1
|
Demongeot J, Moreira A, Seligmann H. Negative CG dinucleotide bias: An explanation based on feedback loops between Arginine codon assignments and theoretical minimal RNA rings. Bioessays 2020; 43:e2000071. [PMID: 33319381 DOI: 10.1002/bies.202000071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 01/05/2023]
Abstract
Theoretical minimal RNA rings are candidate primordial genes evolved for non-redundant coding of the genetic code's 22 coding signals (one codon per biogenic amino acid, a start and a stop codon) over the shortest possible length: 29520 22-nucleotide-long RNA rings solve this min-max constraint. Numerous RNA ring properties are reminiscent of natural genes. Here we present analyses showing that all RNA rings lack dinucleotide CG (a mutable, chemically instable dinucleotide coding for Arginine), bearing a resemblance to known CG-depleted genomes. CG in "incomplete" RNA rings (not coding for all coding signals, with only 3-12 nucleotides) gradually decreases towards CG absence in complete, 22-nucleotide-long RNA rings. Presumably, feedback loops during RNA ring growth during evolution (when amino acid assignment fixed the genetic code) assigned Arg to codons lacking CG (AGR) to avoid CG. Hence, as a chemical property of base pairs, CG mutability restructured the genetic code, thereby establishing itself as genetically encoded biological information.
Collapse
Affiliation(s)
- Jacques Demongeot
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecom4Health, Faculty of Medicine, Université Grenoble Alpes, La Tronche, France
| | - Andrés Moreira
- Departamento de Informática, Universidad Técnica Federico Santa María, Santiago, Chile
| | - Hervé Seligmann
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecom4Health, Faculty of Medicine, Université Grenoble Alpes, La Tronche, France.,The National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel.,Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
2
|
Seligmann H, Warthi G. Natural pyrrolysine-biased translation of stop codons in mitochondrial peptides entirely coded by expanded codons. Biosystems 2020; 196:104180. [PMID: 32534170 DOI: 10.1016/j.biosystems.2020.104180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 12/31/2022]
Abstract
During the noncanonical deletion transcription, k nucleotides are systematically skipped/deleted after each transcribed trinucleotide producing deletion-RNAs (delRNAs). Peptides matching delRNAs either result from (a) canonical translation of delRNAs; or (b) noncanonical translation of regular transcripts along expanded codons. Only along frame "0" (start site) (a) and (b) produce identical peptides. Here, mitochondrial mass spectrometry data analyses assume expanded codon/del-transcription with 3 + k (k from 0 to 12) nucleotides. Detected peptides map preferentially on previously identified delRNAs. More peptides were detected for k (1-12) when del-transcriptional and expanded codon translations start sites coincide (i.e. the 0th frame) than for frames +1 or +2. Hence, both (a) and (b) produced peptides identified here. Biases for frame 0 decrease for k > 2, reflecting codon/anticodon expansion limits. Further analyses find preferential pyrrolysine insertion at stop codons, suggesting Pyl-specific mitochondrial suppressor tRNAs loaded by Pyl-specific tRNA synthetases with unknown origins. Pyl biases at stops are stronger for regular than expanded codons suggesting that Pyl-tRNAs are less competitive with near-cognate tRNAs in expanded codon contexts. Statistical biases for these findings exclude that detected peptides are experimental and/or bioinformatic artefacts implying both del-transcription and expanded codons translation occur in human mitochondria.
