1
|
Nasir MA, Nawaz S, Huang J. A Mini-review of Computational Approaches to Predict Functions and Findings of Novel Micro Peptides. Curr Bioinform 2021. [DOI: 10.2174/1574893615999200811130522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
:
New techniques in bioinformatics and the study of the transcriptome at a wide-scale
have uncovered the fact that a large part of the genome is being translated than recently perceived
thoughts and research, bringing about the creation of a various quantity of RNA with proteincoding
and noncoding potential. A lot of RNA particles have been considered as noncoding due to
many reasons, according to developing proofs. Like many sORFs that encode many functional
micro peptides have neglected due to their tiny sizes.
:
Advanced studies reveal many major biological functions of these sORFs and their encoded micro
peptides in a different and wide range of species. All the achievement in the identification of these
sORFs and micro peptides is due to the progressive bioinformatics and high-throughput
sequencing methods. This field has pulled in more consideration due to the detection of a large
number of more sORFs and micro peptides. Nowadays, COVID-19 grabs all the attention of
science as it is a sudden outbreak. sORFs of COVID-19 should be revealed for new ways to
understand this virus. This review discusses ongoing progress in the systems for the identification
and distinguishing proof of sORFs and micro peptides.
Collapse
Affiliation(s)
- Mohsin Ali Nasir
- Center for Informational Biology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 611731, China
| | - Samia Nawaz
- Center for Informational Biology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 611731, China
| | - Jian Huang
- Center for Informational Biology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 611731, China
| |
Collapse
|
2
|
Seligmann H, Warthi G. Natural pyrrolysine-biased translation of stop codons in mitochondrial peptides entirely coded by expanded codons. Biosystems 2020; 196:104180. [PMID: 32534170 DOI: 10.1016/j.biosystems.2020.104180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 12/31/2022]
Abstract
During the noncanonical deletion transcription, k nucleotides are systematically skipped/deleted after each transcribed trinucleotide producing deletion-RNAs (delRNAs). Peptides matching delRNAs either result from (a) canonical translation of delRNAs; or (b) noncanonical translation of regular transcripts along expanded codons. Only along frame "0" (start site) (a) and (b) produce identical peptides. Here, mitochondrial mass spectrometry data analyses assume expanded codon/del-transcription with 3 + k (k from 0 to 12) nucleotides. Detected peptides map preferentially on previously identified delRNAs. More peptides were detected for k (1-12) when del-transcriptional and expanded codon translations start sites coincide (i.e. the 0th frame) than for frames +1 or +2. Hence, both (a) and (b) produced peptides identified here. Biases for frame 0 decrease for k > 2, reflecting codon/anticodon expansion limits. Further analyses find preferential pyrrolysine insertion at stop codons, suggesting Pyl-specific mitochondrial suppressor tRNAs loaded by Pyl-specific tRNA synthetases with unknown origins. Pyl biases at stops are stronger for regular than expanded codons suggesting that Pyl-tRNAs are less competitive with near-cognate tRNAs in expanded codon contexts. Statistical biases for these findings exclude that detected peptides are experimental and/or bioinformatic artefacts implying both del-transcription and expanded codons translation occur in human mitochondria.
Collapse
Affiliation(s)
- Hervé Seligmann
- The National Natural History Collections, The Hebrew University of Jerusalem, 91404, Jerusalem, Israel; Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, F-38700, La Tronche, France.
| | - Ganesh Warthi
- Aix-Marseille University, IRD, VITROME, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, France.
| |
Collapse
|
3
|
Seligmann H. First arrived, first served: competition between codons for codon-amino acid stereochemical interactions determined early genetic code assignments. Naturwissenschaften 2020; 107:20. [PMID: 32367155 DOI: 10.1007/s00114-020-01676-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/10/2020] [Accepted: 04/05/2020] [Indexed: 12/12/2022]
Abstract
Stereochemical nucleotide-amino acid interactions, in the form of noncovalent nucleotide-amino acid interactions, potentially produced the genetic code's codon-amino acid assignments. Empirical estimates of single nucleotide-amino acid affinities on surfaces and in solution are used to test whether trinucleotide-amino acid affinities determined genetic code assignments pending the principle "first arrived, first served": presumed early amino acids have greater codon-amino acid affinities than ulterior ones. Here, these single nucleotide affinities are used to approximate all 64 × 20 trinucleotide-amino acid affinities. Analyses show that (1) on surfaces, genetic code codon-amino acid assignments tend to match high affinities for the amino acids that integrated earliest the genetic code (according to Wong's metabolic coevolution hypothesis between nucleotides and amino acids) and (2) in solution, the same principle holds for the anticodon-amino acid assignments. Affinity analyses match best genetic code assignments when assuming that trinucleotides competed for amino acids, rather than amino acids for trinucleotides. Codon-amino acid affinities stick better to genetic code assignments than anticodon-amino acid affinities. Presumably, two independent coding systems, on surfaces and in solution, converged, and formed the current translation system. Proto-translation on surfaces by direct codon-amino acid interactions without tRNA-like adaptors coadapted with a system emerging in solution by proto-tRNA anticodon-amino acid interactions. These systems assigned identical or similar cognates to codons on surfaces and to anticodons in solution. Results indicate that a prebiotic metabolism predated genetic code self-organization.
Collapse
Affiliation(s)
- Hervé Seligmann
- The National Natural History Collections, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel. .,Faculty of Medicine, Université Grenoble Alpes, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecoms4Health, F-38700, La Tronche, France.
| |
Collapse
|
4
|
|
5
|
Yu X, Tan W, Zhang H, Jiang W, Gao H, Wang W, Liu Y, Wang Y, Tian X. Characterization of the Complete Mitochondrial Genome of Harpalus sinicus and Its Implications for Phylogenetic Analyses. Genes (Basel) 2019; 10:E724. [PMID: 31540431 PMCID: PMC6771156 DOI: 10.3390/genes10090724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 01/13/2023] Open
Abstract
In this study, we report the complete mitochondrial genome of Harpalus sinicus (occasionally named as the Chinese ground beetle) which is the first mitochondrial genome for Harpalus. The mitogenome is 16,521 bp in length, comprising 37 genes, and a control region. The A + T content of the mitogenome is as high as 80.6%. A mitochondrial origins of light-strand replication (OL)-like region is found firstly in the insect mitogenome, which can form a stem-loop hairpin structure. Thirteen protein-coding genes (PCGs) share high homology, and all of them are under purifying selection. All tRNA genes (tRNAs) can be folded into the classic cloverleaf secondary structures except tRNA-Ser (GCU), which lacks a dihydrouridine (DHU) stem. The secondary structure of two ribosomal RNA genes (rRNAs) is predicted based on previous insect models. Twelve types of tandem repeats and two stem-loop structures are detected in the control region, and two stem-loop structures may be involved in the initiation of replication and transcription. Additionally, phylogenetic analyses based on mitogenomes suggest that Harpalus is an independent lineage in Carabidae, and is closely related to four genera (Abax, Amara, Stomis, and Pterostichus). In general, this study provides meaningful genetic information for Harpalus sinicus and new insights into the phylogenetic relationships within the Carabidae.
