1
|
Luo Y, Shao F, Sun Y, Wang H, He Y, Wang Y, Xu D. Synthesis of SnC@Au@Apta by electrospinning as an electrochemical sensor for detection of tetracycline. Talanta 2025; 281:126866. [PMID: 39260251 DOI: 10.1016/j.talanta.2024.126866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/07/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
A highly efficient electrochemical aptamer sensor for the detection of tetracycline (TC) was prepared by using SnC@Au@Apta. Metal tin has good electrochemical activity and high conductivity. It is often used as an electrochemical sensing material. The nanofibers prepared by electrospinning machine make the metal distribution more uniform, not easy to agglomerate, and have a certain porosity, which can improve the sensitivity of sensor detection. Carbonization further enhances conductivity. The gold nanoparticles (AuNPs) on the surface of SnC nanomaterials improve the electrochemical detection performance, and also act as the binding site of the TC aptamer, which is stably combined with the thiol group at the end of the TC aptamer. The TC aptamer specifically binds to TC to detect TC in the sample. The electrochemical performance of SnC@Au@Apta was evaluated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under the optimal conditions, the detection range of SnC@Au@Apta is wide (0.001-100 μM), the detection limit is low (0.83 nM), and it has excellent selectivity, stability and reproducibility. In addition, SnC@Au@Apta can be used to detect TC in milk samples.
Collapse
Affiliation(s)
- Yuting Luo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Fenjuan Shao
- Department of Printing and Packing Engineering, Shanghai Publishing and Printing College, Shanghai, 200093, PR China
| | - Yiwei Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Haoxiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Yuyang He
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Yu Wang
- Department of Cardiology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, 999 Shiguang Road, Shanghai, 200438, PR China.
| | - Dongpo Xu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| |
Collapse
|
2
|
Li S, Ge K, Huo X, Yang K, Wang X, Yang Y. 2D Fe/Co-MOF/SOX cascade reactors for fast noninvasive detection of sarcosine level in prostate cancer urine. J Colloid Interface Sci 2024; 679:401-411. [PMID: 39461129 DOI: 10.1016/j.jcis.2024.10.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/25/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Sarcosine plays a key role in screening for early prostate cancer. However, the several already reported peroxidase mimics immobilized with sarcosine oxidase (SOX) utilized to detect uriary sarcosine still have some limitations such as complex synthesis process, using of expensive heavy metals to mimic enzyme activity and long color development time. Herein, an inexpensive peroxidase-like 2D Fe/Co-MOF nanosheet was prepared by a simple solvent modulation method. The resultant 2D Fe/Co-MOF nanosheets have strong peroxidase activity, with its Vmax value for H2O2 of 15.3 × 10-8 M/s, being 1.76 times that of HRP. Then, using the 2D Fe/Co-MOF as a peroxidase model for anchoring natural SOX to construct 2D Fe/Co-MOF/SOX , which can act as a cascade reactor for detection of sarcosine. Considering the above properties, a platform for the detection of sarcosine was built based on a colorimetric method. Because of presence of the high ratio of Fe2+ caused by the electron transfer from Co2+ to Fe3+, large specific surface area and plentiful active sites, 2D Fe/Co-MOF/SOX with TMB (3,3',5,5'-tetramethylbenzidine) colorimetric reagent could have fast color development and can be applied conveniently and fastly in an early screening tool for prostate cancer patients. The sarcosine could be quantified by peroxidase activity with a detection range of 1-400 μM and a limit of detection (LOD) of 0.324 μM. More importantly, the average sarcosine concentration of 21.367 μM and 1.871 μM was detected in patient's and normal urine (n = 5), respectively, which showed an excellent screening effect and a great potential in early prostate cancer.