Collapse
Affiliation(s)
- Hervé Seligmann
- The National Natural History Collections, The Hebrew University of Jerusalem, 91404, Jerusalem, Israel; Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, F-38700, La Tronche, France.
| | - Ganesh Warthi
- Aix-Marseille University, IRD, VITROME, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, France.
| |
Collapse
|
3
|
Demongeot J, Seligmann H. Deamination gradients within codons after 1<->2 position swap predict amino acid hydrophobicity and parallel β-sheet conformational preference. Biosystems 2020; 191-192:104116. [PMID: 32081715 DOI: 10.1016/j.biosystems.2020.104116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/04/2019] [Accepted: 02/10/2020] [Indexed: 12/16/2022]
Abstract
Deaminations C->T and A->G are frequent mutations producing nucleotide content gradients across genomes proportional to singlestrandedness during replication/transcription. Hence, within single codons, deamination risks increase from first to third codon positions, while second codon positions are functionally most crucial. Here genetic codes are analyzed assuming that after anticodons protected codons from deaminations, first and second codon positions swapped (N2N1N3->N1N2N3), with lowest deamination risks for N2 in presumed primitive N2N1N3 codons. N2N1N3, not standard N1N2N3, codon structure minimizes deaminations inversely proportionally to cognate amino acid hydrophobicity and parallel betasheet conformational preference. For N1N2N3, deamination minimization increases with genetic code integration order of cognate amino acids: during the presumed N2N1N3->N1N2N3 codon structure transition, protein synthesis combined direct codon-amino acid interactions for late amino acids and tRNA-based translation for early amino acids. Hence N2N1N3 codons would correspond to tRNA-free translation by spontaneous codon-amino acid affinities, and tRNA-mediated translation presumably caused N2N1N3->N1N2N3 swaps. Results show that rational, not arbitrary rules link codon and amino acid structures. Some analyses detect mitochondrial RNAs and peptides in public data corresponding to systematic position swaps, suggesting occasional swapping polymerase activity.
Collapse
Affiliation(s)
- Jacques Demongeot
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, F-38700, La Tronche, France.
| | - Hervé Seligmann
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, F-38700, La Tronche, France; The National Natural History Collections, The Hebrew University of Jerusalem, 91404, Jerusalem, Israel.
| |
Collapse
|
4
|
Warthi G, Fournier PE, Seligmann H. Systematic Nucleotide Exchange Analysis of ESTs From the Human Cancer Genome Project Report: Origins of 347 Unknown ESTs Indicate Putative Transcription of Non-Coding Genomic Regions. Front Genet 2020; 11:42. [PMID: 32117454 PMCID: PMC7027195 DOI: 10.3389/fgene.2020.00042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/15/2020] [Indexed: 12/16/2022] Open
Abstract
Expressed sequence tags (ESTs) provide an imprint of cellular RNA diversity irrespectively of sequence homology with template genomes. NCBI databases include many unknown RNAs from various normal and cancer cells. These are usually ignored assuming sequencing artefacts or contamination due to their lack of sequence homology with template DNA. Here, we report genomic origins of 347 ESTs previously assumed artefacts/unknown, from the FAPESP/LICR Human Cancer Genome Project. EST template detection uses systematic nucleotide exchange analyses called swinger transformations. Systematic nucleotide exchanges replace systematically particular nucleotides with different nucleotides. Among 347 unknown ESTs, 51 ESTs match mitogenome transcription, 17 and 2 ESTs are from nuclear chromosome non-coding regions, and uncharacterized nuclear genes. Identified ESTs mapped on 205 protein-coding genes, 10 genes had swinger RNAs in several biosamples. Whole cell transcriptome searches for 17 ESTs mapping on non-coding regions confirmed their transcription. The 10 swinger-transcribed genes identified more than once associate with cancer induction and progression, suggesting swinger transformation occurs mainly in highly transcribed genes. Swinger transformation is a unique method to identify noncanonical RNAs obtained from NGS, which identifies putative ncRNA transcribed regions. Results suggest that swinger transcription occurs in highly active genes in normal and genetically unstable cancer cells.