Collapse
Affiliation(s)
- Xiaolei Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Tan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huanyu Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Weiling Jiang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wenxiu Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuxia Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoxuan Tian
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
6
|
Seligmann H. Localized Context-Dependent Effects of the "Ambush" Hypothesis: More Off-Frame Stop Codons Downstream of Shifty Codons. DNA Cell Biol 2019; 38:786-795. [PMID: 31157984 DOI: 10.1089/dna.2019.4725] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ambush hypothesis speculates that off-frame stop codons increase translational efficiency after ribosomal frameshifts by stopping early frameshifted translation. Some evidences fit this hypothesis: (1) synonymous codon usages increase with their potential contribution to off-frame stops; (2) the genetic code assigns frequent amino acids to codon families contributing to off-frame stops; (3) positive biases for off-frame stops (AT rich) occur despite adverse nucleotide (GC) biases; and (4) mitochondrial off-frame stop codon densities increase with ribosomal structural instability, potential proxy of frameshift frequencies. In this study, analyses of vertebrate mitogenes and tRNA synthetase genes from all superkingdoms and viruses test a new prediction of the ambush hypothesis: sequences immediately downstream of frameshift-inducing homopolymer codons (AAA, CCC, GGG, and TTT) are off-frame stop rich. Codons immediately downstream of homopolymer codons form more than average off-frame stops, biases are stronger than for corresponding upstream distances and for any other group of synonymous codons. Sequences downstream of that high-density region are off-frame stop depleted. This decrease suggests that off-frame stops, combined with suppressor tRNAs regulate translation of overlapping coding sequences. Results show the predictive power of the ambush hypothesis, from macroevolutionary (genetic code structure) to detailed gene sequence anatomy.
Collapse
Affiliation(s)
- Hervé Seligmann
- The National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
7
|
Abstract
INTRODUCTION Small open reading frames (sORFs) with potential protein-coding capacity have been disclosed in various transcripts, including long noncoding RNAs (LncRNAs), mRNAs (5'-upstream, coding domain, and 3'-downstream), circular RNAs, pri-miRNAs, and ribosomal RNAs (rRNAs). Recent characterization of several sORF-encoded peptides (SEPs or micropeptides) revealed their important roles in many fundamental biological processes in a broad range of species from yeast to human. The success in the mining of micropeptides attributes to the advanced bioinformatics and high-throughput sequencing techniques. Areas covered: sORFs and SEPs were overlooked for their tiny size and the difficulty of identification by bioinformatics analyses. With more and more sORFs and SEPs have been identified, this field has attracted more attention. This review covers recent advances in the strategies for the detection and identification of sORFs and SEPs. Expert commentary: The advantages and drawbacks of the strategies for detection and identification of sORFs and SEPs are discussed, as well as the techniques that are used to decipher the roles of micropeptides in organisms are described.
Collapse
Affiliation(s)
- Xinqiang Yin
- a The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province , China Pharmaceutical University , Nanjing , China.,b The Basic Medical School , North Sichuan Medical College , Nanchong , China
| | - Yuanyuan Jing
- c Department of Preventive Medicine , North Sichuan Medical College , Nanchong , China
| | - Hanmei Xu
- a The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province , China Pharmaceutical University , Nanjing , China.,d State Key Laboratory of Natural Medicines, Ministry of Education , China Pharmaceutical University , Nanjing , China
| |
Collapse
|
8
|
Seligmann H. Protein Sequences Recapitulate Genetic Code Evolution. Comput Struct Biotechnol J 2018; 16:177-189. [PMID: 30002789 PMCID: PMC6040577 DOI: 10.1016/j.csbj.2018.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/16/2022] Open
Abstract
Several hypotheses predict ranks of amino acid assignments to genetic code's codons. Analyses here show that average positions of amino acid species in proteins correspond to assignment ranks, in particular as predicted by Juke's neutral mutation hypothesis for codon assignments. In all tested protein groups, including co- and post-translationally folding proteins, 'recent' amino acids are on average closer to gene 5' extremities than 'ancient' ones. Analyses of pairwise residue contact energies matrices suggest that early amino acids stereochemically selected late ones that stablilize residue interactions within protein cores, presumably producing 5'-late-to-3'-early amino acid protein sequence gradients. The gradient might reduce protein misfolding, also after mutations, extending principles of neutral mutations to protein folding. Presumably, in self-perpetuating and self-correcting systems like the genetic code, initial conditions produce similarities between evolution of the process (the genetic code) and 'ontogeny' of resulting structures (here proteins), producing apparent teleonomy between process and product.
Collapse
Affiliation(s)
- Hervé Seligmann
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR MEPHI, Aix-Marseille Université, IRD, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-Universitaire Méditerranée-Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France.
| |
Collapse
|
9
|
Alignment-based and alignment-free methods converge with experimental data on amino acids coded by stop codons at split between nuclear and mitochondrial genetic codes. Biosystems 2018; 167:33-46. [DOI: 10.1016/j.biosystems.2018.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/18/2018] [Accepted: 03/19/2018] [Indexed: 12/11/2022]
|
10
|
Bijective codon transformations show genetic code symmetries centered on cytosine's coding properties. Theory Biosci 2017; 137:17-31. [PMID: 29147851 DOI: 10.1007/s12064-017-0258-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022]
Abstract
Homology of some RNAs with template DNA requires systematic exchanges between nucleotides. Such exchanges produce 'swinger' RNA along 23 bijective transformations (nine symmetric, X ↔ Y; and 14 asymmetric, X → Y → Z → X, for example A ↔ C and A → C → G → A, respectively). Here, analyses compare amino acids coded by swinger-transformed codons to those coded by untransformed codons, defining coding invariance after transformations. Swinger transformations cluster according to coding invariance in four groups characterized by transformations into cytosine (C = C, T → C, A → C, and G → C). C's central mutational coding role shows that swinger transformations constrained genetic code genesis. Coding invariance post-transformations correlate positively/negatively with mitochondrial swinger transcription/lepidosaurian body temperature. Presumably, low/high temperatures stabilize/revert rare swinger polymerization modes, producing long swinger sequences/point mutations, respectively. Coding invariance after swinger transformations might compensate effects of swinger polymerizations in species with low body temperatures. Hypothetically, swinger transcription increased coding potential of RNA self-replicating protolife systems under heating/cooling cycles.