Collapse
Affiliation(s)
- Shunli Li
- Institute of Polymer Science and Engineering, Hebei University of Technology, 5340 Siping Road, Tianjin 300401, China
| | - Kai Ge
- Institute of Polymer Science and Engineering, Hebei University of Technology, 5340 Siping Road, Tianjin 300401, China
| | - Xiaodong Huo
- The Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases (in Preparation), Tianjin 300211, China.
| | - Kuo Yang
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China; Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases (in Preparation), Tianjin 300211, China.
| | - Xiaojuan Wang
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China; Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases (in Preparation), Tianjin 300211, China.
| | - Yongfang Yang
- Institute of Polymer Science and Engineering, Hebei University of Technology, 5340 Siping Road, Tianjin 300401, China.
| |
Collapse
|
3
|
Padhan B, Ryoo W, Patel M, Dash JK, Patel R. Cutting-Edge Applications of Cellulose-Based Membranes in Drug and Organic Contaminant Removal: Recent Advances and Innovations. Polymers (Basel) 2024; 16:2938. [PMID: 39458766 PMCID: PMC11511415 DOI: 10.3390/polym16202938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
The increasing environmental challenges caused by pharmaceutical waste, especially antibiotics and contaminants, necessitate sustainable solutions. Cellulose-based membranes are considered advanced tools and show great potential as effective materials for the removal of drugs and organic contaminants. This review introduces an environmentally friendly composite membrane for the elimination of antibiotics and dye contaminants from water and food, without the use of toxic additives. The potential of cellulose-based membranes in reducing the impact on water quality and promoting environmental sustainability is emphasized. Additionally, the benefits of using biobased cellulose membranes in membrane biological reactors for the removal of antibiotics from pharmaceutical waste and milk are explored, presenting an innovative approach to achieving a circular economy. This review provides recent and comprehensive insights into membrane bioreactor technology, making it a valuable resource for researchers seeking efficient methods to break down antibiotics in industrial wastewater, particularly in the pharmaceutical and dairy industries.
Collapse
Affiliation(s)
- Bandana Padhan
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata 700126, India;
| | - Wanki Ryoo
- Bio-Convergence, Integrated Science and Engineering Division, Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea;
| | - Jatis Kumar Dash
- Department of Physics, SRM University-AP, Amaravati 522502, India
| | - Rajkumar Patel
- Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Incheon 21983, Republic of Korea
| |
Collapse
|
4
|
Du N, Weng W, Xu Y, Zhou Y, Yi Y, Zhao Y, Zhu G. Vanadium-Based Metal-Organic Frameworks with Peroxidase-like Activity as a Colorimetric Sensing Platform for Direct Detection of Organophosphorus Pesticides. Inorg Chem 2024; 63:16442-16450. [PMID: 39172690 DOI: 10.1021/acs.inorgchem.4c02716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Colorimetry based on the bioenzyme inhibition strategy holds promising application prospects in the field of organophosphorus pesticide (OPs) detection. However, overcoming the challenges of the high cost and low stability of bioenzymes remains crucial. In this study, we successfully synthesized a peroxidase vanadium-based metal-organic framework (MOF) nanozyme named MIL-88B(V) and employed its mediated bioenzyme-free colorimetric strategy for direct OPs detection. The experimental results demonstrated that MIL-88B(V) exhibited a remarkable affinity and a remarkable catalytic rate. When the OPs target is added, it can be anchored on the MOF surface through a V-O-P bond, effectively inhibiting the MOF's activity. Subsequently, leveraging the advantages of smartphones such as convenience, speed, and sensitivity, we developed a paper sensor integrated into a smartphone for efficient OPs detection. The as-designed nanozyme-based colorimetric assay and paper sensor presented herein offer notable advantages, including affordability, speed, stability, wide adaptability, low cost, and accuracy in detecting OPs, thus providing a versatile and promising analytical approach for real sample analysis and allowing new applications of V-based MOF nanozymes.