Collapse
Affiliation(s)
- Ganesh Warthi
- Aix Marseille Univ, IRD, APHM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Pierre-Edouard Fournier
- Aix Marseille Univ, IRD, APHM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Hervé Seligmann
- The National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel.,Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecoms4Health, La Tronche, France
| |
Collapse
|
5
|
The Uroboros Theory of Life's Origin: 22-Nucleotide Theoretical Minimal RNA Rings Reflect Evolution of Genetic Code and tRNA-rRNA Translation Machineries. Acta Biotheor 2019; 67:273-297. [PMID: 31388859 DOI: 10.1007/s10441-019-09356-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023]
Abstract
Theoretical minimal RNA rings attempt to mimick life's primitive RNAs. At most 25 22-nucleotide-long RNA rings code once for each biotic amino acid, a start and a stop codon and form a stem-loop hairpin, resembling consensus tRNAs. We calculated, for each RNA ring's 22 potential splicing positions, similarities of predicted secondary structures with tRNA vs. rRNA secondary structures. Assuming rRNAs partly derived from tRNA accretions, we predict positive associations between relative secondary structure similarities with rRNAs over tRNAs and genetic code integration orders of RNA ring anticodon cognate amino acids. Analyses consider for each secondary structure all nucleotide triplets as potential anticodon. Anticodons for ancient, chemically inert cognate amino acids are most frequent in the 25 RNA rings. For RNA rings with primordial cognate amino acids according to tRNA-homology-derived anticodons, tRNA-homology and coding sequences coincide, these are separate for predicted cognate amino acids that presumably integrated late the genetic code. RNA ring secondary structure similarity with rRNA over tRNA secondary structures associates best with genetic code integration orders of anticodon cognate amino acids when assuming split anticodons (one and two nucleotides at the spliced RNA ring 5' and 3' extremities, respectively), and at predicted anticodon location in the spliced RNA ring's midst. Results confirm RNA ring homologies with tRNAs and CDs, ancestral status of tRNA half genes split at anticodons, the tRNA-rRNA axis of RNA evolution, and that single theoretical minimal RNA rings potentially produce near-complete proto-tRNA sets. Hence genetic code pre-existence determines 25 short circular gene- and tRNA-like RNAs. Accounting for each potential splicing position, each RNA ring potentially translates most amino acids, realistically mimicks evolution of the tRNA-rRNA translation machinery. These RNA rings 'of creation' remind the uroboros' (snake biting its tail) symbolism for creative regeneration.
Collapse
|
6
|
|
7
|
Seligmann H, Warthi G. Chimeric Translation for Mitochondrial Peptides: Regular and Expanded Codons. Comput Struct Biotechnol J 2019; 17:1195-1202. [PMID: 31534643 PMCID: PMC6742854 DOI: 10.1016/j.csbj.2019.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023] Open
Abstract
Frameshifting protein translation occasionally results from insertion of amino acids at isolated mono- or dinucleotide-expanded codons by tRNAs with expanded anticodons. Previous analyses of two different types of human mitochondrial MS proteomic data (Fisher and Waters technologies) detect peptides entirely corresponding to expanded codon translation. Here, these proteomic data are reanalyzed searching for peptides consisting of at least eight consecutive amino acids translated according to regular tricodons, and at least eight adjacent consecutive amino acids translated according to expanded codons. Both datasets include chimerically translated peptides (mono- and dinucleotide expansions, 42 and 37, respectively). The regular tricodon-encoded part of some chimeric peptides corresponds to standard human mitochondrial proteins (mono- and dinucleotide expansions, six (AT6, CytB, ND1, 2xND2, ND5) and one (ND1), respectively). Chimeric translation probably increases the diversity of mitogenome-encoded proteins, putatively producing functional proteins. These might result from translation by tRNAs with expanded anticodons, or from regular tricodon translation of RNAs where transcription/posttranscriptional edition systematically deleted mono- or dinucleotides after each trinucleotide. The pairwise matched combination of adjacent peptide parts translated from regular and expanded codons strengthens the hypothesis that translation of stretches of consecutive expanded codons occurs. Results indicate statistical translation producing distributions of alternative proteins. Genetic engineering should account for potential unexpected, unwanted secondary products.