Collapse
|
11
|
Seligmann H, Warthi G. Genetic Code Optimization for Cotranslational Protein Folding: Codon Directional Asymmetry Correlates with Antiparallel Betasheets, tRNA Synthetase Classes. Comput Struct Biotechnol J 2017; 15:412-424. [PMID: 28924459 PMCID: PMC5591391 DOI: 10.1016/j.csbj.2017.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/20/2017] [Accepted: 08/05/2017] [Indexed: 12/14/2022] Open
Abstract
A new codon property, codon directional asymmetry in nucleotide content (CDA), reveals a biologically meaningful genetic code dimension: palindromic codons (first and last nucleotides identical, codon structure XZX) are symmetric (CDA = 0), codons with structures ZXX/XXZ are 5'/3' asymmetric (CDA = - 1/1; CDA = - 0.5/0.5 if Z and X are both purines or both pyrimidines, assigning negative/positive (-/+) signs is an arbitrary convention). Negative/positive CDAs associate with (a) Fujimoto's tetrahedral codon stereo-table; (b) tRNA synthetase class I/II (aminoacylate the 2'/3' hydroxyl group of the tRNA's last ribose, respectively); and (c) high/low antiparallel (not parallel) betasheet conformation parameters. Preliminary results suggest CDA-whole organism associations (body temperature, developmental stability, lifespan). Presumably, CDA impacts spatial kinetics of codon-anticodon interactions, affecting cotranslational protein folding. Some synonymous codons have opposite CDA sign (alanine, leucine, serine, and valine), putatively explaining how synonymous mutations sometimes affect protein function. Correlations between CDA and tRNA synthetase classes are weaker than between CDA and antiparallel betasheet conformation parameters. This effect is stronger for mitochondrial genetic codes, and potentially drives mitochondrial codon-amino acid reassignments. CDA reveals information ruling nucleotide-protein relations embedded in reversed (not reverse-complement) sequences (5'-ZXX-3'/5'-XXZ-3').
Collapse
Affiliation(s)
- Hervé Seligmann
- Aix-Marseille Univ, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS UMR7278, IRD 198, INSERM U1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, Postal code 13385, France
- Dept. Ecol Evol Behav, Alexander Silberman Inst Life Sci, The Hebrew University of Jerusalem, IL-91904 Jerusalem, Israel
| | - Ganesh Warthi
- Aix-Marseille Univ, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS UMR7278, IRD 198, INSERM U1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, Postal code 13385, France
| |
Collapse
|
12
|
Reviewing evidence for systematic transcriptional deletions, nucleotide exchanges, and expanded codons, and peptide clusters in human mitochondria. Biosystems 2017; 160:10-24. [PMID: 28807694 DOI: 10.1016/j.biosystems.2017.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/26/2017] [Accepted: 08/04/2017] [Indexed: 12/12/2022]
Abstract
Polymerization sometimes transforms sequences by (a) systematic deletions of mono-, dinucleotides after trinucleotides, or (b) 23 systematic nucleotide exchanges (9 symmetric, X<>Y, e.g. G<>T, 14 asymmetric, X > Y > Z > X, e.g. A > G > T > A), producing del- and swinger RNAs. Some peptides correspond to del- and swinger RNA translations, also according to tetracodons, codons expanded by a silent nucleotide. Here new analyzes assume different proteolytic patterns, partially alleviating false negative peptide detection biases, expanding noncanonical mitoproteome profiles. Mito-genomic, -transcriptomic and -proteomic evidence for noncanonical transcriptions and translations are reviewed and clusters of del- and swinger peptides (also along tetracodons) are described. Noncanonical peptide clusters indicate regulated expression of cryptically encoded mitochondrial protein coding genes. These candidate noncanonical proteins don't resemble known proteins.
Collapse
|
13
|
Seligmann H. Natural mitochondrial proteolysis confirms transcription systematically exchanging/deleting nucleotides, peptides coded by expanded codons. J Theor Biol 2016; 414:76-90. [PMID: 27899286 DOI: 10.1016/j.jtbi.2016.11.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 11/11/2016] [Accepted: 11/22/2016] [Indexed: 12/19/2022]
Abstract
Protein sequences have higher linguistic complexities than human languages. This indicates undeciphered multilayered, overprinted information/genetic codes. Some superimposed genetic information is revealed by detections of transcripts systematically (a) exchanging nucleotides (nine symmetric, e.g. A<->C, fourteen asymmetric, e.g. A->C->G->A, swinger RNAs) translated according to tri-, tetra- and pentacodons, and (b) deleting mono-, dinucleotides after each trinucleotide (delRNAs). Here analyses of two independent proteomic datasets considering natural proteolysis confirm independently translation of these non-canonical RNAs, also along tetra- and pentacodons, increasing coverage of putative, cryptically encoded proteins. Analyses assuming endoproteinase GluC and elastase digestions (cleavages after residues D, E, and A, L, I, V, respectively) detect additional peptides colocalizing with detected non-canonical RNAs. Analyses detect fewer peptides matching GluC-, elastase- than trypsin-digestions: artificial trypsin-digestion outweighs natural proteolysis. Results suggest occurrences of complete proteins entirely matching non-canonical, superimposed encoding(s). Protein-coding after bijective transformations could explain genetic code symmetries, such as along Rumer's transformation.
Collapse
Affiliation(s)
- Hervé Seligmann
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes, Faculté de Médecine, URMITE CNRS-IRD 198 UMER 6236, IHU (Institut Hospitalo-Universitaire), Aix-Marseille University, Marseille, France.
| |
Collapse
|
14
|
Unbiased Mitoproteome Analyses Confirm Non-canonical RNA, Expanded Codon Translations. Comput Struct Biotechnol J 2016; 14:391-403. [PMID: 27830053 PMCID: PMC5094600 DOI: 10.1016/j.csbj.2016.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 01/14/2023] Open
Abstract
Proteomic MS/MS mass spectrometry detections are usually biased towards peptides cleaved by experimentally added digestion enzyme(s). Hence peptides resulting from spontaneous degradation and natural proteolysis usually remain undetected. Previous analyses of tryptic human proteome data (cleavage after K, R) detected non-canonical tryptic peptides translated according to tetra- and pentacodons (codons expanded by silent mono- and dinucleotides), and from transcripts systematically (a) deleting mono-, dinucleotides after trinucleotides (delRNAs), (b) exchanging nucleotides according to 23 bijective transformations. Nine symmetric and fourteen asymmetric nucleotide exchanges (X ↔ Y, e.g. A ↔ C; and X → Y → Z → X, e.g. A → C → G → A) produce swinger RNAs. Here unbiased reanalyses of these proteomic data detect preferentially non-canonical tryptic peptides despite assuming random cleavage. Unbiased analyses couldn't reconstruct experimental tryptic digestion if most detected non-canonical peptides were false positives. Detected non-tryptic non-canonical peptides map preferentially on corresponding, previously described non-canonical transcripts, as for tryptic non-canonical peptides. Hence unbiased analyses independently confirm previous trypsin-biased analyses that showed translations of del- and swinger RNA and expanded codons. Accounting for natural proteolysis completes trypsin-biased mitopeptidome analyses, independently confirms non-canonical transcriptions and translations.
