1
|
Zhao J, Kong D, Zhang G, Zhang S, Wu Y, Dai C, Chen Y, Yang Y, Liu Y, Wei D. An Efficient CRISPR/Cas Cooperative Shearing Platform for Clinical Diagnostics Applications. Angew Chem Int Ed Engl 2024; 63:e202411705. [PMID: 39394860 DOI: 10.1002/anie.202411705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
The CRISPR/Cas system is a powerful genome editing tool and possesses widespread applications in molecular diagnostics, therapeutics and genetic engineering. But easy folding of the target sequences causes remarkable deterioration of the recognition and shear efficiency in the case of single Cas-CRISPR RNA (crRNA) duplex. Here, we develop a CRISPR/Cas cooperative shearing (CRISPR-CS) system. Compared with traditional CRISPR/Cas system, two CRISPR/Cas-crRNA duplexes simultaneously recognize different sites in the target sequence, increasing recognition possibility and shearing efficiency. Cooperative shearing cuts more methylene blue-ssDNA reporters on the electrode, enabling unamplified nucleic acid electrochemical assay in less than 5 minutes with a detection limit of 9.5×10-20 M, 2 to 9 orders of magnitude lower than those of other electrochemical assays. The CRISPR-CS platform detects monkeypox, human papilloma virus and amyotrophic lateral sclerosis with an accuracy up to 98.1 %, demonstrating the potential application of the efficient cooperative shearing.
Collapse
Affiliation(s)
- Junhong Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Derong Kong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Guanghui Zhang
- Department of Laboratory Medicine, Shenzhen Hengsheng Hospital, Shenzhen, Guangdong, 518102, P. R. China
| | - Shen Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Yungen Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Yiheng Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Yuetong Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
2
|
Rafiq K, Sadia I, Abid MZ, Waleed MZ, Rauf A, Hussain E. Scientific Insights into the Quantum Dots (QDs)-Based Electrochemical Sensors for State-of-the-Art Applications. ACS Biomater Sci Eng 2024; 10:7268-7313. [PMID: 39499739 DOI: 10.1021/acsbiomaterials.4c01256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Size-dependent optical and electronic properties are unique characteristics of quantum dots (QDs). A significant advantage is the quantum confinement effect that allows their precise tuning to achieve required characteristics and behavior for the targeted applications. Regarding the aforementioned factors, QDs-based sensors have exhibited dramatic potential for the diverse and advanced applications. For example, QDs-based devices have been potentially utilized for bioimaging, drug delivery, cancer therapy, and environmental remediation. In recent years, use of QDs-based electrochemical sensors have been further extended in other areas like gas sensing, metal ion detection, monitoring of organic pollutants, and detection of radioactive isotopes. Objective of this study is to rationalize the QDs-based electrochemical sensors for state-of-the-art applications. This review article comprehensively illustrates the importance of aforementioned devices along with sources from which QDs devices have been formulated and fabricated. Other distinct features of QDs devices are associated with their extremely high active surfaces, inherent ability of reproducibility, sensitivity, and selectivity for the targeted analyte detection. In this review, major categories of QD materials along with justification of their key roles in electrochemical devices have been demonstrated and discussed. All categories have been evaluated with special emphasis on the advantages and drawbacks/challenges associated with QD materials. However, in the interests of readers and researchers, recent improvements also have been included and discussed. On the evaluation, it has been concluded that despite significant challenges, QDs-based electrochemical sensors exhibit excellent performances for state-of-the-art and targeted applications.
