1
|
Wei S, Wang Z, Li S, Ren H, Wang Y, Xiao H, Zhao F, Zhu J, Chen Z. Ultrasensitive and multiplexed Gastric cancer biomarkers detection with an integrated electrochemical immunosensing platform. Talanta 2025; 282:126961. [PMID: 39342668 DOI: 10.1016/j.talanta.2024.126961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Developing immunosensing platforms capable of simultaneously detecting multiple cancer markers is crucial for clinical diagnosis and biomedical research. Here, we introduce a novel dual-mode electrochemical biosensing assay platform capable of detecting two gastric cancer biomarkers: pepsinogen I (PG I) and pepsinogen II (PG II). Methylene blue (MB) and Prussian blue (PB) were used as dual signal sources to label PG I and PG II, respectively. The platform integrates an ARM STM32F411 microcontroller and an AD5941 analog front-end, which not only facilitates cyclic voltammetry (CV) and differential pulse voltammetry (DPV) with efficacy comparable to commercial electrochemical workstations but also offers data collection and synchronous analysis capabilities, allowing simultaneous output of PG I and PGR (PG I/PG II) values. Equipped with an interactive screen for operational control and result display, the immunosensing platform provides linear detection ranges for PG I (5 pg/mL-100 ng/mL) and PG II (50 pg/mL-200 ng/mL), enabling rapid detection within 5 min. It demonstrates excellent sensitivity and selectivity when comparing serum samples from healthy individuals and gastric cancer patients. The dual-marker detection platform significantly enhances early diagnosis and screening of gastric cancer, offering substantial improvements over single-marker assays. Furthermore, this platform shows potential for detecting multiple biomarkers in various diseases, highlighting its utility for biomedical applications.
Collapse
Affiliation(s)
- Shanshan Wei
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Zheng Wang
- Institute of Optoelectronic Materials and Devices, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Shiyong Li
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Hanwen Ren
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Yuanli Wang
- Precision Medicine Laboratory, The First People's Hospital of Qinzhou, Qinzhou, 535000, China
| | - Haolin Xiao
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Feijun Zhao
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Jianming Zhu
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China.
| | - Zhencheng Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China.
| |
Collapse
|
2
|
Jiang QQ, Li YJ, Wu Q, Wang X, Wang YA, Zhang R, Luo QX, Liang RP, Qiu JD. Efficient Charge Transfer Driven Electrochemiluminescence in Heteroatom-Involved Cocrystal Engineering for Detection of Uranyl Ions. Anal Chem 2024; 96:19740-19749. [PMID: 39574243 DOI: 10.1021/acs.analchem.4c05011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Embracing strategies that circumvent the complexities and disordered structures of electrochemiluminescence (ECL) emitters to improve charge transfer efficiency is crucial for advancing ECL technology to the forefront. Here, heteroatom-involved cocrystal engineering was introduced, constructing an ECL system with controllability of the charge transfer process. Through the mutual recognition and coassembly between functional monomers, highly ordered cocrystal superstructures are formed. The layered donor-acceptor arrays in cocrystals accelerated charge transfer, producing a remarkable ECL performance. Furthermore, distinct heteroatoms possess the capability to modulate the charge distribution of monomers by either pushing or pulling electrons. This modulation ultimately affects the charge transfer pathways within cocrystals, enabling ECL emissions of varying intensities and wavelengths. Notably, the presence of UO22+ would significantly inhibit the charge transfer in cocrystals, causing a quenching of ECL signal. This unique characteristic enables precise and selective detection of UO22+. The heteroatom-involved cocrystals hold immense potential to construct next-generation ECL emitters and create fresh opportunities for the advancement of ECL technology.
Collapse
Affiliation(s)
- Qiao-Qiao Jiang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Ya-Jie Li
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Qiong Wu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Xun Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Ying-Ao Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Rui Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Qiu-Xia Luo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Ru-Ping Liang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Jian-Ding Qiu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China
| |
Collapse
|
3
|
Ye Z, Ma M, Chen Y, Yang J, Zhao C, Diao Q, Ma P, Song D. Early Diagnosis of Triple-Negative Breast Cancer Based on Dual microRNA Detection Using a Well-Defined DNA Crown-Carbon Dots Structure as an Electrochemiluminescence Sensing Platform. Anal Chem 2024; 96:17984-17992. [PMID: 39480061 DOI: 10.1021/acs.analchem.4c02986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer (BC). Thus, early detection and accurate diagnosis of this cancer are crucial for improving the survival rate of patients. Specific microRNAs (miRNAs) have been implicated in the occurrence, proliferation, and metastasis of TNBC. Addressing this need, our study developed a biosensor platform for early and accurate TNBC diagnosis by integrating electrochemiluminescence (ECL) technology with a DNA sensing strategy. Specifically, synthesized positively charged carbon dots (CDs) were used to neutralize the electrostatic repulsion between DNA strands and facilitate the assembly of DNA triangular prisms (DNA TP-CDs). Hairpins were then incorporated into the DNA TP-CDs to form the final DNA crown structure. The early TNBC biomarker, microRNA-93-3p (miR-93-3p), allowed for the binding between the DNA Crown and the DNA track on the electrode and initiated the ECL signal. Subsequently, microRNA-210 (miR-210) unlocked the DNA tripedal walker, and its movement on the DNA Crown eventually quenched the ECL signal, enabling accurate TNBC diagnosis and tumor stage assessment. Our proposed biosensor had satisfactory sensing efficiency due to the ordered DNA track and rapid-moving DNA walker. The data revealed a good linear relationship between the ECL signals and the logarithm of miRNA concentrations, with miR-93-3p having a detection limit of 31.04 aM and miR-210 having a detection limit of 7.69 aM. The biosensor also showed satisfactory performance in serum samples and cells. Taken together, this study hopes to provide ideas and applications for clinical diagnosis as well as the personalized treatment of TNBC.
