1
|
Soliman SS, Abd El-Samie FE, Abd El-Atty SM, Badawy W, Eshra A. DNA nanotechnology for cell-free DNA marker for tumor detection: a comprehensive overview. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-15. [PMID: 39357047 DOI: 10.1080/15257770.2024.2337853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/13/2024] [Accepted: 03/17/2024] [Indexed: 10/04/2024]
Abstract
Advancements in DNA nanotechnology have led to new exciting ways to detect cell-free tumor biomarkers, revolutionizing cancer diagnostics. This article comprehensively reviews recent developments in this field, discussing the significance of liquid biopsies and DNA nanomachines in early cancer detection. The accuracy of cancer diagnosis at its early stages is expected to be significantly improved by identifying biomarkers. Liquid biopsies, offering minimally-invasive testing, hold the potential for capturing tumor-specific components like circulating tumor cells, cell-free DNA, and exosomes. DNA nanomachines are advanced molecular devices that exploit the programmability of DNA sequences for the ultrasensitive and specific detection of these markers. DNA nanomachines, nanostructures made of DNA that can be designable and switchable nanostructures, have a wide range of advantages for detecting tumor biomarkers, including non-invasiveness, affordability, high sensitivity, and specificity. Scientists also work on dealing with challenges like low marker concentrations and interference, which are addressed through microfluidic integration, nanomaterial amplification, and indirect signal detection. Despite advances, multiplex detection remains a challenge. In conclusion, DNA nanomachines bear immense promise for cancer diagnostics, advocating personalized treatment and improving patient outcomes. Continued research could redefine how we find and treat tumors, leading to better patient outcomes.
Collapse
Affiliation(s)
- Sara Sami Soliman
- Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt
| | - Fathi E Abd El-Samie
- Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt
| | - Saied M Abd El-Atty
- Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt
| | - Wael Badawy
- School of physics, Engineering, and Computer Science, University of Hertfordshire Hosted by GAF, Cairo, Egypt
| | - Abeer Eshra
- Department of Computer Science and Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt
- Hamilton Institute, Maynooth University, Co. Kildare, Ireland
| |
Collapse
|
2
|
Liu F, Xu J, Yang L. Sensitive and Enzyme-Free Pseudomonas aeruginosa Detection and Isolation via DNAzyme Cascade Triggered DNA Tweezer. J Microbiol Biotechnol 2024; 34:1919-1925. [PMID: 39187451 PMCID: PMC11473567 DOI: 10.4014/jmb.2407.07006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/28/2024]
Abstract
Effective isolation and sensitive detection of Pseudomonas aeruginosa (P. aeruginosa) is crucial for the early diagnosis and prognosis of various diseases, such as urinary tract infections. However, efficient isolation and simultaneous detection of P. aeruginosa remains a huge challenge. Herein, we depict a novel fluorescence assay for sensitive, enzyme-free detection of P. aeruginosa by integrating DNAzyme cascade-induced DNA tweezers and magnetic nanoparticles (MNPs)-based separation. The capture probe@MNPs is capable of accurately identifying target bacteria and transporting the bacteria signal to nucleic acid signals. Based on the DNAzyme cascade-induced DNA tweezers, the nucleic acid signals are extensively amplified, endowing the method with a high sensitivity and a low detection limit of 1 cfu/mL. In addition, the method also exhibits a wide detection of six orders of magnitudes. The proposed method could be extended to other bacteria detection by simply changing the aptamer sequence. Taking the merit of the high sensitivity, greatly minimized detection time (less than 1.5 h), enzyme-free characteristics, and stability, the proposed method could be potentially applied to diagnosing and preventing diseases caused by pathogenic bacteria.
Collapse
Affiliation(s)
- Furong Liu
- Department of Urology, People’s Hospital of Chongqing Liang Jiang New Area, Chongqing, 401147, P.R. China
| | - Jingyuan Xu
- Department of Urology, People’s Hospital of Chongqing Liang Jiang New Area, Chongqing, 401147, P.R. China
| | - Lihua Yang
- Medical insurance pricing department, People’s Hospital Of Chongqing Liang Jiang New Area, Chongqing, 401147, P.R. China
| |
Collapse
|
3
|
Wu J, Mei X, Zhan X, Liu F, Liu D. Proximity hybridization based "turn-on" DNA tweezers for accurate and enzyme-free small extracellular vesicle analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 38699853 DOI: 10.1039/d4ay00487f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Small extracellular vesicles (sEVs) are a type of extracellular vesicle that carries many types of molecular information. The identification of sEVs is essential for the non-invasive detection and treatment of illnesses. Hence, there is a significant need for the development of simple, sensitive, and precise methods for sEV detection. Herein, a DNA tweezers-based assay utilizing a "turn-on" mechanism and proximity ligation was suggested for the efficient and rapid detection of sEVs through amplified fluorescence. The target facilitates the proximity combination of the C1 probe and C2 probe, resulting in the formation of a complete extended sequence. The elongated sequence can cyclically initiate the hairpin probe (HP), leading to the activation of DNA tweezers. An excellent linear correlation was achieved, with a limit of detection of 57 particles per μL. Furthermore, it has been effectively employed to analyze sEVs under intricate experimental conditions, demonstrating a promising and pragmatic prospect for future applications. Given that the identification of sEVs was successfully accomplished using a single-step method that exhibited exceptional sensitivity and strong resistance to interference, the proposed technique has the potential to provide a beneficial platform for accurate recognition of sEVs and early detection of diseases.