Collapse
Affiliation(s)
- Khezina Rafiq
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Iqra Sadia
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Zeeshan Abid
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Zaryab Waleed
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Abdul Rauf
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ejaz Hussain
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
3
|
Zhan C, Zhang J, Hao J, Liu Z, Hu C. Scalable drop-casting construction of light-addressable photoelectrochemical biosensor on laser-induced graphene electrode arrays for high-throughput drug screening. Biosens Bioelectron 2024; 261:116497. [PMID: 38878700 DOI: 10.1016/j.bios.2024.116497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024]
Abstract
A drop-casting method for the scalable construction of a solar cell-type light-addressable photoelectrochemical (PEC) sensor on commercial phenol resin (PR) plates is reported. The sensor was fabricated by laser writing of addressable laser-induced graphene (LIG) electrode arrays on PR plates with ring-disc dual-electrode cell configurations using a 405 nm laser machine. Beneficial from the good hydrophilicity of PR-based LIG and the excellent film formation of bismuth sulfide nanorods (Bi2S3 NRs), uniform Bi2S3 photovoltaic films can be reproducibly deposited onto the LIG disc photoanode array via drop casting modification, which show a sensitive photocurrent response toward thiocholine (TCl) when the ring cathode array was coated with Ag/AgCl. An acetylcholinesterase (AChE)-based PEC biosensor was therefore constructed by a similar drop-casting modification method. The resulting biosensor exhibits good sensitivity toward an AChE inhibitor, i.e., galantamine hydrobromide (GH), with a calibration range of 10-300 μM and a detection limit of 7.33 μM (S/N = 3). Moreover, the biosensor possesses good storage stability, which can achieve the high-throughput screening of AChE inhibitor drugs from traditional Chinese medicines (TCMs). The present work thus demonstrates the promising application of LIG technology in constructing light-addressable PEC sensing devices with high performance and low cost.
Collapse
Affiliation(s)
- Chen Zhan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Jiahui Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Junxing Hao
- College of Health Science and Engineering, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China
| | - Zhihong Liu
- College of Health Science and Engineering, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China.
| | - Chengguo Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
4
|
Li P, Zhang H, Yang Z, Li Y, Huang M, Yang L, Zhang X. Rapid fluorescent nucleic acid sensing with ultra-thin gold nanosheets. Anal Chim Acta 2024; 1317:342872. [PMID: 39030016 DOI: 10.1016/j.aca.2024.342872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/31/2024] [Accepted: 06/13/2024] [Indexed: 07/21/2024]
Abstract
Fluorescently labeled DNA oligonucleotides and gold nanospheres have been frequently utilized in biosensors, providing efficient nucleic acid detection. Nevertheless, the restricted loading capacity of gold nanospheres undermines overall sensitivity. In this study, we employed four-atom-thick ultrathin gold nanosheets (AuNSs), utilizing a "pre-mix model" for rapid target nucleic acid detection. In this approach, fluorescently labeled DNA probes were pre-incubated with the target nucleic acid, followed by the addition of AuNSs for probe adsorption and fluorescence quenching. With the developed method, we efficiently and rapidly detected the SARS-CoV-2 N gene sequence within 30 min, involving a brief 15-min target pre-incubation and a subsequent 15-min adsorption of free probes and fluorescence quenching by AuNSs. This method exhibited heightened sensitivity compared to gold nanospheres, boasting a limit of detection (LOD) of 0.808 nM. Furthermore, exceptional recovery was achieved in simulated biological samples. The study introduces an effective strategy for nucleic acid sensing characterized by rapidity, heightened sensitivity, ease of operation, and robustness. These findings encourage further development of rapid biomarker sensing methods employing 2D nanomaterials.
Collapse
Affiliation(s)
- Peiyin Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Huiyang Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Zhenyu Yang
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong, 518055, China
| | - Yiling Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Manli Huang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Lingzhi Yang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| | - Xueji Zhang
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong, 518055, China
| |
Collapse
|
5
|
Li J, Tang F, Xie Q, Zeng X, He F, Xie Q. Photoelectrochemical immunoassay of cardiac troponin I based on ZnTCPP/CdIn 2S 4 type-II heterojunction and co-catalyzed precipitation biolabeling. Mikrochim Acta 2024; 191:364. [PMID: 38831034 DOI: 10.1007/s00604-024-06436-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/13/2024] [Indexed: 06/05/2024]
Abstract
CdIn2S4 and zinc tetrakis(4-carboxyphenyl)porphyrin (ZnTCPP) were synthesized by hydrothermal method, and an organic dye-sensitized inorganic semiconductor ZnTCPP/CdIn2S4 type II heterojunction was constructed on a fluorine-doped tin oxide (FTO) substrate electrode. A sandwich immunostructure for signal-attenuation photoelectrochemical (PEC) detection of cardiac troponin I (cTnI) was constructed using the ZnTCPP/CdIn2S4/FTO photoanode and a horseradish peroxidase (HRP)-ZnFe2O4-Ab2-bovine serum albumin (BSA) immunolabeling complex. The bioenzyme HRP and the HRP-like nanozyme ZnFe2O4 can co-catalyze the oxidation of 4-chloro-1-naphthol (4-CN) by H2O2 to produce an insoluble precipitate on the photoanode, thus notably reducing the anodic photocurrent for quantitative determination of cTnI. Under the optimal conditions, the photocurrent at 0 V vs. SCE in 0.1 M phosphate buffer solution (pH 7.40) containing 0.1 M ascorbic acid was linear with the logarithm of cTnI concentration from 500 fg mL-1 to 50.0 ng mL-1, and the limit of detection (LOD, S/N = 3) is 0.15 pg mL-1. Spiked recoveries were 95.1% ~ 104% for assay of cTnI in human serum samples.
