A population of descending neurons that regulates the flight motor of Drosophila.
Curr Biol 2022;
32:1189-1196.e6. [PMID:
35090590 PMCID:
PMC9206711 DOI:
10.1016/j.cub.2022.01.008]
[Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/06/2021] [Accepted: 01/05/2022] [Indexed: 01/09/2023]
Abstract
Like many insect species, Drosophila melanogaster are capable of maintaining a stable flight trajectory for periods lasting up to several hours1,2. Because aerodynamic torque is roughly proportional to the fifth power of wing length3, even small asymmetries in wing size require the maintenance of subtle bilateral differences in flapping motion to maintain a stable path. Flies can even fly straight after losing half of a wing, a feat they accomplish via very large, sustained kinematic changes to both the damaged and intact wings4. Thus, the neural network responsible for stable flight must be capable of sustaining fine-scaled control over wing motion across a large dynamic range. In this paper, we describe an unusual type of descending neuron (DNg02) that projects directly from visual output regions of the brain to the dorsal flight neuropil of the ventral nerve cord. Unlike many descending neurons, which exist as single bilateral pairs with unique morphology, there is a population of at least 15 DNg02 cell pairs with nearly identical shape. By optogenetically activating different numbers of DNg02 cells, we demonstrate that these neurons regulate wingbeat amplitude over a wide dynamic range via a population code. Using 2-photon functional imaging, we show that DNg02 cells are responsive to visual motion during flight in a manner that would make them well suited to continuously regulate bilateral changes in wing kinematics. Collectively, we have identified a critical set of DNs that provide the sensitivity and dynamic range required for flight control.
Using an activation screen in flying flies, Namiki et al. identify a population of descending neurons that regulates wing amplitude over a large dynamic range. Via functional imaging and activation of different numbers of cells, they show that this population is a core component of the flight circuit, allowing the fly to steer and fly straight.
Collapse