Collapse
|
15
|
Seligmann H. Natural chymotrypsin-like-cleaved human mitochondrial peptides confirm tetra-, pentacodon, non-canonical RNA translations. Biosystems 2016; 147:78-93. [PMID: 27477600 DOI: 10.1016/j.biosystems.2016.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 07/15/2016] [Accepted: 07/26/2016] [Indexed: 12/22/2022]
Abstract
Mass spectra of human mitochondrial peptides match non-canonical transcripts systematically (a) deleting mono/dinucleotides after trinucleotides (delRNA), (b) exchanging nucleotides (swinger RNA), translated according to tri, (c) tetra- and pentacodons (codons expanded by a 4th (and 5th) silent nucleotide(s)). Swinger transcriptions are 23 bijective transformations, nine symmetric (X<->Y, e.g. A<->C) and fourteen asymmetric exchanges (X->Y->Z->X, e.g. A->C->G->A). Here, proteomic analyses assuming cleavage after W,Y, F (chymotrypsin-like, for trypsinized samples) detect fewer chymotrypsinized than trypsinized peptides. Detected non-canonical peptides map preferentially on detected non-canonical RNAs for chymotrypsinized peptides, as previously found for trypsinized peptides. This suggests residual natural chymotrypsin-like digestion detectable within experimentally trypsinized peptide data. Some trypsinized peptides are detected twice, by analyses assuming trypsin, and those assuming chymotrypsin cleavages. They have higher spectra counts than peptides detected only once, meaning that abundant peptides are more frequently detected, but detection certainties resemble those for peptides detected only once. Analyses assuming 'incorrect' digestions are inadequate negative controls for digestion enzymes naturally active in biological samples. Chymotrypsin-analyses confirm non-canonical transcriptions/translations independently of results obtained assuming trypsinization, increase non-canonical peptidome coverage, indicating mitogenome-encoding of yet undetected proteins.
Collapse
Affiliation(s)
- Hervé Seligmann
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes, Faculté de Médecine, Université d'Aix-Marseille, URMITE CNRS-IRD 198 UMER 6236, Marseille, France.
| |
Collapse
|
16
|
Chimeric mitochondrial peptides from contiguous regular and swinger RNA. Comput Struct Biotechnol J 2016; 14:283-97. [PMID: 27453772 PMCID: PMC4942731 DOI: 10.1016/j.csbj.2016.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/19/2016] [Accepted: 06/23/2016] [Indexed: 12/20/2022] Open
Abstract
Previous mass spectrometry analyses described human mitochondrial peptides entirely translated from swinger RNAs, RNAs where polymerization systematically exchanged nucleotides. Exchanges follow one among 23 bijective transformation rules, nine symmetric exchanges (X ↔ Y, e.g. A ↔ C) and fourteen asymmetric exchanges (X → Y → Z → X, e.g. A → C → G → A), multiplying by 24 DNA's protein coding potential. Abrupt switches from regular to swinger polymerization produce chimeric RNAs. Here, human mitochondrial proteomic analyses assuming abrupt switches between regular and swinger transcriptions, detect chimeric peptides, encoded by part regular, part swinger RNA. Contiguous regular- and swinger-encoded residues within single peptides are stronger evidence for translation of swinger RNA than previously detected, entirely swinger-encoded peptides: regular parts are positive controls matched with contiguous swinger parts, increasing confidence in results. Chimeric peptides are 200 × rarer than swinger peptides (3/100,000 versus 6/1000). Among 186 peptides with > 8 residues for each regular and swinger parts, regular parts of eleven chimeric peptides correspond to six among the thirteen recognized, mitochondrial protein-coding genes. Chimeric peptides matching partly regular proteins are rarer and less expressed than chimeric peptides matching non-coding sequences, suggesting targeted degradation of misfolded proteins. Present results strengthen hypotheses that the short mitogenome encodes far more proteins than hitherto assumed. Entirely swinger-encoded proteins could exist. Chimeric peptides are translated from contiguous regular and swinger RNA They are 200x rarer than mitochondrial swinger peptides Chimeric peptides integrated in regular mitochondrial proteins are downregulated Contiguous regular parts are matched positive controls for swinger parts The last point validates results beyond other statistical tests for robustness
Collapse
|
17
|
Barthélémy RM, Seligmann H. Cryptic tRNAs in chaetognath mitochondrial genomes. Comput Biol Chem 2016; 62:119-32. [DOI: 10.1016/j.compbiolchem.2016.04.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/11/2016] [Accepted: 04/14/2016] [Indexed: 12/14/2022]
|
18
|
Swinger RNA self-hybridization and mitochondrial non-canonical swinger transcription, transcription systematically exchanging nucleotides. J Theor Biol 2016; 399:84-91. [PMID: 27079465 DOI: 10.1016/j.jtbi.2016.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/02/2016] [Accepted: 04/05/2016] [Indexed: 11/22/2022]
Abstract
Stem-loop hairpins punctuate mitochondrial post-transcriptional processing. Regulation of mitochondrial swinger transcription, transcription producing RNAs matching the mitogenome only assuming systematic exchanges between nucleotides (23 bijective transformations along 9 symmetric exchanges X<>Y, e.g. A<>G, and 14 asymmetric exchanges X>Y>Z>X, e.g. A>G>C>A) remains unknown. Does swinger RNA self-hybridization regulate swinger, as regular, transcription? Groups of 8 swinger transformations share canonical self-hybridization properties within each group, group 0 includes identity (regular) transcription. The human mitogenome has more stem-loop hairpins than randomized sequences for all groups. Group 2 transformations reveal complementarity of the light strand replication origin (OL) loop and a neighboring tRNA gene, detecting the longtime presumed OL/tRNA homology. Non-canonical G=U pairings in hairpins increases with swinger RNA detection. These results confirm biological relevancy of swinger-transformed DNA/RNA, independently of, and in combination with, previously detected swinger DNA/RNA and swinger peptides. Swinger-transformed mitogenomes include unsuspected multilayered information.
Collapse
|
19
|
Systematically frameshifting by deletion of every 4th or 4th and 5th nucleotides during mitochondrial transcription: RNA self-hybridization regulates delRNA expression. Biosystems 2016; 142-143:43-51. [PMID: 27018206 DOI: 10.1016/j.biosystems.2016.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/11/2016] [Accepted: 03/23/2016] [Indexed: 02/05/2023]
Abstract
In mitochondria, secondary structures punctuate post-transcriptional RNA processing. Recently described transcripts match the human mitogenome after systematic deletions of every 4th, respectively every 4th and 5th nucleotides, called delRNAs. Here I explore predicted stem-loop hairpin formation by delRNAs, and their associations with delRNA transcription and detected peptides matching their translation. Despite missing 25, respectively 40% of the nucleotides in the original sequence, del-transformed sequences form significantly more secondary structures than corresponding randomly shuffled sequences, indicating biological function, independently of, and in combination with, previously detected delRNA and thereof translated peptides. Self-hybridization decreases delRNA abundances, indicating downregulation. Systematic deletions of the human mitogenome reveal new, unsuspected coding and structural informations.