Collapse
Affiliation(s)
- Jinlin Wu
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, No. 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
- Department of Endocrinology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Xi Mei
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, No. 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Xiaoqin Zhan
- Department of Clinical Laboratory, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Fang Liu
- Department of Endocrinology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Dongfang Liu
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, No. 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
4
|
Rossetti M, Srisomwat C, Urban M, Rosati G, Maroli G, Yaman Akbay HG, Chailapakul O, Merkoçi A. Unleashing inkjet-printed nanostructured electrodes and battery-free potentiostat for the DNA-based multiplexed detection of SARS-CoV-2 genes. Biosens Bioelectron 2024; 250:116079. [PMID: 38295580 DOI: 10.1016/j.bios.2024.116079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024]
Abstract
Following the global COVID-19 pandemic triggered by SARS-CoV-2, the need for rapid, specific and cost-effective point-of-care diagnostic solutions remains paramount. Even though COVID-19 is no longer a public health emergency, the disease still poses a global threat leading to deaths, and it continues to change with the risk of new variants emerging causing a new surge in cases and deaths. Here, we address the urgent need for rapid, cost-effective and point-of-care diagnostic solutions for SARS-CoV-2. We propose a multiplexed DNA-based sensing platform that utilizes inkjet-printed nanostructured gold electrodes and an inkjet-printed battery-free near-field communication (NFC) potentiostat for the simultaneous quantitative detection of two SARS-CoV-2 genes, the ORF1ab and the N gene. The detection strategy based on the formation of an RNA-DNA sandwich structure leads to a highly specific electrochemical output. The inkjet-printed nanostructured gold electrodes providing a large surface area enable efficient binding and increase the sensitivity. The inkjet-printed battery-free NFC potentiostat enables rapid measurements and real-time data analysis via a smartphone application, making the platform accessible and portable. With the advantages of speed (5 min), simplicity, sensitivity (low pM range, ∼450% signal gain) and cost-effectiveness, the proposed platform is a promising alternative for point-of-care diagnostics and high-throughput analysis that complements the COVID-19 diagnostic toolkit.
Collapse
Affiliation(s)
- Marianna Rossetti
- Catalan Institute of Nanoscience and Nanotechnology, UAB Campus, 08193, Bellaterra, Barcelona, Spain.
| | - Chawin Srisomwat
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Massimo Urban
- Catalan Institute of Nanoscience and Nanotechnology, UAB Campus, 08193, Bellaterra, Barcelona, Spain; Universitat Autònoma de Barcelona, Campus de la UAB, Bellaterra, Barcelona, 08193, Spain
| | - Giulio Rosati
- Catalan Institute of Nanoscience and Nanotechnology, UAB Campus, 08193, Bellaterra, Barcelona, Spain.
| | - Gabriel Maroli
- Catalan Institute of Nanoscience and Nanotechnology, UAB Campus, 08193, Bellaterra, Barcelona, Spain; Universitat Autònoma de Barcelona, Campus de la UAB, Bellaterra, Barcelona, 08193, Spain; Instituto de Investigaciones en Ingeniería Eléctrica Alfredo Desages (IIIE), Universidad Nacional del Sur, CONICET, Avenida Colón 80 Bahía Blanca, Buenos Aires, Argentina
| | - Hatice Gödze Yaman Akbay
- Catalan Institute of Nanoscience and Nanotechnology, UAB Campus, 08193, Bellaterra, Barcelona, Spain
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology, UAB Campus, 08193, Bellaterra, Barcelona, Spain; ICREA Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
5
|
Yao Y, Liu Y, Liu X, Zhang X, Shi P, Zhang X, Zhang Q, Wei X. Bubble DNA tweezer: A triple-conformation sensor responsive to concentration-ratios. iScience 2024; 27:109074. [PMID: 38361618 PMCID: PMC10867447 DOI: 10.1016/j.isci.2024.109074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/17/2024] Open
Abstract
DNA tweezers, with their elegant simplicity and flexibility, have been pivotal in biosensing and DNA computing. However, conventional tweezers are confined to a binary transformation pre/post target signal recognition, limiting them to presence/absence judgments. This study introduces bubble DNA tweezers (BDT), capable of three distinct conformations based on variable target signal ratios. In contrast to traditional compact tweezers, BDT features a looser structure centered around a non-complementary bubble domain located between the tweezer arms' connecting axis and target signal recognition jaws. This bubble triggers toehold-free DNA strand displacement, leading to three conformational changes at different target signal concentrations. BDT detects presence/absence and true concentration with remarkable specificity and sensitivity. This adaptability is not confined to ideal scenarios, proving valuable in complex, noisy environments. Our method facilitates target DNA/miRNA signal quantification within a specific length range, promising applications in clinical research and environmental detection, while inspiring future biological assay innovations.
