1
|
Chen K, Du Z, Zhang Y, Bai R, Zhu L, Xu W. Exploring Nucleic Acid Nanozymes: A New Frontier in Biosensor Development. BIOSENSORS 2025; 15:142. [PMID: 40136939 PMCID: PMC11940440 DOI: 10.3390/bios15030142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/27/2025]
Abstract
With the growing interest in nucleic acids and nanozymes, nucleic acid nanozymes (NANs) have emerged as a promising alternative to traditional enzyme catalysts, combining the advantages of nucleic acids and nanomaterials, and are widely applied in the field of biosensing. This review provides a comprehensive overview of recent studies on NAN-based biosensors. It classifies NANs based on six distinct enzymatic activities: peroxidase-like, oxidase-like, catalase-like, superoxide dismutase-like, laccase-like, and glucose oxidase-like. This review emphasizes how the catalytic activity of nanozymes is significantly influenced by the properties of nucleic acids and explores the regulatory mechanisms governing the catalytic activity of NANs. Additionally, it systematically reviews important research progress on NANs in colorimetric, fluorescent, electrochemical, SERS, and chemiluminescent sensors, offering insights into the development of the NAN field and biosensor applications.
Collapse
Affiliation(s)
| | | | | | | | - Longjiao Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (K.C.); (Z.D.); (Y.Z.); (R.B.)
| | - Wentao Xu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (K.C.); (Z.D.); (Y.Z.); (R.B.)
| |
Collapse
|
2
|
Qian D, Zhang J, Tan Q, Zhang Y, Xu Q, Li J, Li H. Localized Bicirculating DNAzyme Self-Feedback Amplification Strategy for Ultra-Sensitive Fluorescence Biosensing of MicroRNA. Anal Chem 2025; 97:1620-1626. [PMID: 39804797 DOI: 10.1021/acs.analchem.4c04417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
DNAzyme-based cascade networks are effective tools to achieve ultrasensitive detection of low-abundance miRNAs. However, their designs are complicated and costly, and the operation is time-consuming. Herein, a novel simple noncascade DNAzyme network is designed and its amplification effect is comparable to or even better than many cascading ones. It is a nonenzymatic, isothermal, bicirculating amplification network consisting of two toehold-mediated strand-displacement reactions and a localized DNAzyme amplification strategy. Taking microRNA-122 as a target model, this ultrasensitive fluorescence biosensor has a detection limit of 84 zmol L-1, which is 8-orders of magnitude lower than that of the nonamplification one. The ultrasensitivity mainly benefits from the exclusive design and positive self-feedback mechanism of the ingenious bicirculating DNAzyme amplification network. In addition, the utilization of superparamagnetic Fe3O4@SiO2 particles not only helps for the localization of DNAzymes but also facilitates the rapid separation of signal probes (output DNA-CdTe QDs). This fluorescent biosensor also has the advantages of specificity, speed, thermal stability, and low cost. This novel design paves a new way to simple and effective bioamplification strategy, which may be very attractive for biosensors, DNA logic gates, and DNA computers.
Collapse
Affiliation(s)
- Defu Qian
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Jingling Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Qingqing Tan
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Yuye Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Qin Xu
- Institute of Innovation Materials and Energy, Yangzhou University, Yangzhou 225002, P. R. China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Hongbo Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| |
Collapse
|
3
|
Li Y, Lv X, Jiang H, Li X, Deng Y. Integration of RCA-Based DNA Nanoscaffold with Target Triggered RNA-Cleaving DNAzyme for Sensitive Detection of miRNA21. Appl Biochem Biotechnol 2024; 196:8925-8939. [PMID: 39083195 DOI: 10.1007/s12010-024-05022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 01/04/2025]
Abstract
Cascaded amplification showed promising potential for detection of trace target miRNAs in molecular diagnosis and prevention of many diseases. In this study, miRNA21 was chosen as the target, and rolling circle amplification (RCA)-based DNA nanoscaffold was integrated with target triggered RNA-cleaving DNAzyme for sensitive detection of miRNA21. That is, the H1 probe was bound with the long-chain product of RCA to self-assemble into DNA nanoscaffold. Target miRNA21 triggered the hybridization chain reaction (HCR) located on the nanoscaffold, and led to rapid proximity of DNAzyme fragments modified at both ends of the H2 probe, which realized the cyclic cleavage of self-quenching substrate probe efficiently, and the fluorescence signal was restored. The results demonstrated that the proposed assay was sensitive, 0.76 pM of miRNA21 can be detected. The proposed assay was specific; only one-base mismatched miRNA21 can be effectively recognized, other nucleic acid sequence and the serum matrix did not cause any interference. The proposed assay was accurate; recoveries from 82.1 to 115.0% can be obtained in the spiked fetal bovine serum (FBS). The flexible and programmable characteristics of DNA nanoscaffold and DNAzyme provide a confident and robust strategy for more sensitive nucleic acid detection, and can be developed to be a universal sensing platform for detecting other miRNAs just needing modification on the corresponding sequence of H1 probe in HCR.