Collapse
Affiliation(s)
- Zhuoxin Ye
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Mo Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
- School of Pharmacy, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Yuxuan Chen
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Jukun Yang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Chen Zhao
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Quanping Diao
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, School of Chemistry and Life Science, Anshan Normal University, Anshan 114005,China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, School of Chemistry and Life Science, Anshan Normal University, Anshan 114005,China
| |
Collapse
|
4
|
Han Y, Quan K, Feng A, Ye M, Sun Y, Zhang K, Xu JJ. Cyclic Enzymatic Signal Amplification-Driven DNA Logic Nanodevices on Framework Nucleic Acid for Highly Sensitive Electrochemiluminescence Detection of Dual Myocardial miRNAs. Anal Chem 2024; 96:15728-15734. [PMID: 39291642 DOI: 10.1021/acs.analchem.4c03453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
MicroRNAs (miRNAs) have emerged as promising biomarkers for acute myocardial infarction (AMI). There is an urgent imperative to develop analytical methodologies capable of intelligently discerning multiple circulating miRNAs. Here, we present a dual miRNA detection platform for AMI using DNA logic gates coupled with an electrochemiluminescence (ECL) response. The platform integrates DNA truncated square pyramids as capture probes on gold-deposited electrodes, enabling precise quantification of miRNA associated with AMI. The cyclic enzymatic signal amplification principle of strand displacement amplification enhances the miRNA detection sensitivity. AND and OR logic gates have been successfully constructed, enabling intelligent identification of miRNAs in AMI. Calibration curves show strong linear correlations between ECL intensity and target miRNA concentration (10 fM to 10 nM), with excellent stability in consecutive measurements. When applied to clinical serum samples, the biosensor exhibits consistent performance, underscoring its reliability for clinical diagnostics. This innovative approach not only demonstrates DNA nanotechnology's potential in biosensing but also offers a promising solution for improving AMI diagnosis and prognosis through precise miRNA biomarker detection.
Collapse
Affiliation(s)
- Yunxiang Han
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma 'anshan, Anhui 243032, P. R. China
| | - Kehong Quan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma 'anshan, Anhui 243032, P. R. China
| | - Aobo Feng
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma 'anshan, Anhui 243032, P. R. China
| | - Mingfu Ye
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma 'anshan, Anhui 243032, P. R. China
| | - Yudie Sun
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma 'anshan, Anhui 243032, P. R. China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Kui Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma 'anshan, Anhui 243032, P. R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
5
|
Yao H, Jia C, Dong Y. Sensitive detection of kanamycin based on ECL resonance energy transfer between iridium complex doped SiO 2 nanospheres and Au nanoparticles decorated TiVC MXene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124399. [PMID: 38718747 DOI: 10.1016/j.saa.2024.124399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
Herein, a novel sandwich electrochemiluminescence (ECL) aptasensor was developed based on the resonance energy transfer (RET) with iridium complex doped silicate nanoparticles (SiO2@Ir) as energy donor and gold nanoparticles modified TiVC MXene (AuNPs@TiVC) as energy acceptor. Strong anodic ECL signal of SiO2@Ir was obtained through both co-reactant pathway and annihilation pathway. Electrochemical results showed that SiO2@Ir has good electron transfer rate and large specific surface area to immobilize more aptamers. AuNPs@TiVC apparently quenched the ECL signal of SiO2@Ir due to the ECL resonance energy transfer between them. In the presence of kanamycin (KAN), a sandwich type sensor was formed with the aptamer probes as connecters between the donor and the acceptor, resulting in the decrease of ECL intensity. Under the optimal condition, KAN could be sensitively detected in the range of 0.1 pg/mL to 10 ng/mL with a low detection limit of 24.5 fg/mL. The proposed ECL system exhibited satisfactory analytical performance, which can realize the detection of various biological molecules by adopting suitable aptamer.