Collapse
|
20
|
Seligmann H. Translation of mitochondrial swinger RNAs according to tri-, tetra- and pentacodons. Biosystems 2015; 140:38-48. [PMID: 26723232 DOI: 10.1016/j.biosystems.2015.11.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/08/2015] [Accepted: 11/23/2015] [Indexed: 10/22/2022]
Abstract
Transcriptomes and proteomes include RNA and protein fragments not matching regular transcription/translation. Some 'non-canonical' mitochondrial transcripts match mitogenomes after assuming one among 23 systematic exchanges between nucleotides, producing swinger RNAs (nine symmetric, X↔Y, example C↔T; 14 asymmetric, X→Y→Z→X, example A→T→G→A) in GenBank's EST database. Here, reanalyzes of (a) public human mitochondrial transcriptome data (Illumina: RNA-seq) allowed to detect mitochondrial swinger RNAs for all 23 exchanges and (b) independent public human mitochondrial trypsinized proteomic mass spectrometry data allowed to detect peptides predicted from translation of parts of swinger-transformed mitogenomes covered by detected swinger reads. RNA-seq and previous EST swinger transcript data converge. Swinger RNA translation frequently inserts various amino acids at stop codons. Swinger RNA-peptide associations exist also for peptides matching systematically frameshifting translation, peptides entirely coded by tetra- and pentacodons (regular codons expanded by silent mononucleotides at 4th, and silent dinucleotides at 4th and 5th position(s), respectively). Swinger peptides differ from regular mitochondrial proteins: not membrane embedded, reflect warmer, anaerobic, low resource conditions, reminding a free-living ancestor. Tetra- and pentacoded peptides associate with low, high GC contents, respectively, suggesting expanded codon translations associate with thermic stresses. Results confirm experimentally predicted swinger, tetra- and pentacoded mitochondrial peptides, increasing mitogenomic coding density.
Collapse
Affiliation(s)
- Hervé Seligmann
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes, Faculté de Médecine, URMITE CNRS-IRD 198 UMER 6236, Université de la Méditerranée, Marseille, France.
| |
Collapse
|
21
|
Phylogeny of genetic codes and punctuation codes within genetic codes. Biosystems 2015; 129:36-43. [DOI: 10.1016/j.biosystems.2015.01.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/02/2015] [Accepted: 01/14/2015] [Indexed: 11/23/2022]
|
22
|
Root-Bernstein M, Root-Bernstein R. The ribosome as a missing link in the evolution of life. J Theor Biol 2014; 367:130-158. [PMID: 25500179 DOI: 10.1016/j.jtbi.2014.11.025] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/15/2014] [Accepted: 11/20/2014] [Indexed: 12/27/2022]
Abstract
Many steps in the evolution of cellular life are still mysterious. We suggest that the ribosome may represent one important missing link between compositional (or metabolism-first), RNA-world (or genes-first) and cellular (last universal common ancestor) approaches to the evolution of cells. We present evidence that the entire set of transfer RNAs for all twenty amino acids are encoded in both the 16S and 23S rRNAs of Escherichia coli K12; that nucleotide sequences that could encode key fragments of ribosomal proteins, polymerases, ligases, synthetases, and phosphatases are to be found in each of the six possible reading frames of the 16S and 23S rRNAs; and that every sequence of bases in rRNA has information encoding more than one of these functions in addition to acting as a structural component of the ribosome. Ribosomal RNA, in short, is not just a structural scaffold for proteins, but the vestigial remnant of a primordial genome that may have encoded a self-organizing, self-replicating, auto-catalytic intermediary between macromolecules and cellular life.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Biological Evolution
- Escherichia coli K12/enzymology
- Escherichia coli K12/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/metabolism
- Molecular Sequence Data
- Nucleic Acid Conformation
- Probability
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- Ribosomes/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Meredith Root-Bernstein
- School of Geography and the Environment, Oxford University, South Parks Road, Oxford, Oxfordshire OX1 3QY, United Kingdom
| | | |
Collapse
|
23
|
Seligmann H. Mitochondrial swinger replication: DNA replication systematically exchanging nucleotides and short 16S ribosomal DNA swinger inserts. Biosystems 2014; 125:22-31. [PMID: 25283331 DOI: 10.1016/j.biosystems.2014.09.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/08/2014] [Accepted: 09/29/2014] [Indexed: 11/27/2022]
Abstract
Assuming systematic exchanges between nucleotides (swinger RNAs) resolves genomic 'parenthood' of some orphan mitochondrial transcripts. Twenty-three different systematic nucleotide exchanges (bijective transformations) exist. Similarities between transcription and replication suggest occurrence of swinger DNA. GenBank searches for swinger DNA matching the 23 swinger versions of human and mouse mitogenomes detect only vertebrate mitochondrial swinger DNA for swinger type AT+CG (from five different studies, 149 sequences) matching three human and mouse mitochondrial genes: 12S and 16S ribosomal RNAs, and cytochrome oxidase subunit I. Exchange A<->T+C<->G conserves self-hybridization properties, putatively explaining swinger biases for rDNA, against protein coding genes. Twenty percent of the regular human mitochondrial 16S rDNA consists of short swinger repeats (from 13 exchanges). Swinger repeats could originate from recombinations between regular and swinger DNA: duplicated mitochondrial genes of the parthenogenetic gecko Heteronotia binoei include fewer short A<->T+C<->G swinger repeats than non-duplicated mitochondrial genomes of that species. Presumably, rare recombinations between female and male mitochondrial genes (and in parthenogenetic situations between duplicated genes), favors reverse-mutations of swinger repeat insertions, probably because most inserts affect negatively ribosomal function. Results show that swinger DNA exists, and indicate that swinger polymerization contributes to the genesis of genetic material and polymorphism.
Collapse
Affiliation(s)
- Hervé Seligmann
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes, Faculté de Médecine, URMITE CNRS-IRD 198 UMER 6236, Université de la Méditerranée, Marseille, France.
| |
Collapse
|
24
|
Seligmann H. Species radiation by DNA replication that systematically exchanges nucleotides? J Theor Biol 2014; 363:216-22. [PMID: 25192628 DOI: 10.1016/j.jtbi.2014.08.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/14/2014] [Accepted: 08/19/2014] [Indexed: 11/28/2022]
Abstract
RNA and DNA syntheses share many properties. Therefore, the existence of 'swinger' RNAs, presumed 'orphan' transcripts matching genomic sequences only if transcription systematically exchanged nucleotides, suggests replication producing swinger DNA. Transcripts occur in many short-lived copies, the few cellular DNA molecules are long-lived. Hence pressures for functional swinger DNAs are greater than for swinger RNAs. Protein coding properties of swinger sequences differ from original sequences, suggesting rarity of corresponding swinger DNA. For genes producing structural RNAs, such as tRNAs and rRNAs, three exchanges (A<->T, C<->G and A<->T+C<->G) conserve self-hybridization properties. All nuclear eukaryote swinger DNA sequences detected in GenBank are for rRNA genes assuming A<->T+C<->G exchanges. In brachyuran crabs, 25 species had A<->T+C<->G swinger 18S rDNA, all matching the reverse-exchanged version of regular 18S rDNA of a related species. In this taxon, swinger replication of 18S rDNA apparently associated with, or even resulted in species radiation. A<->T+C<->G transformation doesn't invert sequence direction, differing from inverted repeats. Swinger repeats (detectable only assuming swinger transformations, A<->T+C<->G swinger repeats most frequent) within regular human rRNAs, independently confirm swinger polymerizations for most swinger types. Swinger replication might be an unsuspected molecular mechanism for ultrafast speciation.