Collapse
Affiliation(s)
- Ningjing Du
- School of the Environment and Safety Engineering and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Wenchuan Weng
- Guangzhou Baiyun Airport Customs Comprehensive Technical Service Center, Guangzhou Baiyun Airport Customs District People's Republic of China, Guangzhou 510470, P. R. China
| | - Yuanyuan Xu
- School of the Environment and Safety Engineering and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yi Zhou
- School of the Environment and Safety Engineering and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yinhui Yi
- School of the Environment and Safety Engineering and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, P. R. China
| | - Yong Zhao
- Guangzhou Baiyun Airport Customs Comprehensive Technical Service Center, Guangzhou Baiyun Airport Customs District People's Republic of China, Guangzhou 510470, P. R. China
| | - Gangbing Zhu
- School of the Environment and Safety Engineering and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao 266061, P. R. China
| |
Collapse
|
5
|
Yu F, Fan B, Chai Y, Liu Y, Wang J, Liao Y, Yu S, Wang J, Wu Y, Wang Y. Antibiotic-Fe 3O 4 nanoparticles with highly efficient catalytic activity for enhanced chemiluminescence detection of tetracyclines residues in foods. Food Chem X 2024; 22:101485. [PMID: 38817980 PMCID: PMC11137521 DOI: 10.1016/j.fochx.2024.101485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
Tetracyclines (TCs) are the most commonly antimicrobial agents that used in livestock production worldwide. It is important to supervise tetracyclines residues in food for environmental monitoring and food safety. In this study, a novel, label-free chemiluminescence (CL) assay without antibody was established. Fe3O4 NPs could facilitate the CL interaction between luminol and H2O2. Interestingly, TCs could enhance the catalytic ability of Fe3O4 NPs and result in a further amplification of the CL intensity. The CL intensity varied linearly with the concentration of tetracycline (TC), oxytetracycline (OTC), chlortetracycline (CTC), and ranging from 10-2400, 10-2800, and 5-2100 nmol/L, respectively; The limits of detection were 4 nmol/L for TC, 6 nmol/L for OTC, and 2 nmol/L for CTC. This CL strategy was applied successfully in testing three TCs residues in milk, eggs and honey samples with more sensitive results, which provided an alternative strategy for monitoring the correct use of TCs.
Collapse
Affiliation(s)
- Fei Yu
- College of Public Health, Zhengzhou University, Henan, Zhengzhou 450001, China
| | - Binghua Fan
- College of Public Health, Zhengzhou University, Henan, Zhengzhou 450001, China
| | - Yilin Chai
- College of Chemistry, Zhengzhou University, Henan, Zhengzhou 450001, China
| | - Yue Liu
- Key Laboratory of Food Safety Quick Testing and Smart Supervision Technology for State Market Regulation, Henan, Zhengzhou 450001, China
| | - Jiaxiang Wang
- College of Public Health, Zhengzhou University, Henan, Zhengzhou 450001, China
| | - Yueqi Liao
- College of Public Health, Zhengzhou University, Henan, Zhengzhou 450001, China
| | - Songcheng Yu
- College of Public Health, Zhengzhou University, Henan, Zhengzhou 450001, China
| | - Jia Wang
- College of Public Health, Zhengzhou University, Henan, Zhengzhou 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Henan, Zhengzhou 450001, China
| | - Yilin Wang
- College of Public Health, Zhengzhou University, Henan, Zhengzhou 450001, China
| |
Collapse
|
6
|
Zhang Y, Wang M, Shao C, Liu T, Sun M, Wu C, Su G, Wang Y, Ye J, Hu H, Li Y, Rao H, Lu Z. Nanozyme-induced deep learning-assisted smartphone integrated colorimetric and fluorometric dual-mode for detection of tetracycline analogs. Anal Chim Acta 2024; 1297:342373. [PMID: 38438242 DOI: 10.1016/j.aca.2024.342373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 03/06/2024]
Abstract
In this work, a colorimetric and fluorescent dual-mode probe controlled by NH2-MIL-88 B (Fe, Ni) nanozymes was developed to visually detect tetracycline antibiotics (TCs) residues quantitatively, as well as accurately distinguish the four most widely used tetracycline analogs (tetracycline (TC), chrycline (CTC), oxytetracycline (OTC), and doxycycline (DC)). Colorless substrate 3,3',5,5'-tetramethylbenzidine (TMB) may be oxidized to blue oxidized TMB by the Fe Fenton reaction, which was catalyzed by the NH2-MIL-88 B (Fe, Ni) nanozyme with POD-like activity. The colorimetric detection system allows TCs to interact with NH2-MIL-88 B (Fe, Ni). This inhibits the production of ·OH, weakens the oxidation process of TMB, and ultimately lightens the blue color in the system by blocking the electron transfer between NH2-MIL-88 B (Fe, Ni) and H2O2. Furthermore, TCs can interact with NH2-MIL-88 B (Fe, Ni) as a result of the internal filtering effect, which causes the fluorescence intensity to decrease as TCs concentration increases. Additionally, a portable instrument that combines a smartphone sensing platform with colorimetric and fluorescent signals was created for the quick, visual quantitative detection of TCs. The colorimetric and fluorescent dual-mode nano platform enables color change, with detection limits (LODs) of 0.182 μM and 0.0668 μM for the spectrometer and smartphone sensor, respectively, based on the inhibition of fluorescence and enzyme-like activities by TCs. Overall, the colorimetric and fluorescence dual-mode sensor has good stability, high specificity, and an efficient way to eliminate false-positive issues associated with a single detection mode.