Collapse
Affiliation(s)
- Hervé Seligmann
- The National Natural History Collections, The Hebrew University of Jerusalem, 91404 Jerusalem, Israel
| | - Ganesh Warthi
- Aix-Marseille University, IRD, VITROME, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, France
| |
Collapse
|
8
|
Warthi G, Seligmann H. Transcripts with systematic nucleotide deletion of 1-12 nucleotide in human mitochondrion suggest potential non-canonical transcription. PLoS One 2019; 14:e0217356. [PMID: 31120958 PMCID: PMC6532905 DOI: 10.1371/journal.pone.0217356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/09/2019] [Indexed: 11/22/2022] Open
Abstract
Raw transcriptomic data contain numerous RNA reads whose homology with template DNA doesn't match canonical transcription. Transcriptome analyses usually ignore such noncanonical RNA reads. Here, analyses search for noncanonical mitochondrial RNAs systematically deleting 1 to 12 nucleotides after each transcribed nucleotide triplet, producing deletion-RNAs (delRNAs). We detected delRNAs in the human whole cell and purified mitochondrial transcriptomes, and in Genbank's human EST database corresponding to systematic deletions of 1 to 12 nucleotides after each transcribed trinucleotide. DelRNAs detected in both transcriptomes mapped along with 55.63% of the EST delRNAs. A bias exists for delRNAs covering identical mitogenomic regions in both transcriptomic and EST datasets. Among 227 delRNAs detected in these 3 datasets, 81.1% and 8.4% of delRNAs were mapped on mitochondrial coding and hypervariable region 2 of dloop. Del-transcription analyses of GenBank's EST database confirm observations from whole cell and purified mitochondrial transcriptomes, eliminating the possibility that detected delRNAs are false positives matches, cytosolic DNA/RNA nuclear contamination or sequencing artefacts. These detected delRNAs are enriched in frameshift-inducing homopolymers and are poor in frameshift-preventing circular code codons (a set of 20 codons which regulate reading frame detection, over- and underrepresented in coding and other frames of genes, respectively) suggesting a motif-based regulation of non-canonical transcription. These findings show that rare non-canonical transcripts exist. Such non canonical del-transcription does increases mitochondrial coding potential and non-coding regulation of intracellular mechanisms, and could explain the dark DNA conundrum.
Collapse
Affiliation(s)
- Ganesh Warthi
- Aix-Marseille Université, IRD, VITROME, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, France
| | - Hervé Seligmann
- Aix-Marseille Université, IRD, MEPHI, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
- The National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
9
|
Alignment-based and alignment-free methods converge with experimental data on amino acids coded by stop codons at split between nuclear and mitochondrial genetic codes. Biosystems 2018; 167:33-46. [DOI: 10.1016/j.biosystems.2018.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/18/2018] [Accepted: 03/19/2018] [Indexed: 12/11/2022]
|
10
|
Bijective codon transformations show genetic code symmetries centered on cytosine's coding properties. Theory Biosci 2017; 137:17-31. [PMID: 29147851 DOI: 10.1007/s12064-017-0258-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022]
Abstract
Homology of some RNAs with template DNA requires systematic exchanges between nucleotides. Such exchanges produce 'swinger' RNA along 23 bijective transformations (nine symmetric, X ↔ Y; and 14 asymmetric, X → Y → Z → X, for example A ↔ C and A → C → G → A, respectively). Here, analyses compare amino acids coded by swinger-transformed codons to those coded by untransformed codons, defining coding invariance after transformations. Swinger transformations cluster according to coding invariance in four groups characterized by transformations into cytosine (C = C, T → C, A → C, and G → C). C's central mutational coding role shows that swinger transformations constrained genetic code genesis. Coding invariance post-transformations correlate positively/negatively with mitochondrial swinger transcription/lepidosaurian body temperature. Presumably, low/high temperatures stabilize/revert rare swinger polymerization modes, producing long swinger sequences/point mutations, respectively. Coding invariance after swinger transformations might compensate effects of swinger polymerizations in species with low body temperatures. Hypothetically, swinger transcription increased coding potential of RNA self-replicating protolife systems under heating/cooling cycles.