Collapse
Affiliation(s)
- Haifeng Yao
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, China
| | - Changbo Jia
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, China
| | - Yongping Dong
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, China.
| |
Collapse
|
6
|
Li H, Cai Q, Li P, Jie G. Zero-Background Dual-Mode Closed Bipolar Electrode Electrochemiluminescence Biosensor Based on ZnCoN-C Potential Regulation for Ultrasensitive Detection of Ochratoxin A. Anal Chem 2024. [PMID: 39140171 DOI: 10.1021/acs.analchem.4c02782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In this work, the relationship between electrochemiluminescence (ECL) signal and driving voltage was first studied by self-made reduced and oxidized closed bipolar electrodes (CBPEs). It was found that when the driving voltage was large enough, the maximum ECL signals for the two kinds of CBPEs were the same but their required drive voltages were different. Zinc cobalt nitrogen doped carbon material (ZnCoN-C) had an outstanding electric double layer (EDL) property and conductivity. Therefore, it could significantly reduce the driving voltage of two kinds of CBPE systems, reaching the maximum ECL signal of Ru(bpy)32+. Interestingly, when the ZnCoN-C modified electrode reached the maximum ECL signal, the bare electrode signal was zero. As a proof-of-concept application, a zero-background dual-mode CBPE-ECL biosensor was constructed for the ultrasensitive detection of ochratoxin A (OTA) in beer. Considering that beer samples contained a large number of reducing substances, a reduced CBPE system was selected to build the biosensor. Furthermore, a convenient ECL imaging platform using a smartphone was built for the detection of OTA. This work used a unique EDL material ZnCoN-C to regulate the driving voltage of CBPE for the first time; thus, a novel zero-background ECL sensor was constructed. Further, this work provided a deeper understanding of the CBPE-ECL system and opened a new door for zero-background detection.
Collapse
Affiliation(s)
- Hongkun Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Qianqian Cai
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Pingping Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Guifen Jie
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
7
|
Jiang YQ, Wei YP, Liu XP, Chen JS, Mao CJ, Jin BK. Strong cathode electroluminescence biosensor based on CeO 2 functionalized PCN-222@Ag NPs for sensitive detection of p-Tau-181 protein. J Colloid Interface Sci 2024; 665:144-151. [PMID: 38520931 DOI: 10.1016/j.jcis.2024.03.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/03/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Electrochemiluminescence (ECL) biosensors provide a convenient and high sensitivity method for early disease diagnosis. However, creating luminophore arrays relying on powerful ECL signals remains a daunting task. Porphyrin-centered metal organic frameworks (MOFs) exhibit remarkable potential in ECL sensing applications. In this paper, based on a simple one-pot synthesis method, PCN-222@Ag NPs doped with CeO2 was synthesized to enhance the ECL performance. Due to the strong catalytic ability of CeO2, the ECL signal strength of the new material PCN-222@CeO2@Ag NPs is much higher than that of the PCN-222@Ag NPs and PCN-222. The luminous properties of PCN-222@CeO2@Ag NPs become more intense and stable due to the excellent electronic conductivity of Ag NPs. Based on the fact that CuS@PDA composite can quench the ECL signal of PCN-222@CeO2@Ag NPs, we constructed a novel sandwich ECL immune sensor for the detection of phosphorylated Tau 181 (p-Tau-181) protein. The ECL sensor has a great linear relationship with p-Tau-181 protein concentration, ranging from 1 pg/mL to 100 ng/mL. The detection limit is as low as 0.147 pg/mL. This work provides new ideas for developing sensitive ECL sensors for the p-Tau-181 protein, the marker of Alzheimer's disease.
Collapse
Affiliation(s)
- Yun-Qi Jiang
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China; Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China; Key Laboratory of Functional Inorganic Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Yu-Ping Wei
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China; Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China; Key Laboratory of Functional Inorganic Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Xing-Pei Liu
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China; Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China; Key Laboratory of Functional Inorganic Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Jing-Shuai Chen
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China; Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China; Key Laboratory of Functional Inorganic Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Chang-Jie Mao
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China; Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China; Key Laboratory of Functional Inorganic Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China.
