1
|
Genome-Wide Prediction of Transcription Start Sites in Conifers. Int J Mol Sci 2022; 23:ijms23031735. [PMID: 35163661 PMCID: PMC8836283 DOI: 10.3390/ijms23031735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
The identification of promoters is an essential step in the genome annotation process, providing a framework for gene regulatory networks and their role in transcription regulation. Despite considerable advances in the high-throughput determination of transcription start sites (TSSs) and transcription factor binding sites (TFBSs), experimental methods are still time-consuming and expensive. Instead, several computational approaches have been developed to provide fast and reliable means for predicting the location of TSSs and regulatory motifs on a genome-wide scale. Numerous studies have been carried out on the regulatory elements of mammalian genomes, but plant promoters, especially in gymnosperms, have been left out of the limelight and, therefore, have been poorly investigated. The aim of this study was to enhance and expand the existing genome annotations using computational approaches for genome-wide prediction of TSSs in the four conifer species: loblolly pine, white spruce, Norway spruce, and Siberian larch. Our pipeline will be useful for TSS predictions in other genomes, especially for draft assemblies, where reliable TSS predictions are not usually available. We also explored some of the features of the nucleotide composition of the predicted promoters and compared the GC properties of conifer genes with model monocot and dicot plants. Here, we demonstrate that even incomplete genome assemblies and partial annotations can be a reliable starting point for TSS annotation. The results of the TSS prediction in four conifer species have been deposited in the Persephone genome browser, which allows smooth visualization and is optimized for large data sets. This work provides the initial basis for future experimental validation and the study of the regulatory regions to understand gene regulation in gymnosperms.
Collapse
|
2
|
Zhang M, Jia C, Li F, Li C, Zhu Y, Akutsu T, Webb GI, Zou Q, Coin LJM, Song J. Critical assessment of computational tools for prokaryotic and eukaryotic promoter prediction. Brief Bioinform 2022; 23:6502561. [PMID: 35021193 PMCID: PMC8921625 DOI: 10.1093/bib/bbab551] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/12/2021] [Accepted: 11/30/2021] [Indexed: 01/13/2023] Open
Abstract
Promoters are crucial regulatory DNA regions for gene transcriptional activation. Rapid advances in next-generation sequencing technologies have accelerated the accumulation of genome sequences, providing increased training data to inform computational approaches for both prokaryotic and eukaryotic promoter prediction. However, it remains a significant challenge to accurately identify species-specific promoter sequences using computational approaches. To advance computational support for promoter prediction, in this study, we curated 58 comprehensive, up-to-date, benchmark datasets for 7 different species (i.e. Escherichia coli, Bacillus subtilis, Homo sapiens, Mus musculus, Arabidopsis thaliana, Zea mays and Drosophila melanogaster) to assist the research community to assess the relative functionality of alternative approaches and support future research on both prokaryotic and eukaryotic promoters. We revisited 106 predictors published since 2000 for promoter identification (40 for prokaryotic promoter, 61 for eukaryotic promoter, and 5 for both). We systematically evaluated their training datasets, computational methodologies, calculated features, performance and software usability. On the basis of these benchmark datasets, we benchmarked 19 predictors with functioning webservers/local tools and assessed their prediction performance. We found that deep learning and traditional machine learning-based approaches generally outperformed scoring function-based approaches. Taken together, the curated benchmark dataset repository and the benchmarking analysis in this study serve to inform the design and implementation of computational approaches for promoter prediction and facilitate more rigorous comparison of new techniques in the future.
