1
|
Geng C, Zhang X, Zhu X, Li B, Ren Z, Liu X, Travas-Sejdic J, Liu X. Fabrication of polyoxometalate dispersed cobalt oxide nanowires for electrochemically monitoring superoxide radicals from Hela cell mitochondria. Talanta 2025; 282:127037. [PMID: 39427407 DOI: 10.1016/j.talanta.2024.127037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/08/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
An ultrasensitive electrochemical sensor is constructed by electrostatically adsorbing negatively charged hourglass-shape Cu-Polyoxometalate (POM) onto a positively charged CoO nanowires modified carbon cloth. The petaloid CoO nanowires have a large specific surface area that can well disperse open-structured Cu-POM to form Cu-POM@CoONWs@CC, which can maximumly expose catalytic active centers (Co2+ and Cu2+) and accelerate mass/charge transfer. In addition to the above advantages, the excellent electron exchange ability of Cu-POM and good conductivity of CoONWs@CC endow the sensor with good detection capability to H2O2 including a linear detection range of 0.05-1.4 μA μM-1, a low detection limit of 0.022 μM, high sensitivity of 110.48 μA μM-1, good selectivity and long-term stability. Due to the fast transformation of superoxide anion (O2∙-) to H2O2, the sensor can indirectly monitor the electron leakage resulting in the formation of O2∙- via detecting H2O2. Afterwards, Hela cell mitochondria were extracted from the living cells that cultured with different mitochondrial inhibitors and the release of O2∙- from the corresponding mitochondrial complexes was monitored by the sensor. Through comparing the current signals, we determined that complex I is probably the main electron leakage site. This work could provide meaningful information for the diagnosis of certain oxidative stress diseases.
Collapse
Affiliation(s)
- Chaoyao Geng
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou, 450046, China
| | - Xiujuan Zhang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou, 450046, China
| | - Xinyao Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou, 450046, China
| | - Bingjie Li
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou, 450046, China
| | - Zhenhua Ren
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou, 450046, China
| | - Xiuhua Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou, 450046, China
| | - Jadranka Travas-Sejdic
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland - Waipapa Taumata Rau, 23 Symonds Street, Auckland, 1023, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Kelburn Parade, Wellington, 6140, New Zealand.
| | - Xiaoqiang Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou, 450046, China.
| |
Collapse
|
2
|
Li T, Ding J, Wang Y, Su B. Regulating the work function and surface hydrophobicity of an indium tin oxide electrode for enhanced electrochemiluminescence analysis. Chem Commun (Camb) 2024; 60:15007-15010. [PMID: 39600298 DOI: 10.1039/d4cc05532b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The electrochemical properties of the indium tin oxide (ITO) electrode were improved significantly by surface modification with ethephon and an ultrathin polydimethylsiloxane (PDMS) layer to regulate the work function and surface hydrophobicity of ITO. Based on this strategy, the electrochemiluminescence (ECL) intensity of tris(2,2'-bipyridyl)ruthenium (Ru(bpy)32+) and tri-n-propylamine (TPrA) in solution and on a microbead surface can be enhanced by 110 and 2 times, respectively. When using the modified electrode to detect nicotinamide adenine dinucleotide (NADH), the linear range (5-1000 μM) was increased dramatically in comparison with a bare ITO electrode, with a limit of detection of 1.65 μM. The modified electrode with improved electrochemical properties holds great potential for applications in ECL bioassays and imaging analysis.
Collapse
Affiliation(s)
- Tengyu Li
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Jialian Ding
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Yafeng Wang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Bin Su
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| |
Collapse
|
3
|
Zhang J, Liu Y, Zhao Y, Zhang S, Xu F, Li F. Synergetic effect of mild hypothermia and antioxidant treatment on ROS-mediated neuron injury under oxygen-glucose deprivation investigated by scanning electrochemical microscopy. Chem Sci 2024; 15:20177-20188. [PMID: 39568945 PMCID: PMC11575619 DOI: 10.1039/d4sc05977h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
Ischemic stroke and reperfusion injury result in neuronal damage and dysfunction associated with oxidative stress, leading to overproduction of cellular reactive oxygen species (ROS) and reactive nitrogen species (RNS). In situ monitoring of the transient ROS and RNS effluxes during rapid pathologic processes is crucial for understanding the relationship between progression of cell damage and role of oxidative stress, and developing the corresponding neuroprotective strategies. Herein, we built oxygen glucose deprivation (OGD) and mild hypothermic (MH) models to mimic the in vitro conditions of ischemic stroke and MH treatment. We used scanning electrochemical microscopy (SECM) to in situ monitor H2O2 and nitric oxide (NO) effluxes from HT22 cells under the OGD and MH treatment conditions. Through quantitative analysis of the H2O2 and NO efflux results, we found that the cellular oxidative stress was primarily manifested through ROS release under OGD conditions, and the MH treatment partially suppressed the excessive H2O2 and NO production induced by reoxygenation. Moreover, the synergistic therapeutic effect of MH with antioxidant treatment significantly reduced the oxidative stress and enhanced the cell survival. Our work reveals the crucial role of oxidative stress in OGD and reperfusion processes, and the effective improvement of cell viability via combination of MH with antioxidants, proposing promising therapeutic interventions for ischemic stroke and reperfusion injury.