| | - Bao-Kang Jin
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China; Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China; Key Laboratory of Functional Inorganic Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China
| |
Collapse
|
8
|
Li Z, Wang B, Dong Y, Jie G. A multi-modal biosensing platform based on Ag-ZnIn 2S 4@Ag-Pt nanosignal probe-sensitized UiO-66 for ultra-sensitive detection of penicillin. Food Chem 2024; 444:138665. [PMID: 38335689 DOI: 10.1016/j.foodchem.2024.138665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
We designed a multi-modal biosensing platform for versatile detection of penicillin based on a unique Ag-ZnIn2S4@Ag-Pt signal probe-sensitized UiO-66 metal-organic framework. Firstly, a large number of Ag-ZnIn2S4 quantum dots (AZIS QDs) were attached to Ag-Pt NPs, preparing a new multi-signal probe AZIS QDs@Ag-Pt NPs with excellent photoelectrochemistry (PEC), electrochemiluminescence (ECL), and fluorescence (FL) signals. Moreover, the AZIS QDs@Ag-Pt NPs signal probe can well match the energy level of UiO-66 metal-organic framework (MOF) with good photoelectric property, which can reverse the PEC current of UiO-66 to reduce false positives in detection. When penicillin was present, it bound to its aptamer to release the multifunctional signal probes, which can generate PEC, ECL, and PL signals, thus realizing ultrasensitive detection of penicillin by multi-signals. This work creates a novel three-signal QDs probe, which makes a great contribution to multi-mode photoelectric sensing analysis. The LOD of this work (3.48 fg·mL-1) was much lower than the MRLs (Maximum Residue Levels) established by the EU (4 ng·mL-1). The newly developed multi-mode biosensor has good practical application values in various biological detection, food assay, and early disease diagnosis.
Collapse
Affiliation(s)
- Zhikang Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Bing Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yongxin Dong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
9
|
Li H, Cai Q, Wang Y, Jie G, Zhou H. Spatial-Potential-Color-Resolved Bipolar Electrode Electrochemiluminescence Biosensor Using a CuMoOx Electrocatalyst for the Simultaneous Detection and Imaging of Tetracycline and Lincomycin. Anal Chem 2024; 96:7073-7081. [PMID: 38663374 DOI: 10.1021/acs.analchem.4c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A spatial-potential-color-resolved bipolar electrode electrochemiluminescence biosensor (BPE-ECL) using a CuMoOx electrocatalyst was constructed for the simultaneous detection and imaging of tetracycline (TET) and lincomycin (LIN). HOF-101 emitted peacock blue light under positive potential scanning, and CdSe quantum dots (QDs) emitted green light under negative potential scanning. CuMoOx could catalyze the electrochemical reduction of H2O2 to greatly increase the Faradic current of BPE and realize the ECL signal amplification. In channel 1, CuMoOx-Aptamer II (TET) probes were introduced into the BPE hole (left groove A) by the dual aptamer sandwich method of TET. During positive potential scanning, the polarity of BPE (left groove A) was negative, resulting in the electrochemical reduction of H2O2 catalyzed by CuMoOx, and the ECL signal of HOF-101 was enhanced for detecting TET. In channel 2, CuMoOx-Aptamer (LIN) probes were adsorbed on the MXene of the driving electrode (DVE) hole (left groove B) by hydrogen-bonding and metal-chelating interactions. LIN bound with its aptamers, causing CuMoOx to fall off. During negative potential scanning, the polarity of DVE (left groove B) was negative and the Faradic current decreased. The ECL signal of CdSe QDs was reduced for detecting LIN. Furthermore, a portable mobile phone imaging platform was built for the colorimetric (CL) detection of TET and LIN. Thus, the multiple mode-resolved detection of TET and LIN could be realized simultaneously with only one potential scan, which greatly improved detection accuracy and efficiency. This study opened a new technology of BPE-ECL sensor application and is expected to shine in microchips and point-of-care testing (POCT).
Collapse
Affiliation(s)
- Hongkun Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Qianqian Cai
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yuehui Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Guifen Jie
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Hong Zhou
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
10
|
Tan L, Ge J, Jie G, Zhou H, Wang H. Ultrasensitive electrochemiluminescence biosensor based on dual quenching effects of silver nanoclusters and multiple cycling amplification for detection of ATP. Talanta 2024; 271:125668. [PMID: 38237282 DOI: 10.1016/j.talanta.2024.125668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/24/2024]
Abstract
In this work, an electrochemiluminescence (ECL) biosensor based on dual ECL quenching effects of silver nanoclusters (Ag NCs) and multiple cycling amplification was designed to achieve ultrasensitive detection of ATP. The specific recognition of target ATP to aptamer initiated multiple cycling amplification, and a small amount of target was converted into a large number of DNA product chains (S1) by amplification. After S1 opened hairpin DNA 2 (HP2), Ag NCs approached the surface of CdS quantum dots (QDs) modified-electrode by complementary DNA, resulting in a significant decrease of ECL intensity from CdS QDs. The quenching principle is as follows. Firstly, the absorption spectrum of Ag NCs overlaps well with the ECL emission spectrum of CdS QDs, leading to effective ECL resonance energy transfer (ECL-RET); Secondly, Ag NCs could catalyze electrochemical reduction of K2S2O8, leading to consumption of ECL co-reactant and reducing ECL of QDs. The double-ECL quenching achieved ultrasensitive biosensing detection of ATP with a wide range from 1 aM to 1 pM. This present work reported new principle of double-quenching QDs ECL by Ag NCs, and developed a novel ECL biosensor by combining with multiple cycle amplification technique, which has great contribution to the development of QDs ECL and biosensing applications.