Collapse
Affiliation(s)
- Yi Zhang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Mingyang Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Chunfeng Shao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Department of Materials Science and Engineering, Huaibei Normal University, Huaibei, 235000, PR China
| | - Tao Liu
- College of Information Engineering, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Chun Wu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Jianshan Ye
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, PR China
| | - Haipeng Hu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Yanbin Li
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China.
| | - Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China; Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Department of Materials Science and Engineering, Huaibei Normal University, Huaibei, 235000, PR China.
| |
Collapse
|
7
|
Lin X, Li J, Wu J, Guo K, Duan N, Wang Z, Wu S. Fe-Co-Based Metal-Organic Frameworks as Peroxidase Mimics for Sensitive Colorimetric Detection and Efficient Degradation of Aflatoxin B 1. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11809-11820. [PMID: 38386848 DOI: 10.1021/acsami.3c18878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Building multifunctional platforms for integrating the detection and control of hazards has great significance in food safety and environment protection. Herein, bimetallic Fe-Co-based metal-organic frameworks (Fe-Co-MOFs) peroxidase mimics are prepared and applied to develop a bifunctional platform for the synergetic sensitive detection and controllable degradation of aflatoxin B1 (AFB1). On the one hand, Fe-Co-MOFs with excellent peroxidase-like activity are combined with target-induced catalyzed hairpin assembly (CHA) to construct a colorimetric aptasensor for the detection of AFB1. Specifically, the binding of aptamer with AFB1 releases the prelocked Trigger to initiate the CHA cycle between hairpin H2-modified Fe-Co-MOFs and hairpin H1-tethered magnetic nanoparticles to form complexes. After magnetic separation, the colorimetric signal of the supernatant in the presence of TMB and H2O2 is inversely proportional to the target contents. Under optimal conditions, this biosensor enables the analysis of AFB1 with a limit of detection of 6.44 pg/mL, and high selectivity and satisfactory recovery in real samples are obtained. On the other hand, Fe-Co-MOFs with remarkable Fenton-like catalytic degradation performance for organic contaminants are further used for the detoxification of AFB1 after colorimetric detection. The AFB1 is almost completely removed within 120 min. Overall, the introduction of CHA improves the sensing sensitivity; efficient postcolorimetric-detection degradation of AFB1 reduces the secondary contamination and risk to the experimental environment and operators. This strategy is expected to provide ideas for designing other multifunctional platforms to integrate the detection and degradation of various hazards.
Collapse
Affiliation(s)
- Xianfeng Lin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jin Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jiajun Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Kaixi Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Chen C, Li J, Luo F, Lin Z, Wang J, Zhang T, Huang A, Qiu B. Eu MOF-enhanced FeNCD nanozymes for fluorescence and highly sensitive colorimetric detection of tetracycline. Analyst 2024; 149:815-823. [PMID: 38117163 DOI: 10.1039/d3an02046k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The constrained enzymatic activity and aggregation challenges encountered by small-sized nanozymes pose obstacles to their practical utility, necessitating a strategy to mitigate aggregation and boost enzymatic catalytic efficiency. In this work, a negatively charged Eu MOF was utilized as the encapsulation matrix, encapsulating the small-sized nanozymes FeNCDs into the Eu MOF to synthesize an FeNCDs@Eu MOF. The dispersibility of the encapsulated FeNCDs was increased, and owing to the negative charge of the FeNCDs@Eu MOF, electrostatic pre-concentration of the positively charged target molecule tetracycline (TC) was facilitated, thereby amplifying the enzymatic catalytic efficiency of the FeNCDs. The response of the FeNCDs to TC increased by nearly 6 times upon encapsulation. The TC detection limit (LOD) of the FeNCDs@Eu MOF-based sensor is as low as 11.63 nM. The incorporation of fluorescence detection expanded the linear range of the sensor, rendering it more suitable for practical sample detection.