Collapse
Affiliation(s)
- Yuan Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuefei Lv
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Hao Jiang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoqiong Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
4
|
Sun P, Gou H, Che X, Chen G, Feng C. Recent advances in DNAzymes for bioimaging, biosensing and cancer therapy. Chem Commun (Camb) 2024; 60:10805-10821. [PMID: 39248025 DOI: 10.1039/d4cc03774j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
DNAzymes, a class of single-stranded catalytic DNA with good stability, high catalytic activity, and easy synthesis, functionalization and modification properties, have garnered significant interest in the realm of biosensing and bioimaging. Their integration with fluorescent dyes or chemiluminescent moieties has led to remarkable bioimaging outcomes, while DNAzyme-based biosensors have demonstrated robust sensitivity and selectivity in detecting metal ions, nucleic acids, proteins, enzyme activities, exosomes, bacteria and microorganisms. In addition, by delivering DNAzymes into tumor cells, the mRNA therein can be cleaved to regulate the expression of corresponding proteins, which has further propelled the application of DNAzymes in cancer gene therapy and synergistic therapy. This paper reviews the strategies for screening attractive DNAzymes such as SELEX and high-throughput sequencing, and briefly describes the amplification strategies of DNAzymes, which mainly include catalytic hairpin assembly (CHA), DNA walker, hybridization chain reaction (HCR), DNA origami, CRISPR-Cas12a, rolling circle amplification (RCA), and aptamers. In addition, applications of DNAzymes in bioimaging, biosensing, and cancer therapy are also highlighted. Subsequently, the possible challenges of these DNAzymes in practical applications are further pointed out, and future research directions are suggested.
Collapse
Affiliation(s)
- Pei Sun
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Hongquan Gou
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P. R. China
| | - Xinran Che
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Chang Feng
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| |
Collapse
|
5
|
Zhang YW, Wang SM, Li XQ, Kang B, Chen HY, Xu JJ. Endogenous AND Logic DNA Nanomachine for Highly Specific Cancer Cell Imaging. Anal Chem 2024; 96:7030-7037. [PMID: 38656919 DOI: 10.1021/acs.analchem.4c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Intracellular cancer-related biomarker imaging strategy has been used for specific identification of cancer cells, which was of great importance to accurate cancer clinical diagnosis and prognosis studies. Localized DNA circuits with improved sensitivity showed great potential for intracellular biomarkers imaging. However, the ability of localized DNA circuits to specifically image cancer cells is limited by off-site signal leakage associated with a single-biomarker sensing strategy. Herein, we integrated the endogenous enzyme-powered strategy with logic-responsive and localized signal amplifying capability to construct a self-assembled endogenously AND logic DNA nanomachine (EDN) for highly specific cancer cell imaging. When the EDN encountered a cancer cell, the overexpressed DNA repairing enzyme apurinic/apyrimidinic endonuclease 1 (APE1) and miR-21 could synergistically activate a DNA circuit via cascaded localized toehold-mediated strand displacement (TMSD) reactions, resulting in amplified fluorescence resonance energy transfer (FRET) signal. In this strategy, both endogenous APE1 and miR-21, served as two "keys" to activate the AND logic operation in cancer cells to reduce off-tumor signal leakage. Such a multiplied molecular recognition/activation nanomachine as a powerful toolbox realized specific capture and reliable imaging of biomolecules in living cancer cells.
Collapse
Affiliation(s)
- Yu-Wen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shu-Min Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiao-Qiong Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Tan Y, Zhang L, Deng S. Programmable DNA barcode-encoded exponential amplification reaction for the multiplex detection of miRNAs. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1649-1658. [PMID: 38414433 DOI: 10.1039/d3ay02215c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Multiple analysis of miRNAs is essential for the early diagnosis and monitoring of diseases. Here, a programmable, multiplex, and sensitive approach was developed for one-pot detection of miRNAs by melting temperature encoded sequences and exponential isothermal amplification (E-EXPAR). In the presence of target miRNAs, the corresponding templates initiate the cycles of nicking and polymerization/displacement, generating numerous barcode strands with unique encoding sequences. Subsequently, generated barcode strands hybridize with fluorescent probes and quench the fluorophore by a triplet of G base through a photo-induced electron transfer mechanism. Finally, a melting curve analysis is performed to quantify miRNAs by calculating the rate of fluorescence change at the corresponding melting temperature. Based on this, miRNA-21, miRNA-9, and miRNA-122 were detected with the detection limits of 3.3 fM, 2.9 fM, and 1.7 fM, respectively. This E-EXPAR was also employed to simultaneously detect three miRNAs in biological samples, showing consistent results with RT-qPCR. Overall, this study provides a programmable and universal platform for multiplex analysis of miRNAs, and holds great promise as an alternative to the multiplex analysis in clinical diagnostics and prognostics for nucleic acid detection.
Collapse
Affiliation(s)
- Yuqian Tan
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Li Zhang
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Shixiong Deng
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|