Collapse
Affiliation(s)
- Lu Tan
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, 266042, PR China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Junjun Ge
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Guifen Jie
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, 266042, PR China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Hong Zhou
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, 266042, PR China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Haiyan Wang
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, 266042, PR China.
| |
Collapse
|
11
|
Song Y, Ya Y, Cen X, Tang D, Shi J, Wu Y, Luo H, Huang KJ, Tan X, Yan F. Multiple signal amplification strategy induced by biomarkers of lung cancer: A self-powered biosensing platform adapted for smartphones. Int J Biol Macromol 2024; 264:130661. [PMID: 38458292 DOI: 10.1016/j.ijbiomac.2024.130661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Lung cancer is a major malignant cancer with low survival rates, and early diagnosis is crucial for effective treatment. Herein, a biosensing platform that is self-powered derived from a capacitor-coupled EBFC has been developed for ultra-sensitive real-time identification of microRNA-21 (miRNA-21) with the assistance of a mobile phone. The flexible substrate of the platform is prepared on a carbon paper modified with graphdiyne and gold nanoparticles. The biosensor employs DNAzyme-mediated dual strand displacement amplification, which enhances the signal output intensity of the EBFC and improves selectivity. The coupling of the capacitor with the EBFC significantly amplifies the sensing signal, causing a 10.6-fold surge in current respond and further improving the sensitivity of the sensing platform. The established detection approach demonstrates a linear relationship varied from 0.0001 to 10,000 pM, with a sensitivity down to 32.3 aM as the minimum detectable limit, which has been effectively utilized for detecting miRNA-21 in practical samples. This sensing system provides strong support for the construction of portable detection devices, and the strategy of the platform construction provides an effective method for ultra-sensitive and accurate detection of miRNA, holding great potential in clinical diagnosis, prognosis evaluation, and drug screening for cancer.
Collapse
Affiliation(s)
- Yujie Song
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Yu Ya
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xiaotian Cen
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Danyao Tang
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Jinyue Shi
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - YeYu Wu
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Hu Luo
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Ke-Jing Huang
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
| | - Xuecai Tan
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
| | - Feiyan Yan
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| |
Collapse
|
12
|
Li J, Zhou Y, Xi M, Hu L, Lu B, Gu W, Zhu C. Potential-Resolved Ratiometric Aptasensor for Sensitive Acetamiprid Analysis Based on Coreactant-free Electrochemiluminescence Luminophores of Gd-MOF and "Light Switch" Molecule of [Ru(bpy) 2dppz] 2. Anal Chem 2024; 96:5022-5028. [PMID: 38470563 DOI: 10.1021/acs.analchem.4c00364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
For conventional potential-resolved ratiometric electrochemiluminescence (ECL) systems, the introduction of multiplex coreactants is imperative. However, the undesirable interactions between different coreactants inevitably affect analytical accuracy and sensitivity. Herein, through the coordination of aggregation-induced emission ligands with gadolinium cations, the self-luminescent metal-organic framework (Gd-MOF) is prepared and serves as a novel coreactant-free anodic ECL emitter. By the intercalation of [Ru(bpy)2dppz]2+ with light switch effect into DNA duplex, one high-efficiency cathodic ECL probe is obtained using K2S2O8 as a coreactant. In the presence of acetamiprid, the strong affinity between the target and its aptamer induces the release of [Ru(bpy)2dppz]2+, resulting in a decreasing cathode signal and an increasing anode signal owing to the ECL resonance energy transfer from Gd-MOF to [Ru(bpy)2dppz]2+. In this way, an efficient dual-signal ECL aptasensor is constructed for the ratiometric analysis of acetamiprid, exhibiting a remarkably low detection limit of 0.033 pM. Strikingly, by using only one exogenous coreactant, the cross interference from multiple coreactants can be eliminated, thus improving the detection accuracy. The developed high-performance ECL sensing platform is successfully applied to monitor the residual level of acetamiprid in real samples, demonstrating its potential application in the field of food security.