Collapse
|
11
|
Seligmann H, Warthi G. Genetic Code Optimization for Cotranslational Protein Folding: Codon Directional Asymmetry Correlates with Antiparallel Betasheets, tRNA Synthetase Classes. Comput Struct Biotechnol J 2017; 15:412-424. [PMID: 28924459 PMCID: PMC5591391 DOI: 10.1016/j.csbj.2017.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/20/2017] [Accepted: 08/05/2017] [Indexed: 12/14/2022] Open
Abstract
A new codon property, codon directional asymmetry in nucleotide content (CDA), reveals a biologically meaningful genetic code dimension: palindromic codons (first and last nucleotides identical, codon structure XZX) are symmetric (CDA = 0), codons with structures ZXX/XXZ are 5'/3' asymmetric (CDA = - 1/1; CDA = - 0.5/0.5 if Z and X are both purines or both pyrimidines, assigning negative/positive (-/+) signs is an arbitrary convention). Negative/positive CDAs associate with (a) Fujimoto's tetrahedral codon stereo-table; (b) tRNA synthetase class I/II (aminoacylate the 2'/3' hydroxyl group of the tRNA's last ribose, respectively); and (c) high/low antiparallel (not parallel) betasheet conformation parameters. Preliminary results suggest CDA-whole organism associations (body temperature, developmental stability, lifespan). Presumably, CDA impacts spatial kinetics of codon-anticodon interactions, affecting cotranslational protein folding. Some synonymous codons have opposite CDA sign (alanine, leucine, serine, and valine), putatively explaining how synonymous mutations sometimes affect protein function. Correlations between CDA and tRNA synthetase classes are weaker than between CDA and antiparallel betasheet conformation parameters. This effect is stronger for mitochondrial genetic codes, and potentially drives mitochondrial codon-amino acid reassignments. CDA reveals information ruling nucleotide-protein relations embedded in reversed (not reverse-complement) sequences (5'-ZXX-3'/5'-XXZ-3').
Collapse
Affiliation(s)
- Hervé Seligmann
- Aix-Marseille Univ, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS UMR7278, IRD 198, INSERM U1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, Postal code 13385, France
- Dept. Ecol Evol Behav, Alexander Silberman Inst Life Sci, The Hebrew University of Jerusalem, IL-91904 Jerusalem, Israel
| | - Ganesh Warthi
- Aix-Marseille Univ, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS UMR7278, IRD 198, INSERM U1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, Postal code 13385, France
| |
Collapse
|
12
|
Reviewing evidence for systematic transcriptional deletions, nucleotide exchanges, and expanded codons, and peptide clusters in human mitochondria. Biosystems 2017; 160:10-24. [PMID: 28807694 DOI: 10.1016/j.biosystems.2017.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/26/2017] [Accepted: 08/04/2017] [Indexed: 12/12/2022]
Abstract
Polymerization sometimes transforms sequences by (a) systematic deletions of mono-, dinucleotides after trinucleotides, or (b) 23 systematic nucleotide exchanges (9 symmetric, X<>Y, e.g. G<>T, 14 asymmetric, X > Y > Z > X, e.g. A > G > T > A), producing del- and swinger RNAs. Some peptides correspond to del- and swinger RNA translations, also according to tetracodons, codons expanded by a silent nucleotide. Here new analyzes assume different proteolytic patterns, partially alleviating false negative peptide detection biases, expanding noncanonical mitoproteome profiles. Mito-genomic, -transcriptomic and -proteomic evidence for noncanonical transcriptions and translations are reviewed and clusters of del- and swinger peptides (also along tetracodons) are described. Noncanonical peptide clusters indicate regulated expression of cryptically encoded mitochondrial protein coding genes. These candidate noncanonical proteins don't resemble known proteins.