Collapse
Affiliation(s)
- Jiahui Li
- Hunan Normal University, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, 410081, Changsha, China
| | - Fengci Tang
- Hunan Normal University, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, 410081, Changsha, China
| | - Qingji Xie
- Hunan Normal University, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, 410081, Changsha, China.
| | - Xingyu Zeng
- Hunan Normal University, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, 410081, Changsha, China
| | - Fang He
- Hunan Normal University, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, 410081, Changsha, China
| | - Qingji Xie
- Hunan Normal University, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, 410081, Changsha, China
| |
Collapse
|
6
|
Li X, Chen G, Li Y, Wang Y, Huang W, Lai G. Multiplex Signal Transduction and Output at Single Recognition Interface of Multiplexed Photoelectrochemical Sensors. Anal Chem 2024; 96:8147-8159. [PMID: 38568863 DOI: 10.1021/acs.analchem.3c05475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Affiliation(s)
- Xin Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Guixiang Chen
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Yishuang Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Yuxin Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Wan Huang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| |
Collapse
|
7
|
Huang W, Tang S, Xiao W, Chen Y, Li L, Li J. A molecularly imprinted photoelectrochemical sensor based on an rGO/MoSSe heterojunction for the detection of chlortetracycline. Analyst 2024; 149:2023-2033. [PMID: 38404152 DOI: 10.1039/d4an00172a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
A reduced graphene oxide/molybdenum selenosulfide (rGO/MoSSe) heterojunction was synthesized, and a molecularly imprinted photoelectrochemical sensor for the detection of chlortetracycline was prepared. MoSSe was grown in situ on rGO by a hydrothermal method to form an rGO/MoSSe heterojunction, which acts as the sensitive film of the sensor. Since rGO can promote electron transfer and effectively inhibit electron-hole recombination, it effectively reduces the recombination probability of electrons and holes and improves the photoelectric efficiency, thus enhancing the detection sensitivity of the PEC sensor. The rGO/MoSSe was immobilized on an FTO electrode, and molecularly imprinted polymers (MIPs) were prepared by electropolymerization on the rGO/MoSSe-modified FTO electrode with chlortetracycline as the template molecule and o-phenylenediamine as the functional monomer, so as to construct a molecularly imprinted photoelectrochemical (MIP-PEC) sensor. The determination of chlortetracycline was realized by the strategy of a "gate-controlled effect", and the detection range of the chlortetracycline concentration was 5.0 × 10-13-5 × 10-9 mol L-1 with a detection limit of 1.57 × 10-13 mol L-1. The sensor has been applied to the determination of chlortetracycline in animal-derived food samples.
Collapse
Affiliation(s)
- Wanjin Huang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China.
| | - Shufei Tang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China.
| | - Wei Xiao
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China.
| | - Yafei Chen
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China.
| | - Lijun Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou, China
| | - Jianping Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China.