Collapse
Affiliation(s)
- Jingshuai Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan Zhou
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Mengzhen Xi
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Bingzhang Lu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Wenling Gu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
13
|
Ma Y, Huang J, Xue J, Liu L, Ouyang H, Guo T, Fu Z. Dual-Mechanism-Driven Ratiometric Electrochemiluminescent Biosensor for Methicillin-Resistant Staphylococcus aureus. Anal Chem 2024; 96:2702-2710. [PMID: 38289033 DOI: 10.1021/acs.analchem.3c05620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Design of a ratiometric method is a promising pathway to improve the sensitivity and reliability of electrochemiluminescent (ECL) assay, for which the signals produced at two distinct potentials change reversely as it is applied to the target analyte. Herein, a biosensor for ECL assay of methicillin-resistant Staphylococcus aureus (MRSA) was constructed by immobilizing porcine IgG for capturing MRSA onto an electrode that was precoated with β-cyclodextrin-conjugated luminol nanoparticles (β-CD-Lu NPs) as an anodic luminophore. MOF PCN 224 loaded with an atomically distributed Zn element (PCN 224/Zn) was conjugated with phage recombinant cellular-binding domain (CBD) to act as a cathodic luminophore for tracing MRSA. After the formation of the sandwich complex of β-CD-Lu NPs-porcine IgG/MRSA/PCN 224/Zn-CBD on the biosensor, two ECL reactions were triggered with cyclic voltammetry. The anodic process of the β-CD-Lu NPs-H2O2 system and the cathodic process of the PCN 224/Zn-S2O82- system competed to react with reactive oxygen species (ROS) for producing ECL emission, which led to a reverse change of the two signals. Meanwhile, the overlap of the β-CD-Lu NPs emission spectrum and PCN 224/Zn absorption spectrum effectively triggered ECL resonance energy transfer between the donor (β-CD-Lu NPs) and the acceptor (PCN 224/Zn). Thus, a ratiometric ECL method was proposed for assaying MRSA with a dual-mechanism-driven mode. The detection limit for assaying MRSA is as low as 12 CFU/mL. The biosensor was applied to assay MRSA in various biological samples with recoveries ranging from 84.9 to 111.3%.
Collapse
Affiliation(s)
- Yuchan Ma
- The State Key Lab of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Junyi Huang
- The State Key Lab of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jinxia Xue
- The State Key Lab of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lin Liu
- The State Key Lab of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Hui Ouyang
- The State Key Lab of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ting Guo
- The State Key Lab of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhifeng Fu
- The State Key Lab of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
14
|
Li J, Xi M, Hu L, Sun H, Zhu C, Gu W. A Controlled Release Aptasensor Utilizing AIE-Active MOFs as High-Efficiency ECL Nanoprobe for the Sensitive Detection of Adenosine Triphosphate. Anal Chem 2024; 96:2100-2106. [PMID: 38262931 DOI: 10.1021/acs.analchem.3c04794] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Improving the sensitivity in electrochemiluminescence (ECL) detection systems necessitates the integration of robust ECL luminophores and efficient signal transduction. In this study, we report a novel ECL nanoprobe (Zr-MOF) that exhibits strong and stable emission by incorporating aggregation-induced emission ligands into Zr-based metal-organic frameworks (MOFs). Meanwhile, we designed a high-performance signal modulator through the implementation of a well-designed controlled release system with a self-on/off function. ZnS quantum dots (QDs) encapsulated within the cavities of aminated mesoporous silica nanoparticles (NH2-SiO2) serve as the ECL quenchers, while adenosine triphosphate (ATP) aptamers adsorbed on the surface of NH2-SiO2 through electrostatic interaction act as "gatekeepers." Based on the target-triggered ECL resonance energy transfer between Zr-MOF and ZnS QDs, we establish a coreactant-free ECL aptasensor for the sensitive detection of ATP, achieving an impressive low detection limit of 0.033 nM. This study not only demonstrates the successful combination of ECL with controlled release strategies but also opens new avenues for developing highly efficient MOFs-based ECL systems.
Collapse
Affiliation(s)
- Jingshuai Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Mengzhen Xi
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Hongcheng Sun
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Wenling Gu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao 266042, P. R. China
| |
Collapse
|
15
|
Yang L, Gu X, Liu J, Wu L, Qin Y. Functionalized nanomaterials-based electrochemiluminescent biosensors and their application in cancer biomarkers detection. Talanta 2024; 267:125237. [PMID: 37757698 DOI: 10.1016/j.talanta.2023.125237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
To detect a range of trace biomarkers associated with human diseases, researchers have been focusing on developing biosensors that possess high sensitivity and specificity. Electrochemiluminescence (ECL) biosensors have emerged as a prominent research tool in recent years, owing to their potential superiority in low background signal, high sensitivity, straightforward instrumentation, and ease of operation. Functional nanomaterials (FNMs) exhibit distinct advantages in optimizing electrical conductivity, increasing reaction rate, and expanding specific surface area due to their small size effect, quantum size effect, and surface and interface effects, which can significantly improve the stability, reproducibility, and sensitivity of the biosensors. Thereby, various nanomaterials (NMs) with excellent properties have been developed to construct efficient ECL biosensors. This review provides a detailed summary and discussion of FNMs-based ECL biosensors and their applications in cancer biomarkers detection.