Collapse
Affiliation(s)
| | - Cangzhi Jia
- Corresponding authors: Jiangning Song, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia. E-mail: ; Lachlan J.M. Coin, Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia. E-mail: ; Quan Zou, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China. E-mail: ; Cangzhi Jia, School of Science, Dalian Maritime University, Dalian 116026, China. E-mail:
| | | | | | | | | | - Geoffrey I Webb
- Department of Data Science and Artificial Intelligence, Monash University, Melbourne, VIC 3800, Australia,Monash Data Futures Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Quan Zou
- Corresponding authors: Jiangning Song, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia. E-mail: ; Lachlan J.M. Coin, Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia. E-mail: ; Quan Zou, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China. E-mail: ; Cangzhi Jia, School of Science, Dalian Maritime University, Dalian 116026, China. E-mail:
| | - Lachlan J M Coin
- Corresponding authors: Jiangning Song, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia. E-mail: ; Lachlan J.M. Coin, Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia. E-mail: ; Quan Zou, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China. E-mail: ; Cangzhi Jia, School of Science, Dalian Maritime University, Dalian 116026, China. E-mail:
| | - Jiangning Song
- Corresponding authors: Jiangning Song, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia. E-mail: ; Lachlan J.M. Coin, Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia. E-mail: ; Quan Zou, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China. E-mail: ; Cangzhi Jia, School of Science, Dalian Maritime University, Dalian 116026, China. E-mail:
| |
Collapse
|
3
|
Wang J, Zhang J, Cai Y, Deng L. DeepMiR2GO: Inferring Functions of Human MicroRNAs Using a Deep Multi-Label Classification Model. Int J Mol Sci 2019; 20:E6046. [PMID: 31801264 PMCID: PMC6928926 DOI: 10.3390/ijms20236046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRNAs) are a highly abundant collection of functional non-coding RNAs involved in cellular regulation and various complex human diseases. Although a large number of miRNAs have been identified, most of their physiological functions remain unknown. Computational methods play a vital role in exploring the potential functions of miRNAs. Here, we present DeepMiR2GO, a tool for integrating miRNAs, proteins and diseases, to predict the gene ontology (GO) functions based on multiple deep neuro-symbolic models. DeepMiR2GO starts by integrating the miRNA co-expression network, protein-protein interaction (PPI) network, disease phenotype similarity network, and interactions or associations among them into a global heterogeneous network. Then, it employs an efficient graph embedding strategy to learn potential network representations of the global heterogeneous network as the topological features. Finally, a deep multi-label classification network based on multiple neuro-symbolic models is built and used to annotate the GO terms of miRNAs. The predicted results demonstrate that DeepMiR2GO performs significantly better than other state-of-the-art approaches in terms of precision, recall, and maximum F-measure.
Collapse
Affiliation(s)
- Jiacheng Wang
- School of Computer Science and Engineering, Central South University, Changsha 410083, China; (J.W.); (Y.C.)
| | - Jingpu Zhang
- School of Computer and Data Science, Henan University of Urban Construction, Pingdingshan 467000, China;
| | - Yideng Cai
- School of Computer Science and Engineering, Central South University, Changsha 410083, China; (J.W.); (Y.C.)
| | - Lei Deng
- School of Computer Science and Engineering, Central South University, Changsha 410083, China; (J.W.); (Y.C.)
- School of Software, Xinjiang University, Urumqi 830008, China
| |
Collapse
|
4
|
Deng L, Wang J, Zhang J. Predicting Gene Ontology Function of Human MicroRNAs by Integrating Multiple Networks. Front Genet 2019; 10:3. [PMID: 30761178 PMCID: PMC6361788 DOI: 10.3389/fgene.2019.00003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) have been demonstrated to play significant biological roles in many human biological processes. Inferring the functions of miRNAs is an important strategy for understanding disease pathogenesis at the molecular level. In this paper, we propose an integrated model, PmiRGO, to infer the gene ontology (GO) functions of miRNAs by integrating multiple data sources, including the expression profiles of miRNAs, miRNA-target interactions, and protein-protein interactions (PPI). PmiRGO starts by building a global network consisting of three networks. Then, it employs DeepWalk to learn latent representations as network features of the global heterogeneous network. Finally, the SVM-based models are applied to label the GO terms of miRNAs. The experimental results show that PmiRGO has a significantly better performance than existing state-of-the-art methods in terms of F max . A case study further demonstrates the feasibility of PmiRGO to annotate the potential functions of miRNAs.