Collapse
Affiliation(s)
- Junjie Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Yulin Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Yuxiang Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Siyu Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
4
|
Zhao L, Wang L, Huang J, Chen H, Liu L, Shi M, Zhang M. Label-Free Imaging of Mesenchymal Stem Cell Spheroid Differentiation with Flexible-Probe SECM and a Microfluidic Device. Anal Chem 2024; 96:13473-13481. [PMID: 39122667 DOI: 10.1021/acs.analchem.4c01637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Mesenchymal stem cells (MSCs) have emerged as an indispensable source for stem cell research and preclinical studies due to their capacity for in vitro proliferation and their potential to differentiate into mesodermal lineages, particularly into osteoblasts. This capability has propelled their application in the fields of bone regeneration and osteochondral repair. Traditional methodologies for assessing the differentiation status of MSCs necessitate invasive procedures such as cell lysis or fixation. In this study, we introduce a nondestructive technique that utilizes an integrated label-free approach to evaluate the osteogenic maturation of MSC spheroid aggregates. This method employs scanning electrochemical microscopy (SECM) with a flexible probe in conjunction with a top-removable microfluidic device designed for easy SECM access. By tracking the production rate of p-aminophenol (PAP) in the generation/collection mode and assessing morphological changes via the negative feedback mode using [Ru(NH3)6]Cl3 (Ruhex), we can discern variations in the alkaline phosphatase (ALP) activity indicative of osteogenic differentiation. This innovative strategy enables the direct evaluation of osteogenic differentiation in MSC spheroids cultured within microwell arrays without necessitating any labeling procedures. The utilization of a flexible microelectrode as the probe that scans in contact mode (with probe-substrate distances potentially as minimal as 0 μm) affords enhanced resolution compared to the traditional stiff-probe technique. Furthermore, this method is compatible with subsequent molecular biology assays, including gene expression analysis and immunofluorescence, thereby confirming the electrochemical findings and establishing the validity of this integrative approach.
Collapse
Affiliation(s)
- Liang Zhao
- Center of Excellence for Environmental Safety and Biological Effects, College of Chemistry and Life Science, Department of Chemistry, Beijing University of Technology, 100 Pingleyuan, Beijing 100124, China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Lin Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Jing Huang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Hongyu Chen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Lu Liu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Mi Shi
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Meiqin Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| |
Collapse
|
5
|
Leslie N, Mena-Morcillo E, Morel A, Mauzeroll J. General Method for Fitting Kinetics from the SECM Images of Reactive Sites on Flat Surfaces. Anal Chem 2024; 96:10877-10885. [PMID: 38917090 PMCID: PMC11238733 DOI: 10.1021/acs.analchem.3c05793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/21/2024] [Accepted: 03/22/2024] [Indexed: 06/27/2024]
Abstract
Scanning electrochemical microscopy (SECM) is a technique for imaging electrochemical reactions at a surface. The interaction between electrochemical reactions occurring at the sample and scanning electrode tip is quite complicated and requires computer modeling to obtain quantitative information from SECM images. Often, existing computer models must be modified, or a new model must be created from scratch to fit kinetic parameters for different reactive features. This work presents a method that can simulate the SECM image of a reactive feature of any shape on a flat surface which is coupled to a computer program which effectuates the automated fitting of kinetic information from these images. This fitting program is evaluated along with several methods for estimating the shapes of reactive features from their SECM images. Estimates of the reactive feature shape from SECM images were not sufficiently accurate and produced median relative errors for the surface rate constant that were >50%. Fortunately, more precise techniques for imaging the reactive features such as optical microscopy can supply sufficiently accurate shapes for the fitting procedure to produce accurate results. Fits of simulated SECM images using the actual shape from the simulation produced median relative errors for the surface rate constant that were <10% for the smallest reactive features tested. This method was applied to the SECM images of aluminum alloy AA7075 which revealed diffusion-limited kinetics for ferrocene methanol reduction over inclusions in the surface of the alloy.