Collapse
Affiliation(s)
- Hervé Seligmann
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes, Faculté de Médecine, URMITE CNRS-IRD 198 UMER 6236, Université de la Méditerranée, Marseille, France.
| |
Collapse
|
25
|
The relation between hairpin formation by mitochondrial WANCY tRNAs and the occurrence of the light strand replication origin in Lepidosauria. Gene 2014; 542:248-57. [DOI: 10.1016/j.gene.2014.02.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 12/27/2013] [Accepted: 02/17/2014] [Indexed: 01/28/2023]
|
26
|
Seligmann H, Labra A. Tetracoding increases with body temperature in Lepidosauria. Biosystems 2013; 114:155-63. [DOI: 10.1016/j.biosystems.2013.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 10/26/2022]
|
27
|
Seligmann H. Putative anticodons in mitochondrial tRNA sidearm loops: Pocketknife tRNAs? J Theor Biol 2013; 340:155-63. [PMID: 24012463 DOI: 10.1016/j.jtbi.2013.08.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/15/2013] [Accepted: 08/26/2013] [Indexed: 10/26/2022]
Abstract
The hypothesis that tRNA sidearm loops bear anticodons assumes crossovers between anticodon and sidearms, or translation by expressed aminoacylated tRNA halves forming single stem-loops. Only the latter might require ribosomal adaptations. Drosophila mitochondrial codon usages coevolve with sidearm numbers bearing matching putative anticodons (comparing different codon families in one genome, macroevolution) and when comparing different genomes for single codon families (microevolution). Coevolution between Drosophila and yeast mitochondrial antisense tRNAs and codon usages partly confounds microevolutionary patterns for putative sidearm anticodons. Some tRNA sidearm loops have more than seven nucleotides, putative expanded anticodons potentially matching quadruplet codons (tetracodons, codons expanded by a fourth silent position, forming tetragenes (predicted by alignment analyses of Drosophila mitochondrial genomes)). Tetracodon numbers coevolve with expanded tRNA sidearm loops. Sidearm coevolution with amino acid usages and tetragenes occurs for putative anticodons in 5' and 3' sidearms loops (D and TΨC loops, respectively), are stronger for the D-loop. Results slightly favour isolated stem-loops upon crossover hypotheses. An alternative hypothesis, that patterns observed for sidearm 'anticodons' do not imply translational activity, but recognition signals for tRNA synthetases that aminoacylate tRNAs, is incompatible with tetracodon/tetra-anticodon coevolution. Hence analyses strengthen translational hypotheses for tRNA sidearm anticodons, tetragenes, and antisense tRNAs.
Collapse
Affiliation(s)
- Hervé Seligmann
- National Natural History Museum Collections, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel; Department of Life Sciences, Ben Gurion University, 84105 Beer Sheva, Israel.
| |
Collapse
|
28
|
Seligmann H. Pocketknife tRNA hypothesis: Anticodons in mammal mitochondrial tRNA side-arm loops translate proteins? Biosystems 2013; 113:165-76. [DOI: 10.1016/j.biosystems.2013.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/02/2013] [Accepted: 07/03/2013] [Indexed: 12/11/2022]
|
29
|
Triplex DNA:RNA, 3′-to-5′ Inverted RNA and Protein Coding in Mitochondrial Genomes. J Comput Biol 2013; 20:660-71. [DOI: 10.1089/cmb.2012.0134] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
30
|
Seligmann H. Polymerization of non-complementary RNA: systematic symmetric nucleotide exchanges mainly involving uracil produce mitochondrial RNA transcripts coding for cryptic overlapping genes. Biosystems 2013; 111:156-74. [PMID: 23410796 DOI: 10.1016/j.biosystems.2013.01.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/24/2013] [Accepted: 01/29/2013] [Indexed: 12/23/2022]
Abstract
Usual DNA→RNA transcription exchanges T→U. Assuming different systematic symmetric nucleotide exchanges during translation, some GenBank RNAs match exactly human mitochondrial sequences (exchange rules listed in decreasing transcript frequencies): C↔U, A↔U, A↔U+C↔G (two nucleotide pairs exchanged), G↔U, A↔G, C↔G, none for A↔C, A↔G+C↔U, and A↔C+G↔U. Most unusual transcripts involve exchanging uracil. Independent measures of rates of rare replicational enzymatic DNA nucleotide misinsertions predict frequencies of RNA transcripts systematically exchanging the corresponding misinserted nucleotides. Exchange transcripts self-hybridize less than other gene regions, self-hybridization increases with length, suggesting endoribonuclease-limited elongation. Blast detects stop codon depleted putative protein coding overlapping genes within exchange-transcribed mitochondrial genes. These align with existing GenBank proteins (mainly metazoan origins, prokaryotic and viral origins underrepresented). These GenBank proteins frequently interact with RNA/DNA, are membrane transporters, or are typical of mitochondrial metabolism. Nucleotide exchange transcript frequencies increase with overlapping gene densities and stop densities, indicating finely tuned counterbalancing regulation of expression of systematic symmetric nucleotide exchange-encrypted proteins. Such expression necessitates combined activities of suppressor tRNAs matching stops, and nucleotide exchange transcription. Two independent properties confirm predicted exchanged overlap coding genes: discrepancy of third codon nucleotide contents from replicational deamination gradients, and codon usage according to circular code predictions. Predictions from both properties converge, especially for frequent nucleotide exchange types. Nucleotide exchanging transcription apparently increases coding densities of protein coding genes without lengthening genomes, revealing unsuspected functional DNA coding potential.