Collapse
Affiliation(s)
- Lei Deng
- School of Software, Central South University, Changsha, China
| | - Jiacheng Wang
- School of Software, Central South University, Changsha, China
| | - Jingpu Zhang
- School of Computer and Data Science, Henan University of Urban Construction, Pingdingshan, China
| |
Collapse
|
5
|
Shahmuradov IA, Umarov RK, Solovyev VV. TSSPlant: a new tool for prediction of plant Pol II promoters. Nucleic Acids Res 2017; 45:e65. [PMID: 28082394 PMCID: PMC5416875 DOI: 10.1093/nar/gkw1353] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/16/2016] [Accepted: 12/27/2016] [Indexed: 11/22/2022] Open
Abstract
Our current knowledge of eukaryotic promoters indicates their complex architecture that is often composed of numerous functional motifs. Most of known promoters include multiple and in some cases mutually exclusive transcription start sites (TSSs). Moreover, TSS selection depends on cell/tissue, development stage and environmental conditions. Such complex promoter structures make their computational identification notoriously difficult. Here, we present TSSPlant, a novel tool that predicts both TATA and TATA-less promoters in sequences of a wide spectrum of plant genomes. The tool was developed by using large promoter collections from ppdb and PlantProm DB. It utilizes eighteen significant compositional and signal features of plant promoter sequences selected in this study, that feed the artificial neural network-based model trained by the backpropagation algorithm. TSSPlant achieves significantly higher accuracy compared to the next best promoter prediction program for both TATA promoters (MCC≃0.84 and F1-score≃0.91 versus MCC≃0.51 and F1-score≃0.71) and TATA-less promoters (MCC≃0.80, F1-score≃0.89 versus MCC≃0.29 and F1-score≃0.50). TSSPlant is available to download as a standalone program at http://www.cbrc.kaust.edu.sa/download/.
Collapse
Affiliation(s)
- Ilham A. Shahmuradov
- King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Institue of Molecular Biology and Biotechnologies, ANAS, 2 Matbuat strasse, Baku AZ1073, Azerbaijan
| | - Ramzan Kh. Umarov
- King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | | |
Collapse
|
6
|
Plant miRNA function prediction based on functional similarity network and transductive multi-label classification algorithm. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2015.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
7
|
Huang WL, Tung CW, Liaw C, Huang HL, Ho SY. Rule-based knowledge acquisition method for promoter prediction in human and Drosophila species. ScientificWorldJournal 2014; 2014:327306. [PMID: 24955394 PMCID: PMC3927563 DOI: 10.1155/2014/327306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 10/10/2013] [Indexed: 01/08/2023] Open
Abstract
The rapid and reliable identification of promoter regions is important when the number of genomes to be sequenced is increasing very speedily. Various methods have been developed but few methods investigate the effectiveness of sequence-based features in promoter prediction. This study proposes a knowledge acquisition method (named PromHD) based on if-then rules for promoter prediction in human and Drosophila species. PromHD utilizes an effective feature-mining algorithm and a reference feature set of 167 DNA sequence descriptors (DNASDs), comprising three descriptors of physicochemical properties (absorption maxima, molecular weight, and molar absorption coefficient), 128 top-ranked descriptors of 4-mer motifs, and 36 global sequence descriptors. PromHD identifies two feature subsets with 99 and 74 DNASDs and yields test accuracies of 96.4% and 97.5% in human and Drosophila species, respectively. Based on the 99- and 74-dimensional feature vectors, PromHD generates several if-then rules by using the decision tree mechanism for promoter prediction. The top-ranked informative rules with high certainty grades reveal that the global sequence descriptor, the length of nucleotide A at the first position of the sequence, and two physicochemical properties, absorption maxima and molecular weight, are effective in distinguishing promoters from non-promoters in human and Drosophila species, respectively.
Collapse
Affiliation(s)
- Wen-Lin Huang
- Department of Management Information System, Asia Pacific Institute of Creativity, Miaoli 351, Taiwan
| | - Chun-Wei Tung
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chyn Liaw
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Hui-Ling Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 300, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 300, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
8
|
Kumari S, Ware D. Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots. PLoS One 2013; 8:e79011. [PMID: 24205361 PMCID: PMC3812177 DOI: 10.1371/journal.pone.0079011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 09/18/2013] [Indexed: 01/22/2023] Open
Abstract
Transcription initiation, essential to gene expression regulation, involves recruitment of basal transcription factors to the core promoter elements (CPEs). The distribution of currently known CPEs across plant genomes is largely unknown. This is the first large scale genome-wide report on the computational prediction of CPEs across eight plant genomes to help better understand the transcription initiation complex assembly. The distribution of thirteen known CPEs across four monocots (Brachypodium distachyon, Oryza sativa ssp. japonica, Sorghum bicolor, Zea mays) and four dicots (Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera, Glycine max) reveals the structural organization of the core promoter in relation to the TATA-box as well as with respect to other CPEs. The distribution of known CPE motifs with respect to transcription start site (TSS) exhibited positional conservation within monocots and dicots with slight differences across all eight genomes. Further, a more refined subset of annotated genes based on orthologs of the model monocot (O. sativa ssp. japonica) and dicot (A. thaliana) genomes supported the positional distribution of these thirteen known CPEs. DNA free energy profiles provided evidence that the structural properties of promoter regions are distinctly different from that of the non-regulatory genome sequence. It also showed that monocot core promoters have lower DNA free energy than dicot core promoters. The comparison of monocot and dicot promoter sequences highlights both the similarities and differences in the core promoter architecture irrespective of the species-specific nucleotide bias. This study will be useful for future work related to genome annotation projects and can inspire research efforts aimed to better understand regulatory mechanisms of transcription.
