1
|
Niizato T, Murakami H, Musha T. Functional duality in group criticality via ambiguous interactions. PLoS Comput Biol 2023; 19:e1010869. [PMID: 36791061 PMCID: PMC9931117 DOI: 10.1371/journal.pcbi.1010869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/10/2023] [Indexed: 02/16/2023] Open
Abstract
Critical phenomena are wildly observed in living systems. If the system is at criticality, it can quickly transfer information and achieve optimal response to external stimuli. Especially, animal collective behavior has numerous critical properties, which are related to other research regions, such as the brain system. Although the critical phenomena influencing collective behavior have been extensively studied, two important aspects require clarification. First, these critical phenomena never occur on a single scale but are instead nested from the micro- to macro-levels (e.g., from a Lévy walk to scale-free correlation). Second, the functional role of group criticality is unclear. To elucidate these aspects, the ambiguous interaction model is constructed in this study; this model has a common framework and is a natural extension of previous representative models (such as the Boids and Vicsek models). We demonstrate that our model can explain the nested criticality of collective behavior across several scales (considering scale-free correlation, super diffusion, Lévy walks, and 1/f fluctuation for relative velocities). Our model can also explain the relationship between scale-free correlation and group turns. To examine this relation, we propose a new method, applying partial information decomposition (PID) to two scale-free induced subgroups. Using PID, we construct information flows between two scale-free induced subgroups and find that coupling of the group morphology (i.e., the velocity distributions) and its fluctuation power (i.e., the fluctuation distributions) likely enable rapid group turning. Thus, the flock morphology may help its internal fluctuation convert to dynamic behavior. Our result sheds new light on the role of group morphology, which is relatively unheeded, retaining the importance of fluctuation dynamics in group criticality.
Collapse
Affiliation(s)
- Takayuki Niizato
- Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Hisashi Murakami
- Faculty of Information and Human Science, Kyoto Institute of Technology, Sakyo-ku, Kyoto city, Kyoto, Japan
| | - Takuya Musha
- Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Niizato T, Sakamoto K, Mototake YI, Murakami H, Tomaru T, Hoshika T, Fukushima T. Four-Types of IIT-Induced Group Integrity of Plecoglossus altivelis. ENTROPY 2020; 22:e22070726. [PMID: 33286497 PMCID: PMC7517268 DOI: 10.3390/e22070726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 11/16/2022]
Abstract
Integrated information theory (IIT) was initially proposed to describe human consciousness in terms of intrinsic-causal brain network structures. Particularly, IIT 3.0 targets the system's cause-effect structure from spatio-temporal grain and reveals the system's irreducibility. In a previous study, we tried to apply IIT 3.0 to an actual collective behaviour in Plecoglossus altivelis. We found that IIT 3.0 exhibits qualitative discontinuity between three and four schools of fish in terms of Φ value distributions. Other measures did not show similar characteristics. In this study, we followed up on our previous findings and introduced two new factors. First, we defined the global parameter settings to determine a different kind of group integrity. Second, we set several timescales (from Δ t = 5 / 120 to Δ t = 120 / 120 s). The results showed that we succeeded in classifying fish schools according to their group sizes and the degree of group integrity around the reaction time scale of the fish, despite the small group sizes. Compared with the short time scale, the interaction heterogeneity observed in the long time scale seems to diminish. Finally, we discuss one of the longstanding paradoxes in collective behaviour, known as the heap paradox, for which two tentative answers could be provided through our IIT 3.0 analysis.
Collapse
Affiliation(s)
- Takayuki Niizato
- Faculty of Engineering, Information and Systems University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; (T.H.); (T.F.)
- Correspondence: (T.N.); (K.S.)
| | - Kotaro Sakamoto
- Leading Graduate School Doctoral Program in Human Biology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
- Correspondence: (T.N.); (K.S.)
| | - Yoh-ichi Mototake
- The Institute of Statistical Mathematics, Tachikawa, Tokyo 190-0014, Japan;
| | - Hisashi Murakami
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-0041, Japan;
| | - Takenori Tomaru
- Department of Computer Science and Engineering, Toyohashi University of Technology, Aichi 441-8580, Japan;
| | - Tomotaro Hoshika
- Faculty of Engineering, Information and Systems University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; (T.H.); (T.F.)
| | - Toshiki Fukushima
- Faculty of Engineering, Information and Systems University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; (T.H.); (T.F.)