Collapse
Affiliation(s)
- Luxia Yang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Xijuan Gu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Jinxia Liu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| |
Collapse
|
16
|
Shi J, Tang D, Lin Y, Wu Y, Luo H, Yan J, Huang KJ, Tan X. A highly sensitive self-powered sensing method designed on DNA circuit strategy and MoS 2 hollow nanorods for detection of thalassemia. Anal Chim Acta 2023; 1278:341713. [PMID: 37709456 DOI: 10.1016/j.aca.2023.341713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/31/2023] [Accepted: 08/13/2023] [Indexed: 09/16/2023]
Abstract
Thalassemia is one of the most common monogenic diseases, which seriously affects human growth and development, cardiovascular system, liver, etc. There is currently no effective cure for this disease, making screening for thalassemia particularly important. Herein, a self-powered portable device with high sensitivity and specificity for efficiently screening of low-level thalassemia is developed which is enabled with AuNPs/MoS2@C hollow nanorods and triple nucleic acid amplification technologies. It is noteworthy that AuNPs/MoS2@C electrode shows the advantages of high electrocatalytic activity, fast carrier migration rate and large specific surface area, which can significantly improve the stability and output signal of the platform. Using high-efficiency tetrahedral DNA as the probe, the target CD122 gene associated with thalassemia triggers a catalytic hairpin assembly reaction to achieve CD122 recycling while providing binding sites for subsequent hybridization chain reaction, greatly improving the detection accuracy and sensitivity of the device. A reliable electrochemical/colorimetric dual-mode assay for CD122 is then established, with a linear response range of 0.0001-100 pM for target concentration and open circuit voltage, and the detection limit is 78.7 aM (S/N = 3); a linear range of 0.0001-10000 pM for CD122 level and RGB Blue value, with a detection limit as low as 58.5 aM (S/N = 3). This method achieves ultra-sensitive and accurate detection of CD122, providing a new method for the rapid and accurate screening of thalassemia.
Collapse
Affiliation(s)
- Jinyue Shi
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Danyao Tang
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Yu Lin
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Yeyu Wu
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Hu Luo
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Jun Yan
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Ke-Jing Huang
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China.
| | - Xuecai Tan
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China.
| |
Collapse
|
17
|
Zhao Y, Wang R, Wang Y, Jie G, Zhou H. Dual-channel molecularly imprinted sensor based on dual-potential electrochemiluminescence of Zn-MOFs for double detection of trace chloramphenicol. Food Chem 2023; 413:135627. [PMID: 36773365 DOI: 10.1016/j.foodchem.2023.135627] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Functionalized metal organometallic frameworks (MOFs) offer unique advantages in the field of sensing due to their versatility and tunable optical properties. In this work, a new dual-potential electrochemiluminescence (ECL) molecularly imprinted sensor using single Zn-MOF signal probe was designed for double detection of trace chloramphenicol (CAP). As dual-signal ECL emitters, Zn-MOFs were firstly modified on the electrode, showing excellent ECL emission in both cathodic and anodic potential. Then the molecularly imprinted polymer (MIP) was electrochemically prepared using o-phenylenediamine (O-PD) and CAP as a template molecule on the Zn-MOFs/electrode. After CAP as a molecular recognition element was eluted and removed from the Zn-MOFs/MIP/electrode, a new ECL sensor was developed for CAP detection by re-adsorption of CAP on the MIP, resulting in "off" of ECL signal. Compared with the conventional single-signal luminophores, Zn-MOFs show more stable and excellent dual ECL signals, which greatly improve the discriminability and accuracy of CAP trace detection. Under the optimal conditions, the linear range of CAP detection was 1 × 10-14-1 × 10-8 M, and the minimum limits of detection (LOD) were 2.1 fM and 2.5 fM for cathode and anode ECL, respectively. This is the first time that Zn-MOFs are used as dual-ECL emitters for molecular sensing systems, and the proposed dual-channel sensing system is flexibly applicable to sensitive detection of other antibiotics, which has broad practical application in food safety.
Collapse
Affiliation(s)
- Yu Zhao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Runze Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yuehui Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
18
|
Zhong W, Zhang Y, Zhao H, Liang Z, Shi J, Ma Q. High electrochemical active Au-NP/2D zinc-metal organic frameworks heterostructure-based ECL sensor for the miRNA-522 detection in triple negative breast cancer. Talanta 2023; 265:124875. [PMID: 37393716 DOI: 10.1016/j.talanta.2023.124875] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023]
Abstract
In this work, a novel electrochemiluminescence (ECL) sensor has been developed to detect the miRNA-522 in the tumor tissues of triple-negative breast cancer (TNBC) patients. Au NPs/Zn MOF heterostructure was obtained by in situ growth and used as novel luminescence probe. Firstly, zinc-metal organic framework nanosheets (Zn MOF NSs) were synthesized with Zn2+ as the central metal ion and 2-aminoterephthalic acid (NH2-BDC) as the ligand. 2D MOF nanosheets with ultra-thin layered structure and relatively large specific surface areas can enhance the catalytic activity in the ECL generation. Furthermore, the electron transfer capacity and the electrochemical active surface area of MOF were greatly improved by the growth of Au NPs. Therefore, Au NPs/Zn MOF heterostructure showed the significant electrochemical activity in the sensing process. In addition, the magnetic Fe3O4@SiO2@Au microspheres were used as capture units in the magnetic separation step. The magnetic spheres with hairpin aptamer H1 can capture target gene. Then the captured miRNA-522 triggered the target catalyzed hairpin assembly (CHA) sensing process and linked Au NPs/Zn MOF heterostructure. The concentration of miRNA-522 can be quantified by the ECL signal enhancement of the Au NPs/Zn MOF heterostructure. Due to the high catalytic activity of Au NPs/Zn MOF heterostructure and their unique structural and electrochemical properties, the prepared ECL sensor achieved high-sensitive detection of miRNA-522 in the range of 1 fM to 0.1 nM with the detection limit of 0.3 fM. This strategy can provide a potential alternative for miRNA detection in medical research and clinical diagnosis of triple negative breast cancer.