Collapse
Affiliation(s)
- Sunita Kumari
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America,
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America,
- United States Department of Agriculture-Agriculture Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, United States of America
| |
Collapse
|
9
|
Prediction of plant promoters based on hexamers and random triplet pair analysis. Algorithms Mol Biol 2011; 6:19. [PMID: 21711543 PMCID: PMC3160368 DOI: 10.1186/1748-7188-6-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 06/28/2011] [Indexed: 11/10/2022] Open
Abstract
Background With an increasing number of plant genome sequences, it has become important to develop a robust computational method for detecting plant promoters. Although a wide variety of programs are currently available, prediction accuracy of these still requires further improvement. The limitations of these methods can be addressed by selecting appropriate features for distinguishing promoters and non-promoters. Methods In this study, we proposed two feature selection approaches based on hexamer sequences: the Frequency Distribution Analyzed Feature Selection Algorithm (FDAFSA) and the Random Triplet Pair Feature Selecting Genetic Algorithm (RTPFSGA). In FDAFSA, adjacent triplet-pairs (hexamer sequences) were selected based on the difference in the frequency of hexamers between promoters and non-promoters. In RTPFSGA, random triplet-pairs (RTPs) were selected by exploiting a genetic algorithm that distinguishes frequencies of non-adjacent triplet pairs between promoters and non-promoters. Then, a support vector machine (SVM), a nonlinear machine-learning algorithm, was used to classify promoters and non-promoters by combining these two feature selection approaches. We referred to this novel algorithm as PromoBot. Results Promoter sequences were collected from the PlantProm database. Non-promoter sequences were collected from plant mRNA, rRNA, and tRNA of PlantGDB and plant miRNA of miRBase. Then, in order to validate the proposed algorithm, we applied a 5-fold cross validation test. Training data sets were used to select features based on FDAFSA and RTPFSGA, and these features were used to train the SVM. We achieved 89% sensitivity and 86% specificity. Conclusions We compared our PromoBot algorithm to five other algorithms. It was found that the sensitivity and specificity of PromoBot performed well (or even better) with the algorithms tested. These results show that the two proposed feature selection methods based on hexamer frequencies and random triplet-pair could be successfully incorporated into a supervised machine learning method in promoter classification problem. As such, we expect that PromoBot can be used to help identify new plant promoters. Source codes and analysis results of this work could be provided upon request.
Collapse
|
10
|
Peng FY, Weselake RJ. Gene coexpression clusters and putative regulatory elements underlying seed storage reserve accumulation in Arabidopsis. BMC Genomics 2011; 12:286. [PMID: 21635767 PMCID: PMC3126783 DOI: 10.1186/1471-2164-12-286] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 06/02/2011] [Indexed: 12/16/2022] Open
Abstract
Background In Arabidopsis, a large number of genes involved in the accumulation of seed storage reserves during seed development have been characterized, but the relationship of gene expression and regulation underlying this physiological process remains poorly understood. A more holistic view of this molecular interplay will help in the further study of the regulatory mechanisms controlling seed storage compound accumulation. Results We identified gene coexpression networks in the transcriptome of developing Arabidopsis (Arabidopsis thaliana) seeds from the globular to mature embryo stages by analyzing publicly accessible microarray datasets. Genes encoding the known enzymes in the fatty acid biosynthesis pathway were found in one coexpression subnetwork (or cluster), while genes encoding oleosins and seed storage proteins were identified in another subnetwork with a distinct expression profile. In the triacylglycerol assembly pathway, only the genes encoding diacylglycerol acyltransferase 1 (DGAT1) and a putative cytosolic "type 3" DGAT exhibited a similar expression pattern with genes encoding oleosins. We also detected a large number of putative cis-acting regulatory elements in the promoter regions of these genes, and promoter motifs for LEC1 (LEAFY COTYLEDON 1), DOF (DNA-binding-with-One-Finger), GATA, and MYB transcription factors (TF), as well as SORLIP5 (Sequences Over-Represented in Light-Induced Promoters 5), are overrepresented in the promoter regions of fatty acid biosynthetic genes. The conserved CCAAT motifs for B3-domain TFs and binding sites for bZIP (basic-leucine zipper) TFs are enriched in the promoters of genes encoding oleosins and seed storage proteins. Conclusions Genes involved in the accumulation of seed storage reserves are expressed in distinct patterns and regulated by different TFs. The gene coexpression clusters and putative regulatory elements presented here provide a useful resource for further experimental characterization of protein interactions and regulatory networks in this process.