Collapse
Affiliation(s)
- Hervé Seligmann
- National Natural History Museum Collections, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel.
| |
Collapse
|
31
|
Seligmann H. Systematic asymmetric nucleotide exchanges produce human mitochondrial RNAs cryptically encoding for overlapping protein coding genes. J Theor Biol 2013; 324:1-20. [PMID: 23416187 DOI: 10.1016/j.jtbi.2013.01.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/26/2013] [Accepted: 01/28/2013] [Indexed: 11/19/2022]
Abstract
GenBank's EST database includes RNAs matching exactly human mitochondrial sequences assuming systematic asymmetric nucleotide exchange-transcription along exchange rules: A→G→C→U/T→A (12 ESTs), A→U/T→C→G→A (4 ESTs), C→G→U/T→C (3 ESTs), and A→C→G→U/T→A (1 EST), no RNAs correspond to other potential asymmetric exchange rules. Hypothetical polypeptides translated from nucleotide-exchanged human mitochondrial protein coding genes align with numerous GenBank proteins, predicted secondary structures resemble their putative GenBank homologue's. Two independent methods designed to detect overlapping genes (one based on nucleotide contents analyses in relation to replicative deamination gradients at third codon positions, and circular code analyses of codon contents based on frame redundancy), confirm nucleotide-exchange-encrypted overlapping genes. Methods converge on which genes are most probably active, and which not, and this for the various exchange rules. Mean EST lengths produced by different nucleotide exchanges are proportional to (a) extents that various bioinformatics analyses confirm the protein coding status of putative overlapping genes; (b) known kinetic chemistry parameters of the corresponding nucleotide substitutions by the human mitochondrial DNA polymerase gamma (nucleotide DNA misinsertion rates); (c) stop codon densities in predicted overlapping genes (stop codon readthrough and exchanging polymerization regulate gene expression by counterbalancing each other). Numerous rarely expressed proteins seem encoded within regular mitochondrial genes through asymmetric nucleotide exchange, avoiding lengthening genomes. Intersecting evidence between several independent approaches confirms the working hypothesis status of gene encryption by systematic nucleotide exchanges.
Collapse
Affiliation(s)
- Hervé Seligmann
- National Natural History Museum Collections, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel.
| |
Collapse
|
32
|
Overlapping genes coded in the 3′-to-5′-direction in mitochondrial genes and 3′-to-5′ polymerization of non-complementary RNA by an ‘invertase’. J Theor Biol 2012; 315:38-52. [DOI: 10.1016/j.jtbi.2012.08.044] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 08/17/2012] [Accepted: 08/30/2012] [Indexed: 11/23/2022]
|
33
|
Seligmann H. Overlapping genetic codes for overlapping frameshifted genes in Testudines, and Lepidochelys olivacea as special case. Comput Biol Chem 2012; 41:18-34. [DOI: 10.1016/j.compbiolchem.2012.08.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 03/14/2012] [Accepted: 08/05/2012] [Indexed: 11/29/2022]
|
34
|
Putative mitochondrial polypeptides coded by expanded quadruplet codons, decoded by antisense tRNAs with unusual anticodons. Biosystems 2012; 110:84-106. [DOI: 10.1016/j.biosystems.2012.09.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 09/20/2012] [Accepted: 09/26/2012] [Indexed: 11/19/2022]
|
35
|
Seligmann H. Coding constraints modulate chemically spontaneous mutational replication gradients in mitochondrial genomes. Curr Genomics 2012; 13:37-54. [PMID: 22942674 PMCID: PMC3269015 DOI: 10.2174/138920212799034802] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/07/2011] [Accepted: 09/20/2011] [Indexed: 11/30/2022] Open
Abstract
Distances from heavy and light strand replication origins determine duration mitochondrial DNA remains singlestranded during replication. Hydrolytic deaminations from A->G and C->T occur more on single- than doublestranded DNA. Corresponding replicational nucleotide gradients exist across mitochondrial genomes, most at 3rd, least 2nd codon positions. DNA singlestrandedness during RNA transcription causes gradients mainly in long-lived species with relatively slow metabolism (high transcription/replication ratios). Third codon nucleotide contents, evolutionary results of mutation cumulation, follow replicational, not transcriptional gradients in Homo; observed human mutations follow transcriptional gradients. Synonymous third codon position transitions potentially alter adaptive off frame information. No mutational gradients occur at synonymous positions forming off frame stops (these adaptively stop early accidental frameshifted protein synthesis), nor in regions coding for putative overlapping genes according to an overlapping genetic code reassigning stop codons to amino acids. Deviation of 3rd codon nucleotide contents from deamination gradients increases with coding importance of main frame 3rd codon positions in overlapping genes (greatest if these are 2nd position in overlapping genes). Third codon position deamination gradients calculated separately for each codon family are strongest where synonymous transitions are rarely pathogenic; weakest where transitions are frequently pathogenic. Synonymous mutations affect translational accuracy, such as error compensation of misloaded tRNAs by codon-anticodon mismatches (prevents amino acid misinsertion despite tRNA misacylation), a potential cause of pathogenic mutations at synonymous codon positions. Indeed, codon-family-specific gradients are inversely proportional to error compensation associated with gradient-promoted transitions. Deamination gradients reflect spontaneous chemical reactions in singlestranded DNA, but functional coding constraints modulate gradients.
Collapse
Affiliation(s)
- Hervé Seligmann
- National Collections of Natural History at the Hebrew University of Jerusalem, Jerusalem 91404; Department of Life Sciences, Ben Gurion University, 84105 Beer Sheva, Israel
| |
Collapse
|
36
|
Qu Y, Bi L, Ji X, Deng Z, Zhang H, Yan Y, Wang M, Li A, Huang X, Yang R, Han Y. Identification by cDNA cloning of abundant sRNAs in a human-avirulent Yersinia pestis strain grown under five different growth conditions. Future Microbiol 2012; 7:535-47. [PMID: 22439729 DOI: 10.2217/fmb.12.13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIMS sRNA regulation is supposedly involved in the stress response of a pathogen during infection. Yersinia pestis, the etiologic agent of plague, must encounter temperature and microenvironment changes, given its lifestyle. Here, we used the cDNA cloning approach to discover full-length sRNA candidates that are highly expressed in Y. pestis under five different growth conditions. MATERIALS & METHODS The cDNA cloning approach was improved by combining the traditional cDNA library construction with the prevalent rapid amplification of cDNA ends and RNA size selection techniques. RESULTS In total, 43 RNA species, including six previously annotated sRNAs, were identified. Of these, 25 sRNAs were encoded on the antisense strand of the annotated genes. Interestingly, two of these sRNAs were found on the complementary strand of noncoding RNAs. In addition, eight novel sRNAs encoded in the intergenic regions were also revealed. Ten sRNA candidates chosen for the northern blot analysis were successfully detected. Analysis of the expression patterns of 29 candidate sRNAs showed that 24 sRNAs are highly abundant in Y. pestis upon entry into the stationary growth phase. CONCLUSION Our preliminary attempt at screening the novel sRNA candidates will lay the foundation for understanding the roles of sRNAs in Y. pestis physiology and pathogenesis.