Collapse
Affiliation(s)
- Cheng Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
| | - Jing Li
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
| | - Jian Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
| | - Tao Zhang
- Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou 350007, P. R. China.
| | - Aiwen Huang
- Clinical Pharmacy Department, 900th Hospital of Joint Logistics Support Force, Fuzhou, Fujian, 350001, P. R. China.
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
| |
Collapse
|
9
|
Liu B, Tang Z, Pan J, Liu J, Zhu H, Hu P, Niu X. Triple-Emission Single Sensing Element-Enabled Ratiometric Fluorescent Array Identification of Multiple Antibiotics. ACS Sens 2024; 9:433-443. [PMID: 38097397 DOI: 10.1021/acssensors.3c02229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Given that intricate toxicological profiles exist among different antibiotics and pose serious threats to the environment and human health, synchronous analysis of multiple residues becomes crucial. Sensor arrays show potential to achieve the above purpose, but it is challenging to develop easy-to-use and high-sensitivity tools because the state-of-the-art arrays often require more than one recognition unit and are monosignal dependent. Here we exquisitely designed a fluorescent nanoprobe (2-aminoterephthalic acid-anchored CdTe quantum dots with Eu3+ coordination, CdTe-ATPA-Eu3+) featuring triple emissions at the same excitation as the only element to fabricate a luminescent sensor array with ratiometric calculations for identifying multiple antibiotics. By taking tetracycline, chlortetracycline, doxycycline, oxytetracycline, penicillin G, and sulfamethoxazole as models, the six species exhibited distinguishable motivation or/and quenching impacts on the three emissions of CdTe-ATPA-Eu3+, which were employed as indicators to perform the ratiometric logical operation and further combined with pattern recognition analysis for multitarget determination. Evidently, such a design exhibits two advances: (1) with the triple-emission probe as the sole receptor requiring neither internal nor external adjustments, the fabricated array acts as an extremely facile tool for multianalyte detection; (2) the ratiometric calculations offer excellent sensitivity and reliability for high-performance determination. Consequently, accurate identification and quantification of individual antibiotics and their combinations at various levels were verified in both laboratory and practical matrices. Our work provides a new tool for simultaneously detecting multiple antibiotics, and it will inspire the development of advanced sensor arrays for multitarget analysis.
Collapse
Affiliation(s)
- Bangxiang Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zheng Tang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jinjin Liu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hengjia Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Panwang Hu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiangheng Niu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
- Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, China
- Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
10
|
Yang H, Liu JJ, Tang WQ, Meng SS, Gao YX, Li W, Zhang H, Xu M, Gu ZY. Increasing Mass Transfer Resistance of MOFs as a Reverse Tuning Strategy to Achieve High-Resolution Gas Chromatographic Separation. Anal Chem 2023; 95:18760-18766. [PMID: 38078811 DOI: 10.1021/acs.analchem.3c03283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
In separation science, precise control and regulation of the MOF stationary phase are crucial for achieving a high separation performance. We supposed that increasing the mass transfer resistance of MOFs with excessive porosity to achieve a moderate mass transfer resistance of the analytes is the key to conducting the MOF stationary phase with a high resolution. Three-dimensional UiO-67 (UiO-67-3D) and two-dimensional UiO-67 (UiO-67-2D) were chosen to validate this strategy. Compared with UiO-67-3D with overfast mass transfer and low retention, the reduced porosity of UiO-67-2D increased the mass transfer resistance of analytes in reverse, resulting in improved separation performance. Kinetic diffusion experiments were conducted to verify the difference in mass transfer resistance of the analytes between UiO-67-3D and UiO-67-2D. In addition, the optimization of the UiO-67-2D thickness for separation revealed that a moderate diffusion length of the analytes is more advantageous in achieving the equilibrium of absorption and desorption.