Collapse
Affiliation(s)
- Nathaniel Leslie
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | | | - Alban Morel
- Automotive and Surface Transportation, National Research Council Canada, Saguenay, Quebec G7H 8C3, Canada
| | - Janine Mauzeroll
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
6
|
Jiang L, He Y, Lan M, Ding X, Lu Q, Song L, Huang Y, Li D. High-Resolution and Dynamic Visualization of Intracellular Redox Potential Using a Metal-Organic Framework-Functionalized Nanopotentiometer. Anal Chem 2024; 96:7497-7505. [PMID: 38687987 DOI: 10.1021/acs.analchem.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Redox potential plays a key role in regulating intracellular signaling pathways, with its quantitative analysis in individual cells benefiting our understanding of the underlying mechanism in the pathophysiological events. Here, a metal organic framework (MOF)-functionalized SERS nanopotentiometer has been developed for the dynamic monitoring of intracellular redox potential. The approach is based on the encapsulation of zirconium-based MOF (Uio-66-F4) on a surface of gold-silver nanorods (Au-Ag NRs) that is modified with the newly synthesized redox-sensitive probe ortho-mercaptohydroquinone (HQ). Thanks to size exclusion of MOF as the chemical protector, the nanopotentiometer can be adapted to long-term use and possess high anti-interference ability toward nonredox species. Combining the superior fingerprint identification of SERS with the electrochemical activity of the quinone/hydroquinone, the nanopotentiometer shows a reversible redox responsivity and can quantify redox potential with a relatively wide range of -250-100 mV. Furthermore, the nanopotentiometer allows for dynamic visualization of intracellular redox potential changes induced by drugs' stimulation in a high-resolution manner. The developed approach would be promising for offering new insights into the correlation between redox potential and tumor proliferation-involved processes such as oxidative stress and hypoxia.
Collapse
Affiliation(s)
- Lei Jiang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yue He
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Minhuan Lan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xin Ding
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Qiaoyi Lu
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Liping Song
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Youju Huang
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Dawei Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
7
|
Poderyte M, Ramanavicius A, Valiūnienė A. Exploring the Living Cell: Applications and Advances of Scanning Electrochemical Microscopy. Crit Rev Anal Chem 2024:1-12. [PMID: 38557222 DOI: 10.1080/10408347.2024.2328135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A living cell is a complex network of molecular, biochemical and physiological processes. Cellular activities, such as ion transport, metabolic processes, and cell-cell interactions can be determined electrochemically by detecting the electrons or ions exchanged in these processes. Electrochemical methods often are noninvasive, and they can enable the real-time monitoring of cellular processes. Scanning electrochemical microscopy (SECM) is an advanced scanning probe electroanalysis technique that can map the surface topography and local reactivity of a substrate with high precision at the micro- or nanoscale. By measuring electrochemical signals, such as redox reactions, ion fluxes, and pH changes, SECM can provide valuable insights into cellular activity. As a result of its compatibility with liquid medium measurements and its nondestructive nature, SECM has gained popularity in living cell research. This review aims to furnish an overview of SECM, elucidating its principles, applications, and its potential to contribute significantly to advancements in cell biology, electroporation, and biosensors. As a multidisciplinary tool, SECM is distinguished by its ability to unravel the intricacies of living cells and offers promising avenues for breakthroughs in our understanding of cellular complexity.
Collapse
Affiliation(s)
- Margarita Poderyte
- Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Vilnius, Lithuania
- Laboratory of Nanotechnology, State Research Institute Centre of Physical Sciences and Technology, Vilnius, Lithuania
| | - Aušra Valiūnienė
- Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Vilnius, Lithuania
- State Research Institute Center for Physical Sciences and Technology, Vilnius, Lithuania
| |
Collapse
|
8
|
Hellmann A, Neusser G, Daboss S, Elnagar MM, Liessem J, Mitoraj D, Beranek R, Arbault S, Kranz C. Pt-Black-Modified (Hemi)spherical AFM Sensors: In Situ Imaging of Light-Driven Hydrogen Peroxide Evolution. Anal Chem 2024; 96:3308-3317. [PMID: 38354051 PMCID: PMC10902814 DOI: 10.1021/acs.analchem.3c03957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/28/2024]
Abstract
In this work, we present (hemi)spherical atomic force microscopy (AFM) sensors for the detection of hydrogen peroxide. Platinum-black (Pt-B) was electrodeposited onto conductive colloidal AFM probes or directly at recessed microelectrodes located at the end of a tipless cantilever, resulting in electrocatalytically active cantilever-based sensors that have a small geometric area but, due to the porosity of the films, exhibit a large electroactive surface area. Focused ion beam-scanning electron microscopy tomography revealed the porous 3D structure of the deposited Pt-B. Given the accurate positioning capability of AFM, these probes are suitable for local in situ sensing of hydrogen peroxide and at the same time can be used for (electrochemical) force spectroscopy measurements. Detection limits for hydrogen peroxide in the nanomolar range (LOD = 68 ± 7 nM) were obtained. Stability test and first in situ proof-of-principle experiments to achieve the electrochemical imaging of hydrogen peroxide generated at a microelectrode and at photocatalytically active structured poly(heptazine imide) films are demonstrated. Force spectroscopic data of the photocatalyst films were recorded in ambient conditions, in solution, and by applying a potential, which demonstrates the versatility of these novel Pt-B-modified spherical AFM probes.