Collapse
Affiliation(s)
- Yao Yao
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yuan Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xin Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xun Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Peijun Shi
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xiaokang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xiaopeng Wei
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
6
|
Yang Y, Zhou Z, Guo Y, Chen R, Tian D, Ren S, Zhou H, Gao Z. Programmable DNA tweezers-SDA for ultra-sensitive signal amplification fluorescence sensing strategy. Anal Chim Acta 2024; 1292:342245. [PMID: 38309853 DOI: 10.1016/j.aca.2024.342245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND DNA tweezers, classified as DNA nanomachines, have gained prominence as multifunctional biosensors due to their advantages, including a straightforward structure, response mechanism, and high programmability. While the DNA tweezers demonstrate simultaneous, rapid, and stable responses to different targets, their detection sensitivity requires enhancement. Some small molecules, such as mycotoxins, often require more sensitive detection due to their extremely high toxicity. Therefore, more effective signal amplification strategies are needed to further enhance the sensitivity of DNA tweezers in biosensing. RESULTS We designed programmable DNA tweezers that detect small-molecule mycotoxins and miRNAs through simple sequence substitution. While the DNA tweezers demonstrate simultaneous, rapid, and stable responses to different targets, their detection sensitivity requires enhancement. We introduced the Strand Displacement Amplification (SDA) technique to address this limitation, proposing a strategy of novel programmable DNA tweezers-SDA ultrasensitive signal amplification fluorescence sensing. We specifically investigate the effectiveness of this approach concerning signal amplification for two critical mycotoxins: aflatoxin B1 (AFB1) and zearalenone (ZEN). Results indicate that the detection ranges of AFB1 and ZEN via this strategy were 1-10,000 pg mL -1 and 10-100,000 pg mL -1, respectively, with corresponding detection limits of 0.933 pg mL -1 and 1.07 pg mL -1. Compared with the DNA tweezers direct detection method for mycotoxins, the newly constructed programmable DNA tweezers-SDA fluorescence sensing strategy achieved a remarkable 104-fold increase in the detection sensitivity for AFB1 and ZEN. SIGNIFICANCE The constructed programmable DNA tweezers-SDA ultrasensitive signal-amplified fluorescence sensing strategy exhibits excellent detection performance for mycotoxins. The superb versatility of this strategy allows the developed method to be easily used for detecting other analytes by simply replacing the aptamer and cDNA, which has incredible potential in various fields such as food safety screening, clinical diagnostics, and environmental analysis.
Collapse
Affiliation(s)
- Yingao Yang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zixuan Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Yifen Guo
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China; Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Ruipeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Daoming Tian
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Huanying Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
7
|
Quazi MZ, Choi JH, Kim M, Park N. DNA and Nanomaterials: A Functional Combination for DNA Sensing. ACS APPLIED BIO MATERIALS 2024; 7:778-786. [PMID: 38270150 DOI: 10.1021/acsabm.3c01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Recent decades have experienced tough situations due to the lack of reliable diagnostic facilities. The most recent cases occurred during the pandemic, where researchers observed the lack of diagnostic facilities with precision. Microorganisms and viral disease's ability to escape diagnosis has been a global challenge. DNA always has been a unique moiety with a strong and precise base-paired structure. DNA in human and foreign particles makes identification possible through base pairing. Since then, researchers have focused heavily on designing diagnostic assays targeting DNA in particular. Moreover, DNA nanotechnology has contributed vastly to designing composite nanomaterials by combining DNA/nucleic acids with functional nanomaterials and inorganic nanoparticles exploiting their physicochemical properties. These nanomaterials often exhibit unique or enhanced properties due to the synergistic activity of the many components. The capabilities of DNA and additional nanomaterials have shown the combination of robust and advanced tailoring of biosensors. Preceding findings state that the conventional strategies have exhibited certain limitations such as a low range of target detection, less biodegradability, subordinate half-life, and high susceptibility to microenvironments; however, a DNA-nanomaterial-based biosensor has overcome these limitations meaningfully. Additionally, the unique properties of nucleic acids have been studied extensively due to their high signal conduction abilities. Here, we review recent studies on DNA-nanomaterial-based biosensors, their mechanism of action, and improved/updated strategies in vivo and in situ. Furthermore, this review highlights the recent methodologies on DNA utilization to exploit the interfacial properties of nanomaterials in DNA sensing. Lastly, the review concludes with the limitations/challenges and future directions.
Collapse
Affiliation(s)
- Mohzibudin Z Quazi
- Department of Chemistry and The Natural Science Research Institute, Myongji University, Myongji-ro, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Jang Hyeon Choi
- Department of Chemistry and The Natural Science Research Institute, Myongji University, Myongji-ro, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Minchul Kim
- Department of Chemistry and The Natural Science Research Institute, Myongji University, Myongji-ro, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Nokyoung Park
- Department of Chemistry and The Natural Science Research Institute, Myongji University, Myongji-ro, Yongin, Gyeonggi-do 17058, Republic of Korea
| |
Collapse
|