| |
Collapse
|
8
|
Xin Y, Wang Z, Yao H, Dou X, Zhang R, Wang H, Miao Y, Zhang Z. Oxygen Vacancies-Induced Antifouling Photoelectrochemical Aptasensor for Highly Sensitive and Selective Determination of α-Fetoprotein. Anal Chem 2024; 96:3645-3654. [PMID: 38356334 DOI: 10.1021/acs.analchem.3c05782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Accurate measurement of cancer markers in urine is a convenient method for tumor monitoring. However, the concentration of cancer markers in urine is so low that it is difficult to achieve their measurement. Photoelectrochemical (PEC) sensors are a promising technology to realize the detection of trace cancer markers due to their high sensitivity. Currently, the interference of nonspecific biomolecules in urine is the main reason affecting the high sensitivity and selectivity of PEC sensors in detecting cancer markers. In this work, a strategy of oxygen vacancy (OV) modulation is proposed to construct a fouling-resistant PEC aptamer sensing platform for the detection of α-fetoprotein (AFP), a liver cancer marker. The introduction of OVs induces the formation of intermediate localized states in the photoelectric material, which not only facilitates the separation of photogenerated carriers but also leads to the redshift of the light absorption edge. More importantly, OVs with positive electrical properties can be employed to modify the antifouling layer (C-PEG) with negatively charged groups through an electrostatic interaction. The synergistic effect of OVs, antifouling layer, and aptamer resulted in a TiO2/OVs/C-PEG-based PEC sensor achieves a wide linear range from 1 pg/mL to 100 ng/mL and a low detection limit of 0.3 pg/mL for AFP. In addition, the sensor successfully realized the determination of AFP in urine samples and accurately differentiated between normal people and liver cancer patients in the early and advanced stages. This project is of great significance in advancing the application of photoelectrochemical bioanalytical technology to achieve the detection of cancer markers in urine by investigating the construction of an OVs-regulated fouling-resistant sensing interface.
Collapse
Affiliation(s)
- Yanmei Xin
- Institute of Bismuth Science, School of Materials and Chemistry, University of Shanghai for Science and Technology, 334 Jungong Road, Shanghai 200093, China
| | - Zhuo Wang
- Institute of Bismuth Science, School of Materials and Chemistry, University of Shanghai for Science and Technology, 334 Jungong Road, Shanghai 200093, China
| | - Haizi Yao
- School of Energy Engineering, Huanghuai University, Zhumadian, Henan Province 463600, China
| | - Xiaoru Dou
- Institute of Bismuth Science, School of Materials and Chemistry, University of Shanghai for Science and Technology, 334 Jungong Road, Shanghai 200093, China
| | - Ruiting Zhang
- Institute of Bismuth Science, School of Materials and Chemistry, University of Shanghai for Science and Technology, 334 Jungong Road, Shanghai 200093, China
| | - Huiqing Wang
- Institute of Bismuth Science, School of Materials and Chemistry, University of Shanghai for Science and Technology, 334 Jungong Road, Shanghai 200093, China
| | - Yuqing Miao
- Institute of Bismuth Science, School of Materials and Chemistry, University of Shanghai for Science and Technology, 334 Jungong Road, Shanghai 200093, China
| | - Zhonghai Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
9
|
Bartosik M, Moranova L, Izadi N, Strmiskova J, Sebuyoya R, Holcakova J, Hrstka R. Advanced technologies towards improved HPV diagnostics. J Med Virol 2024; 96:e29409. [PMID: 38293790 DOI: 10.1002/jmv.29409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 02/01/2024]
Abstract
Persistent infection with high-risk types of human papillomaviruses (HPV) is a major cause of cervical cancer, and an important factor in other malignancies, for example, head and neck cancer. Despite recent progress in screening and vaccination, the incidence and mortality are still relatively high, especially in low-income countries. The mortality and financial burden associated with the treatment could be decreased if a simple, rapid, and inexpensive technology for HPV testing becomes available, targeting individuals for further monitoring with increased risk of developing cancer. Commercial HPV tests available in the market are often relatively expensive, time-consuming, and require sophisticated instrumentation, which limits their more widespread utilization. To address these challenges, novel technologies are being implemented also for HPV diagnostics that include for example, isothermal amplification techniques, lateral flow assays, CRISPR-Cas-based systems, as well as microfluidics, paperfluidics and lab-on-a-chip devices, ideal for point-of-care testing in decentralized settings. In this review, we first evaluate current commercial HPV tests, followed by a description of advanced technologies, explanation of their principles, critical evaluation of their strengths and weaknesses, and suggestions for their possible implementation into medical diagnostics.