| |
Collapse
|
3
|
Niizato T, Sakamoto K, Mototake YI, Murakami H, Tomaru T, Hoshika T, Fukushima T. Finding continuity and discontinuity in fish schools via integrated information theory. PLoS One 2020; 15:e0229573. [PMID: 32107495 PMCID: PMC7046263 DOI: 10.1371/journal.pone.0229573] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 02/10/2020] [Indexed: 01/21/2023] Open
Abstract
Collective behaviours are known to be the result of diverse dynamics and are sometimes likened to living systems. Although many studies have revealed the dynamics of various collective behaviours, their main focus has been on the information processing performed by the collective, not on interactions within the collective. For example, the qualitative difference between three and four elements in a system has rarely been investigated. Tononi et al. proposed integrated information theory (IIT) to measure the degree of consciousness Φ. IIT postulates that the amount of information loss caused by the minimum information partition is equivalent to the degree of information integration in the system. This measure is not only useful for estimating the degree of consciousness but can also be applied to more general network systems. Here, we obtained two main results from the application of IIT (in particular, IIT 3.0) to the analysis of real fish schools (Plecoglossus altivelis). First, we observed that the discontinuity on 〈Φ(N)〉 distributions emerges for a school of four or more fish. This transition was not observed by measuring the mutual information or the sum of the transfer entropy. We also analysed the IIT on Boids simulations with respect to different coupling strengths; however, the results of the Boids model were found to be quite different from those of real fish. Second, we found a correlation between this discontinuity and the emergence of leadership. We discriminate leadership in this paper from its traditional meaning (e.g. defined by transfer entropy) because IIT-induced leadership refers not to group behaviour, as in other methods, but the degree of autonomy (i.e. group integrity). These results suggest that integrated information Φ can reveal the emergence of a new type of leadership which cannot be observed using other measures.
Collapse
Affiliation(s)
- Takayuki Niizato
- Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kotaro Sakamoto
- University of Tsukuba, Leading Graduate School Doctoral Program in Human Biology, Tsukuba, Japan
| | | | - Hisashi Murakami
- University of Tokyo, Research Center for Advanced Science and Technology, Tokyo, Japan
| | - Takenori Tomaru
- Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Japan
| | - Tomotaro Hoshika
- Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Toshiki Fukushima
- Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
4
|
Sawa K, Igamberdiev AU. The Double Homunculus model of self-reflective systems. Biosystems 2016; 144:1-7. [DOI: 10.1016/j.biosystems.2016.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 10/22/2022]
|
5
|
Grigoriev D, Reinitz J, Vakulenko S, Weber A. Punctuated evolution and robustness in morphogenesis. Biosystems 2014; 123:106-13. [PMID: 24996115 PMCID: PMC4283494 DOI: 10.1016/j.biosystems.2014.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/25/2014] [Accepted: 06/29/2014] [Indexed: 11/23/2022]
Abstract
This paper presents an analytic approach to the pattern stability and evolution problem in morphogenesis. The approach used here is based on the ideas from the gene and neural network theory. We assume that gene networks contain a number of small groups of genes (called hubs) controlling morphogenesis process. Hub genes represent an important element of gene network architecture and their existence is empirically confirmed. We show that hubs can stabilize morphogenetic pattern and accelerate the morphogenesis. The hub activity exhibits an abrupt change depending on the mutation frequency. When the mutation frequency is small, these hubs suppress all mutations and gene product concentrations do not change, thus, the pattern is stable. When the environmental pressure increases and the population needs new genotypes, the genetic drift and other effects increase the mutation frequency. For the frequencies that are larger than a critical amount the hubs turn off; and as a result, many mutations can affect phenotype. This effect can serve as an engine for evolution. We show that this engine is very effective: the evolution acceleration is an exponential function of gene redundancy. Finally, we show that the Eldredge-Gould concept of punctuated evolution results from the network architecture, which provides fast evolution, control of evolvability, and pattern robustness. To describe analytically the effect of exponential acceleration, we use mathematical methods developed recently for hard combinatorial problems, in particular, for so-called k-SAT problem, and numerical simulations.
Collapse
Affiliation(s)
- D Grigoriev
- CNRS, Mathématiques, Université de Lille, Villeneuve d'Ascq 59655, France.
| | - J Reinitz
- Department of Statistics, University of Chicago, Chicago, IL 60637, United States; Department of Ecology and Evolution, University of Chicago, United States; Department of Molecular Genetics and Cell Biology, University of Chicago, United States; Institute for Genomics and Systems Biology, University of Chicago, United States.
| | - S Vakulenko
- Institute for Mechanical Engineering Problems, Bolshoy pr. V. O.61, Sankt Petersburg, Russia; ITMO University, Sankt Petersburg, Russia.
| | - A Weber
- Computer Science Department, University of Bonn, 53113 Bonn, Germany.
| |
Collapse
|