Gemma Cepriá
- Group of Analytical Spectroscopy and Sensors (GEAS), Instituto de Ciencias Ambientales (IUCA), Analytical Chemistry Department, Faculty of Sciences, University of Zaragoza, C/Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Javier Camacho-Aguayo
- Analytical Biosensors Group (GBA), Analytical Chemistry Department, Faculty of Sciences, Instituto de Nanociencia y Materiales de Aragón (INMA), University of Zaragoza-CSIC, C/Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Santiago Martín
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Departamento de Química Física, Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Alejandro González Orive
- Department of Chemistry, Materials and Nanotechnology Institute, University of La Laguna, Avda. Astrofísico Francisco Sánchez s/n, 38206, San Cristóbal de La Laguna, Spain
| | - Susana de Marcos
- Analytical Biosensors Group (GBA), Analytical Chemistry Department, Faculty of Sciences, Instituto de Nanociencia y Materiales de Aragón (INMA), University of Zaragoza-CSIC, C/Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Javier Galbán
- Analytical Biosensors Group (GBA), Analytical Chemistry Department, Faculty of Sciences, Instituto de Nanociencia y Materiales de Aragón (INMA), University of Zaragoza-CSIC, C/Pedro Cerbuna 12, 50009, Zaragoza, Spain.
| |
Collapse
|
2
|
In situ enzymatic generation of Au/Pt nanoparticles as an analytical photometric system: proof of concept determination of tyramine. Mikrochim Acta 2023; 190:114. [PMID: 36877272 PMCID: PMC9988730 DOI: 10.1007/s00604-023-05698-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
In situ enzymatic generation of bimetallic nanoparticles, mainly Au/Pt, overcomes the drawbacks (continuous absorbance drift, modest LOQ, and long-time reaction) observed when AuNP alone are produced. In this study, Au/Pt nanoparticles have been characterized by EDS, XPS, and HRTEM images using the enzymatic determination of tyramine with tyramine oxidase (TAO) as a model. Under experimental conditions, the Au/Pt NPs show an absorption maximum at 580 nm which can be related to the concentration of tyramine in the range 1.0 × 10-6M to 2.5 × 10-4M with a RSD of 3.4% (n = 5, using 5 × 10-6M tyramine). The Au/Pt system enables low LOQ (1.0 × 10-6 M), high reduction of the absorbance drift, and a significant shortening of the reaction time (i.e., from 30 to 2 min for a [tyramine] = 1 × 10-4M); additionally, a better selectivity is also obtained. The method has been applied to tyramine determination in cured cheese and no significant differences were obtained compared to a reference method (HRP:TMB). The effect of Pt(II) seems to involve the previous reduction of Au(III) to Au(I) and NP generation from this oxidation state. Finally, a three-step (nucleation-growth-aggregation) kinetic model for the generation of NPs is proposed; this has enabled us to obtain a mathematical equation which explains the experimentally observed variation of the absorbance with time.
Collapse
|