Collapse
Affiliation(s)
- Fred Y Peng
- Agricultural Lipid Biotechnology Program, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
11
|
de Avila E Silva S, Gerhardt GJL, Echeverrigaray S. Rules extraction from neural networks applied to the prediction and recognition of prokaryotic promoters. Genet Mol Biol 2011; 34:353-60. [PMID: 21734842 PMCID: PMC3115335 DOI: 10.1590/s1415-47572011000200031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 01/11/2011] [Indexed: 11/21/2022] Open
Abstract
Promoters are DNA sequences located upstream of the gene region and play a central role in gene expression. Computational techniques show good accuracy in gene prediction but are less successful in predicting promoters, primarily because of the high number of false positives that reflect characteristics of the promoter sequences. Many machine learning methods have been used to address this issue. Neural Networks (NN) have been successfully used in this field because of their ability to recognize imprecise and incomplete patterns characteristic of promoter sequences. In this paper, NN was used to predict and recognize promoter sequences in two data sets: (i) one based on nucleotide sequence information and (ii) another based on stability sequence information. The accuracy was approximately 80% for simulation (i) and 68% for simulation (ii). In the rules extracted, biological consensus motifs were important parts of the NN learning process in both simulations.
Collapse
Affiliation(s)
- Scheila de Avila E Silva
- Programa de Pós-Graduação em Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS, Brazil
| | | | | |
Collapse
|
12
|
Identification of TATA and TATA-less promoters in plant genomes by integrating diversity measure, GC-Skew and DNA geometric flexibility. Genomics 2010; 97:112-20. [PMID: 21112384 DOI: 10.1016/j.ygeno.2010.11.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 11/05/2010] [Accepted: 11/12/2010] [Indexed: 11/20/2022]
Abstract
Accurate identification of core promoters is important for gaining more insight about the understanding of the eukaryotic transcription regulation. In this study, the authors focused on the biologically realistic promoter prediction of plant genomes. By analyzing the correlative conservation, GC-compositional bias and specific structural patterns of TATA and TATA-less promoters in PlantPromDB, a hybrid multi-feature approach based on support vector machine (SVM) for predicting the two types of promoters were developed by integrating local word content, GC-Skew and DNA geometric flexibility. Compared with the TSSP-TCM program on the same test dataset, better prediction results were obtained. Especially for the TATA-less promoter, the accuracy is 10% higher than the result of TSSP-TCM program. The good performance of the hybrid promoters and the experimental data also indicate that our method has the ability to locate the promoter region of the plant genome.
Collapse
|
13
|
Abstract
In this chapter, we present a brief overview of current knowledge about the promoters of plant microRNAs (miRNAs), and provide a step-by-step guide for predicting plant miRNA promoter elements using known transcription factor binding motifs. The approach to promoter element prediction is based on a carefully constructed collection of Positional Weight Matrices (PWMs) for known transcription factors (TFs) in Arabidopsis. A key concept of the method is to use scoring thresholds for potential binding sites that are appropriate to each individual transcription factor. While the procedure can be applied to search for Transcription Factor Binding Sites (TFBSs) in any pol-II promoter region, it is particularly practical for the case of plant miRNA promoters where upstream sequence regions and binding sites are not readily available in existing databases. The majority of the material described in this chapter is available for download at http://microrna.gr.