Collapse
Affiliation(s)
- Martin Bartosik
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ludmila Moranova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Nasim Izadi
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Johana Strmiskova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ravery Sebuyoya
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jitka Holcakova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Roman Hrstka
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| |
Collapse
|
10
|
Li DY, Jiang YJ, Nie KH, Li J, Li YF, Huang CZ, Li CM. Rational design of genotyping nanodevice for HPV subtype distinction. Anal Chim Acta 2023; 1276:341651. [PMID: 37573127 DOI: 10.1016/j.aca.2023.341651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/14/2023]
Abstract
There are more than 200 subtypes of human papillomavirus (HPV), and high-risk HPVs are a leading cause of cervical cancer. Identifying the genotypes of HPV is significant for clinical diagnosis and cancer control. Herein, we used programmable and modified DNA as the backbone to construct fluorescent genotyping nanodevice for HPV subtype distinction. In our strategy, the dye-labeled single-stranded recognize-DNA (R-DNA) was hybridized with Black Hole Quencher (BHQ) labeled single-stranded link-DNA (L-DNA) to form three functionalized DNA (RL-DNA). Through the extension of polycytosine (poly-C) in L-DNA, three RL-DNAs can be more firmly adsorbed on graphene oxide to construct reliable genotyping nanodevice. The genotyping nanodevice had low background noise since the dual energy transfer, including Förster resonance energy transfer (FRET) from dye to BHQ and the resonance energy transfer (RET) from dye to graphene oxide. Meanwhile, the programmability of DNA allows the proposed strategy to simultaneously and selectively distinguish several HPV subtypes in solution using DNA labeled with different dyes. To demonstrate clinical potential, we show multiplexed assay of HPV subtypes in cervical scrapes, and it has been successfully applied in HPV-DNA analysis in cervical scrapes samples. The genotyping nanodevice could be developed for simultaneous and multiplex analysis of several oligonucleotides in a homogeneous solution by adjusting the recognition sequence, demonstrating its potential application in the rapid screening of multiple biomarkers.
Collapse
Affiliation(s)
- De Yu Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yong Jian Jiang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Kun Han Nie
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Jing Li
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Yuan Fang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Chun Mei Li
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
11
|
Jiang Y, Ding Q, Yuan R, Liu G, Yuan Y. Photoactive conjugated microporous polymer@C 60 with quencher on tailed Y-triangular DNA structure for high-performance signal-off photoelectrochemical biosensing. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131724. [PMID: 37257386 DOI: 10.1016/j.jhazmat.2023.131724] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
Herein, we synthesized a conjugated microporous polymer (CMP) decorated C60 (CMP@C60) with high photoelectric conversion efficiency, in which continuously repeated donor-acceptor (D-A) π electron unit within one molecule of CMP on C60 could not only effectively increase the mobility of photogenerated carriers with improved electron transmission, but also constitute the cascade energy band matching with reduced electron-hole recombination. Based on the high-performance of CMP@C60 for producing exciting initial photoelectrochemical (PEC) signal, a sensitive signal-off sensing platform was designed for lead ion (Pb2+) assay by coupling with quencher methylene blue (MB) interacting on efficient long tailed Y-triangular DNA structure (LYTD). The proposed LYTD with a tripod structure could generate six long tails in situ on its side at the same time via a simple hybridization chain reaction (HCR), providing notably grooves on electrode to accommodate quencher MB to significantly depress the signal for sensitive detection of Pb2+. As a result, the proposed PEC biosensor revealed excellent analysis capability with a low detection limit of 0.3 fM (S/N = 3). Additionally, it also showed satisfactory stability in the detection of tap water samples, lake water samples and clinical serum samples, manifesting great application prospect in the areas of environmental pollutant detection.
Collapse
Affiliation(s)
- Ying Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qiao Ding
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Guangpeng Liu
- Chongqing Key Laboratory of Karst Environment, College of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Yali Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
12
|
Ji D, Zhao J, Liu Y, Wei D. Electrical Nanobiosensors for Nucleic Acid Based Diagnostics. J Phys Chem Lett 2023; 14:4084-4095. [PMID: 37125726 DOI: 10.1021/acs.jpclett.3c00495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Recent advances in nanotechnologies have promoted the iterative updating of nucleic acid sensors. Among various sensing technologies, the electrical nanobiosensor is regarded as one of the most promising prospects to achieve rapid, precise, and point-of-care nucleic acid based diagnostics. In this Perspective, we introduce recent progresses in electrical nanobiosensors for nucleic acid detection. First, the strategies for improving detection performance are summarized, including chemical amplification and electrical amplification. Then, the detection mechanism of electrical nanobiosensors, such as electrochemical biosensors, field-effect transistors, and photoelectric enhanced biosensors, is illustrated. At the same time, their applications in cancer screening, pathogen detection, gene sequencing, and genetic disease diagnosis are introduced. Finally, challenges and future prospects in clinical application are discussed.
Collapse
Affiliation(s)
- Daizong Ji
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Junhong Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
- Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| |
Collapse
|