Collapse
Affiliation(s)
- Han Yang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jia-Jia Liu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wen-Qi Tang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Sha-Sha Meng
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yuan-Xiao Gao
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wang Li
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ming Xu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhi-Yuan Gu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
11
|
Zhu T, Chen J, Zeng S, Chen J, Qi C. Highly Stable Fluorescent-Traffic-Light Sensor for Point-of-Care Detection of Tetracycline. ACS Sens 2023; 8:4272-4280. [PMID: 37862265 DOI: 10.1021/acssensors.3c01620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Fluorescent point-of-care (POC) sensors have found great utility in fields like clinical diagnosis, food testing, and environmental monitoring. Herein, we developed a highly stable POC sensor that enabled the visual detection of tetracycline (TC) in a distinct fluorescent-traffic-light manner. In the sensor, a composite material of copper nanoclusters and metal-organic framework (CuNCs@MOF-5) prepared with a facile one-pot synthetic strategy was employed as the core element for target recognition and signal transduction. As evidenced by experiments, the as-prepared CuNCs@MOF-5 exhibited significantly improved fluorescence properties in terms of emission enhancement (about 28-fold) and stability improvement (over 110 days) compared to the CuNCs without confining and protection by MOF-5. More importantly, it was found that TC could uniquely interact with Zn(II) to trigger the disassembly of CuNCs@MOF-5, resulting in green fluorescence emission from the TC-Zn(II) complex and red fluorescence weakening of CuNCs. On the basis of this finding, a simple and stable sensor was proposed for POC detection of TC, which demonstrated high sensitivity, selectivity, and reproducibility. In addition to homogeneous visual detection in a 96-well plate, a CuNCs@MOF-5-contained agarose gel array was easily fabricated to achieve direct detection of TC in milk without any pretreatment, thanks to the size-sieving effect of the gel. Moreover, a test paper array was also put forward for low-cost TC detection, which indicates the extensibility and practicability of this sensing strategy.
Collapse
Affiliation(s)
- Ting Zhu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering of Hubei Normal University, Huangshi, Hubei 435002, China
| | - Jinyang Chen
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering of Hubei Normal University, Huangshi, Hubei 435002, China
| | - Shasha Zeng
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering of Hubei Normal University, Huangshi, Hubei 435002, China
| | - Jintao Chen
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering of Hubei Normal University, Huangshi, Hubei 435002, China
| | - Chunjiao Qi
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering of Hubei Normal University, Huangshi, Hubei 435002, China
| |
Collapse
|
12
|
Sun C, Li C, Guo M, Yang X, Luo Y, Chen L, Zheng H, Zhao S, Li F. Fabrication and optimization of paper chips from calcinated Fe-MOFs for rapid and in situ visual detection of tetracyclines in water environments. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131946. [PMID: 37418967 DOI: 10.1016/j.jhazmat.2023.131946] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/14/2023] [Accepted: 06/25/2023] [Indexed: 07/09/2023]
Abstract
Antibiotics such as tetracyclines (TCs) have become a major threat to ecosystem safety and human health, as their abuse has caused the occurrence and proliferation of antibiotic-resistant bacteria and genes. Currently, there is still a lack of convenient in situ methods for the detection and monitoring of TC pollution in actual water systems. This research reports a paper chip based on the complexation of iron-based metal organic frameworks (Fe-MOFs) and TCs for rapid and in situ visual detection of representative oxytetracycline (OTC) pollution in water environments. The optimized complexation sample NH2-MIL-101(Fe)- 350 obtained by calcination at 350 °C exhibited the highest catalytic activity and was then used for paper chip fabrication by printing and surface modification. Notably, the paper chip demonstrated a detection limit as low as 17.11 nmol L-1 and good practicability in reclaimed water, aquaculture wastewater, and surface water systems, with OTC recovery rates of 90.6-111.4%. More importantly, the presence of dissolved oxygen (9.13-12.7 mg L-1), chemical oxygen demand (0.52-12.1 mg L-1), humic acid (< 10 mg L-1), Ca2+, Cl-, and HPO42- (< 0.5 mol L-1) had negligible interference on the detection of TCs by the paper chip. Therefore, this work has developed a promising method for rapid and in situ visual monitoring of TC pollution in actual water environments.
Collapse
Affiliation(s)
- Cuizhu Sun
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Marine Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Chenguang Li
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Marine Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Meiting Guo
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Marine Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xianghao Yang
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Marine Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Yadan Luo
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Marine Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Lingyun Chen
- Faculty of Agricultural, Life and Environmental Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Marine Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Shasha Zhao
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Marine Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Marine Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China.
| |
Collapse
|