Collapse
Affiliation(s)
- Molly Megraw
- Department of Genetics, Center for Bioinformatics, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
14
|
Fauteux F, Strömvik MV. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae. BMC PLANT BIOLOGY 2009; 9:126. [PMID: 19843335 PMCID: PMC2770497 DOI: 10.1186/1471-2229-9-126] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 10/20/2009] [Indexed: 05/22/2023]
Abstract
BACKGROUND Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. RESULTS We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP) gene promoters from three plant families, namely Brassicaceae (mustards), Fabaceae (legumes) and Poaceae (grasses) using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L.) Heynh.), soybean (Glycine max (L.) Merr.) and rice (Oryza sativa L.) respectively. We have identified three conserved motifs (two RY-like and one ACGT-like) in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. CONCLUSION Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination of conserved motifs. The majority of discovered motifs match experimentally characterized cis-regulatory elements. These results provide a good starting point for further experimental analysis of plant seed-specific promoters and our methodology can be used to unravel more transcriptional regulatory mechanisms in plants and other eukaryotes.
Collapse
Affiliation(s)
- François Fauteux
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, Canada
- McGill Centre for Bioinformatics, McGill University, Montréal, Canada
| | - Martina V Strömvik
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, Canada
- McGill Centre for Bioinformatics, McGill University, Montréal, Canada
| |
Collapse
|
15
|
Anwar F, Baker SM, Jabid T, Mehedi Hasan M, Shoyaib M, Khan H, Walshe R. Pol II promoter prediction using characteristic 4-mer motifs: a machine learning approach. BMC Bioinformatics 2008; 9:414. [PMID: 18834544 PMCID: PMC2575220 DOI: 10.1186/1471-2105-9-414] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 10/04/2008] [Indexed: 01/03/2023] Open
Abstract
Background Eukaryotic promoter prediction using computational analysis techniques is one of the most difficult jobs in computational genomics that is essential for constructing and understanding genetic regulatory networks. The increased availability of sequence data for various eukaryotic organisms in recent years has necessitated for better tools and techniques for the prediction and analysis of promoters in eukaryotic sequences. Many promoter prediction methods and tools have been developed to date but they have yet to provide acceptable predictive performance. One obvious criteria to improve on current methods is to devise a better system for selecting appropriate features of promoters that distinguish them from non-promoters. Secondly improved performance can be achieved by enhancing the predictive ability of the machine learning algorithms used. Results In this paper, a novel approach is presented in which 128 4-mer motifs in conjunction with a non-linear machine-learning algorithm utilising a Support Vector Machine (SVM) are used to distinguish between promoter and non-promoter DNA sequences. By applying this approach to plant, Drosophila, human, mouse and rat sequences, the classification model has showed 7-fold cross-validation percentage accuracies of 83.81%, 94.82%, 91.25%, 90.77% and 82.35% respectively. The high sensitivity and specificity value of 0.86 and 0.90 for plant; 0.96 and 0.92 for Drosophila; 0.88 and 0.92 for human; 0.78 and 0.84 for mouse and 0.82 and 0.80 for rat demonstrate that this technique is less prone to false positive results and exhibits better performance than many other tools. Moreover, this model successfully identifies location of promoter using TATA weight matrix. Conclusion The high sensitivity and specificity indicate that 4-mer frequencies in conjunction with supervised machine-learning methods can be beneficial in the identification of RNA pol II promoters comparative to other methods. This approach can be extended to identify promoters in sequences for other eukaryotic genomes.
Collapse
Affiliation(s)
- Firoz Anwar
- Department of Computer Science and Engineering, East West University, Bangladesh.
| | | | | | | | | | | | | |
Collapse
|
16
|
Megraw M, Baev V, Rusinov V, Jensen ST, Kalantidis K, Hatzigeorgiou AG. MicroRNA promoter element discovery in Arabidopsis. RNA (NEW YORK, N.Y.) 2006; 12:1612-9. [PMID: 16888323 PMCID: PMC1557699 DOI: 10.1261/rna.130506] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this study we present a method of identifying Arabidopsis miRNA promoter elements using known transcription factor binding motifs. We provide a comparative analysis of the representation of these elements in miRNA promoters, protein-coding gene promoters, and random genomic sequences. We report five transcription factor (TF) binding motifs that show evidence of overrepresentation in miRNA promoter regions relative to the promoter regions of protein-coding genes. This investigation is based on the analysis of 800-nucleotide regions upstream of 63 experimentally verified Transcription Start Sites (TSS) for miRNA primary transcripts in Arabidopsis. While the TATA-box binding motif was also previously reported by Xie and colleagues, the transcription factors AtMYC2, ARF, SORLREP3, and LFY are identified for the first time as overrepresented binding motifs in miRNA promoters.
Collapse
Affiliation(s)
- Molly Megraw
- Center for Bioinformatics and Department of Genetics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|