Collapse
Affiliation(s)
- Weiyao Zhong
- Department of Laboratory Medicine Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Yang Zhang
- Department of Laboratory Medicine Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - He Zhao
- Department of Laboratory Medicine Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Zihui Liang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jingwei Shi
- Department of Laboratory Medicine Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
19
|
Wang L, Li Z, Wang Y, Gao M, He T, Zhan Y, Li Z. Surface ligand-assisted synthesis and biomedical applications of metal-organic framework nanocomposites. NANOSCALE 2023. [PMID: 37323021 DOI: 10.1039/d3nr01723k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-organic framework (MOF) nanocomposites have recently gained intensive attention for biosensing and disease therapy applications owing to their outstanding physiochemical properties. However, the direct growth of MOF nanocomposites is usually hindered by the mismatched lattice in the interface between the MOF and other nanocomponents. Surface ligands, molecules with surfactant-like properties, are demonstrated to exhibit the robust capability to modify the interfacial properties of nanomaterials and can be utilized as a powerful strategy for the synthesis of MOF nanocomposites. Besides this, surface ligands also exhibit significant functions in the morphological control and functionalization of MOF nanocomposites, thus greatly enhancing their performance in biomedical applications. In this review, the surface ligand-assisted synthesis and biomedical applications of MOF nanocomposites are comprehensively reviewed. Firstly, the synthesis of MOF nanocomposites is discussed according to the diverse roles of surface ligands. Then, MOF nanocomposites with different properties are listed with their applications in biosensing and disease therapy. Finally, current challenges and further directions of MOF nanocomposites are presented to motivate the development of MOF nanocomposites with elaborate structures, enriched functions, and excellent application prospects.
Collapse
Affiliation(s)
- Lihua Wang
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China.
| | - Zhiheng Li
- College of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Yingqian Wang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Mengyue Gao
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China.
| | - Ting He
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China.
| | - Yifang Zhan
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China.
| | - Zhihao Li
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China.
| |
Collapse
|
20
|
Wang X, Zhu X, Shi X, Zhou Y, Chai Y, Yuan R. Electrostatic Interaction-Induced Aggregation-Induced Emission-Type AgAu Bimetallic Nanoclusters as a Highly Efficient Electrochemiluminescence Emitter for Ultrasensitive Detection of Glial Fibrillary Acidic Protein. Anal Chem 2023; 95:3452-3459. [PMID: 36719845 DOI: 10.1021/acs.analchem.2c05209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Herein, the aggregation-induced emission (AIE)-type carboxymethyl chitosan (CMCS)@6-aza-2-thiothymine (ATT) templated AgAu bimetallic nanoclusters (CMCS@ATT-AgAu BMNCs) with superior electrochemiluminescence (ECL) emission were first synthesized to construct a biosensor for the ultrasensitive detection of glial fibrillary acidic protein (GFAP). Impressively, unlike the traditional AIE-type bimetallic nanoclusters (BMNCs) obtained by complicated multi-step synthesis, the AIE-type CMCS@ATT-AgAu BMNCs were prepared by the electrostatic interaction between the negatively charged ATT and positively charged CMCS, in which the molecule ATT was served as a capping and reducing agent of bimetal ions. In addition, a rapidly moving cholesterol labeled DNA walker was constructed to move freely on the lipid bilayer to increase its moving efficiency, and the well-regulated DNA was intelligently designed to further improve its walking efficiency for rapid and ultrasensitive detection of GFAP with a limit of detection (LOD) as low as 73 ag/mL. This strategy proposed an avenue to synthesize highly efficient BMNCs-based ECL emitters, which have great potential in ultrasensitive biosensing for early diagnosis of diseases.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R China
| | - Xiaochun Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R China
| | - Xiaoyu Shi
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R China
| | - Ying Zhou
- College of Food Science, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing400715, P. R. China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R China
| |
Collapse
|