Collapse
Affiliation(s)
- Andreas Hellmann
- Institute
of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Gregor Neusser
- Institute
of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Sven Daboss
- Institute
of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Mohamed M. Elnagar
- Institute
of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany
| | - Johannes Liessem
- Institute
of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany
| | - Dariusz Mitoraj
- Institute
of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany
| | - Radim Beranek
- Institute
of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany
| | - Stéphane Arbault
- Univ.
Bordeaux, CNRS, Bordeaux INP, UMR 5248, CBMN, F-33600 Pessac, France
| | - Christine Kranz
- Institute
of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
9
|
Thind S, Lima D, Booy E, Trinh D, McKenna SA, Kuss S. Cytochrome c oxidase deficiency detection in human fibroblasts using scanning electrochemical microscopy. Proc Natl Acad Sci U S A 2024; 121:e2310288120. [PMID: 38154062 PMCID: PMC10769844 DOI: 10.1073/pnas.2310288120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023] Open
Abstract
Cytochrome c oxidase deficiency (COXD) is an inherited disorder characterized by the absence or mutation in the genes encoding for the cytochrome c oxidase protein (COX). COX deficiency results in severe muscle weakness, heart, liver, and kidney disorders, as well as brain damage in infants and adolescents, leading to death in many cases. With no cure for this disorder, finding an efficient, inexpensive, and early means of diagnosis is essential to minimize symptoms and long-term disabilities. Furthermore, muscle biopsy, the traditional detection method, is invasive, expensive, and time-consuming. This study demonstrates the applicability of scanning electrochemical microscopy to quantify COX activity in living human fibroblast cells. Taking advantage of the interaction between the redox mediator N, N, N', N'-tetramethyl-para-phenylene-diamine, and COX, the enzymatic activity was successfully quantified by monitoring current changes using a platinum microelectrode and determining the apparent heterogeneous rate constant k0 using numerical modeling. This study provides a foundation for developing a diagnostic method for detecting COXD in infants, which has the potential to increase treatment effectiveness and improve the quality of life of affected individuals.
Collapse
Affiliation(s)
- Shubhneet Thind
- Laboratory for Bioanalytics and Electrochemical Sensing, Department of Chemistry, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
| | - Dhésmon Lima
- Laboratory for Bioanalytics and Electrochemical Sensing, Department of Chemistry, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
| | - Evan Booy
- Department of Chemistry, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
| | - Dao Trinh
- Laboratoire des Sciences de l’Ingénieur Pour l’Environnement, UMR CNRS 7356, Université de La Rochelle, Pôle Sciences et Technologie17042, La Rochelle, Cedex 1, France
| | - Sean A. McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
| | - Sabine Kuss
- Laboratory for Bioanalytics and Electrochemical Sensing, Department of Chemistry, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
| |
Collapse
|
10
|
Zhu F, Liu Z, Wu X, Xu D, Li Q, Chen X, Pang W, Duan X, Wang Y. Enhanced on-Chip modification and intracellular hydrogen peroxide detection via gigahertz acoustic streaming microfluidic platform. ULTRASONICS SONOCHEMISTRY 2023; 100:106618. [PMID: 37769590 PMCID: PMC10543187 DOI: 10.1016/j.ultsonch.2023.106618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Developing effective strategies for the flexible control of fluid is vital for microfluidic electrochemical biosensing. In this study, a gigahertz (GHz) acoustic streaming (AS) based sonoelectrochemical system was developed to realize an on-chip surface modification and sensitive hydrogen peroxide (H2O2) detection from living cells. The flexible and controlled fluid surrounding the electrochemical chip was optimized theoretically and applied in the sonoelectrochemical deposition of Au nanoparticles (AuNPs) first. Under the steady and fast flow stimulus of AS, AuNPs could be synthesized with a smaller and evener size distribution than the normal condition, allowing AuNPs to show an excellent peroxidase-like activity. Moreover, the AS also accelerated the mass transport of target molecules and improved the catalytic rate, leading to the enhancement of H2O2 detection, with an extremely low detection limit of 32 nM and a high sensitivity of 4.34 μA/ (mM·mm2). Finally, this system was successfully applied in tracking H2O2 release from different cell lines to distinguish the cancer cells from normal cells. This study innovatively integrated the surface modification and molecules detection process on a chip, and also proposed a simple but sensitive platform for microfluidic biosensing application.
Collapse
Affiliation(s)
- Feng Zhu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Zeyu Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaoyu Wu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Die Xu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Quanning Li
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xuejiao Chen
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yanyan Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|