Collapse
Affiliation(s)
- Yi Qu
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
An overlapping genetic code for frameshifted overlapping genes in Drosophila mitochondria: Antisense antitermination tRNAs UAR insert serine. J Theor Biol 2012; 298:51-76. [DOI: 10.1016/j.jtbi.2011.12.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 12/19/2011] [Accepted: 12/22/2011] [Indexed: 01/27/2023]
|
38
|
Křížek M, Křížek P. Why has nature invented three stop codons of DNA and only one start codon? J Theor Biol 2012; 304:183-7. [PMID: 22483666 DOI: 10.1016/j.jtbi.2012.03.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 10/28/2022]
Abstract
We examine the standard genetic code with three stop codons. Assuming that the synchronization period of length 3 in DNA or RNA is violated during the transcription or translation processes, the probability of reading a frameshifted stop codon is higher than if the code would have only one stop codon. Consequently, the synthesis of RNA or proteins will soon terminate. In this way, cells do not produce undesirable proteins and essentially save energy. This hypothesis is tested on the AT-rich Drosophila genome, where the detection of frameshifted stop codons is even higher than the theoretical value. Using the binomial theorem, we establish the probability of reading a frameshifted stop codon within n steps. Since the genetic code is largely redundant, there is still space for some hidden secondary functions of this code. In particular, because stop codons do not contain cytosine, random C → U and C → T mutations in the third position of codons increase the number of hidden frameshifted stops and simultaneously the same amino acids are coded. This evolutionary advantage is demonstrated on the genomes of several simple species, e.g. Escherichia coli.
Collapse
Affiliation(s)
- Michal Křížek
- Institute of Mathematics, Academy of Sciences, Žitná 25, CZ-115 67 Prague 1, Czech Republic.
| | | |
Collapse
|
39
|
Positive and Negative Cognate Amino Acid Bias Affects Compositions of Aminoacyl-tRNA Synthetases and Reflects Functional Constraints on Protein Structure. ACTA ACUST UNITED AC 2012. [DOI: 10.5618/bio.2012.v2.n1.2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Faure E, Delaye L, Tribolo S, Levasseur A, Seligmann H, Barthélémy RM. Probable presence of an ubiquitous cryptic mitochondrial gene on the antisense strand of the cytochrome oxidase I gene. Biol Direct 2011; 6:56. [PMID: 22024028 PMCID: PMC3214167 DOI: 10.1186/1745-6150-6-56] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 10/24/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondria mediate most of the energy production that occurs in the majority of eukaryotic organisms. These subcellular organelles contain a genome that differs from the nuclear genome and is referred to as mitochondrial DNA (mtDNA). Despite a disparity in gene content, all mtDNAs encode at least two components of the mitochondrial electron transport chain, including cytochrome c oxidase I (Cox1). PRESENTATION OF THE HYPOTHESIS A positionally conserved ORF has been found on the complementary strand of the cox1 genes of both eukaryotic mitochondria (protist, plant, fungal and animal) and alpha-proteobacteria. This putative gene has been named gau for gene antisense ubiquitous in mtDNAs. The length of the deduced protein is approximately 100 amino acids. In vertebrates, several stop codons have been found in the mt gau region, and potentially functional gau regions have been found in nuclear genomes. However, a recent bioinformatics study showed that several hypothetical overlapping mt genes could be predicted, including gau; this involves the possible import of the cytosolic AGR tRNA into the mitochondria and/or the expression of mt antisense tRNAs with anticodons recognizing AGR codons according to an alternative genetic code that is induced by the presence of suppressor tRNAs. Despite an evolutionary distance of at least 1.5 to 2.0 billion years, the deduced Gau proteins share some conserved amino acid signatures and structure, which suggests a possible conserved function. Moreover, BLAST analysis identified rare, sense-oriented ESTs with poly(A) tails that include the entire gau region. Immunohistochemical analyses using an anti-Gau monoclonal antibody revealed strict co-localization of Gau proteins and a mitochondrial marker. TESTING THE HYPOTHESIS This hypothesis could be tested by purifying the gau gene product and determining its sequence. Cell biological experiments are needed to determine the physiological role of this protein. IMPLICATIONS OF THE HYPOTHESIS Studies of the gau ORF will shed light on the origin of novel genes and their functions in organelles and could also have medical implications for human diseases that are caused by mitochondrial dysfunction. Moreover, this strengthens evidence for mitochondrial genes coded according to an overlapping genetic code.
Collapse
Affiliation(s)
- Eric Faure
- Université de Provence, Marseille cedex 3, France.
| | | | | | | | | | | |
Collapse
|
41
|
Two genetic codes, one genome: Frameshifted primate mitochondrial genes code for additional proteins in presence of antisense antitermination tRNAs. Biosystems 2011; 105:271-85. [DOI: 10.1016/j.biosystems.2011.05.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 05/26/2011] [Indexed: 11/21/2022]
|
42
|
Pathogenic mutations in antisense mitochondrial tRNAs. J Theor Biol 2011; 269:287-96. [DOI: 10.1016/j.jtbi.2010.11.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 11/02/2010] [Accepted: 11/04/2010] [Indexed: 11/22/2022]
|
43
|
Seligmann H. Undetected antisense tRNAs in mitochondrial genomes? Biol Direct 2010; 5:39. [PMID: 20553583 PMCID: PMC2907346 DOI: 10.1186/1745-6150-5-39] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 06/16/2010] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The hypothesis that both mitochondrial (mt) complementary DNA strands of tRNA genes code for tRNAs (sense-antisense coding) is explored. This could explain why mt tRNA mutations are 6.5 times more frequently pathogenic than in other mt sequences. Antisense tRNA expression is plausible because tRNA punctuation signals mt sense RNA maturation: both sense and antisense tRNAs form secondary structures potentially signalling processing. Sense RNA maturation processes by default 11 antisense tRNAs neighbouring sense genes. If antisense tRNAs are expressed, processed antisense tRNAs should have adapted more for translational activity than unprocessed ones. Four tRNA properties are examined: antisense tRNA 5' and 3' end processing by sense RNA maturation and its accuracy, cloverleaf stability and misacylation potential. RESULTS Processed antisense tRNAs align better with standard tRNA sequences with the same cognate than unprocessed antisense tRNAs, suggesting less misacylations. Misacylation increases with cloverleaf fragility and processing inaccuracy. Cloverleaf fragility, misacylation and processing accuracy of antisense tRNAs decrease with genome-wide usage of their predicted cognate amino acid. CONCLUSIONS These properties correlate as if they adaptively coevolved for translational activity by some antisense tRNAs, and to avoid such activity by other antisense tRNAs. Analyses also suggest previously unsuspected particularities of aminoacylation specificity in mt tRNAs: combinations of competition between tRNAs on tRNA synthetases with competition between tRNA synthetases on tRNAs determine specificities of tRNA amino acylations. The latter analyses show that alignment methods used to detect tRNA cognates yield relatively robust results, even when they apparently fail to detect the tRNA's cognate amino acid and indicate high misacylation potential.
Collapse
Affiliation(s)
- Hervé Seligmann
- Department of Biology, University of Oslo, Center for Ecological and Evolutionary Synthesis, Blindern, 3016 Oslo, Norway.
| |
Collapse
|