Collapse
|
13
|
Seligmann H. Natural mitochondrial proteolysis confirms transcription systematically exchanging/deleting nucleotides, peptides coded by expanded codons. J Theor Biol 2016; 414:76-90. [PMID: 27899286 DOI: 10.1016/j.jtbi.2016.11.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 11/11/2016] [Accepted: 11/22/2016] [Indexed: 12/19/2022]
Abstract
Protein sequences have higher linguistic complexities than human languages. This indicates undeciphered multilayered, overprinted information/genetic codes. Some superimposed genetic information is revealed by detections of transcripts systematically (a) exchanging nucleotides (nine symmetric, e.g. A<->C, fourteen asymmetric, e.g. A->C->G->A, swinger RNAs) translated according to tri-, tetra- and pentacodons, and (b) deleting mono-, dinucleotides after each trinucleotide (delRNAs). Here analyses of two independent proteomic datasets considering natural proteolysis confirm independently translation of these non-canonical RNAs, also along tetra- and pentacodons, increasing coverage of putative, cryptically encoded proteins. Analyses assuming endoproteinase GluC and elastase digestions (cleavages after residues D, E, and A, L, I, V, respectively) detect additional peptides colocalizing with detected non-canonical RNAs. Analyses detect fewer peptides matching GluC-, elastase- than trypsin-digestions: artificial trypsin-digestion outweighs natural proteolysis. Results suggest occurrences of complete proteins entirely matching non-canonical, superimposed encoding(s). Protein-coding after bijective transformations could explain genetic code symmetries, such as along Rumer's transformation.
Collapse
Affiliation(s)
- Hervé Seligmann
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes, Faculté de Médecine, URMITE CNRS-IRD 198 UMER 6236, IHU (Institut Hospitalo-Universitaire), Aix-Marseille University, Marseille, France.
| |
Collapse
|
14
|
Unbiased Mitoproteome Analyses Confirm Non-canonical RNA, Expanded Codon Translations. Comput Struct Biotechnol J 2016; 14:391-403. [PMID: 27830053 PMCID: PMC5094600 DOI: 10.1016/j.csbj.2016.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 01/14/2023] Open
Abstract
Proteomic MS/MS mass spectrometry detections are usually biased towards peptides cleaved by experimentally added digestion enzyme(s). Hence peptides resulting from spontaneous degradation and natural proteolysis usually remain undetected. Previous analyses of tryptic human proteome data (cleavage after K, R) detected non-canonical tryptic peptides translated according to tetra- and pentacodons (codons expanded by silent mono- and dinucleotides), and from transcripts systematically (a) deleting mono-, dinucleotides after trinucleotides (delRNAs), (b) exchanging nucleotides according to 23 bijective transformations. Nine symmetric and fourteen asymmetric nucleotide exchanges (X ↔ Y, e.g. A ↔ C; and X → Y → Z → X, e.g. A → C → G → A) produce swinger RNAs. Here unbiased reanalyses of these proteomic data detect preferentially non-canonical tryptic peptides despite assuming random cleavage. Unbiased analyses couldn't reconstruct experimental tryptic digestion if most detected non-canonical peptides were false positives. Detected non-tryptic non-canonical peptides map preferentially on corresponding, previously described non-canonical transcripts, as for tryptic non-canonical peptides. Hence unbiased analyses independently confirm previous trypsin-biased analyses that showed translations of del- and swinger RNA and expanded codons. Accounting for natural proteolysis completes trypsin-biased mitopeptidome analyses, independently confirms non-canonical transcriptions and translations.
Collapse
|
15
|
Seligmann H. Natural chymotrypsin-like-cleaved human mitochondrial peptides confirm tetra-, pentacodon, non-canonical RNA translations. Biosystems 2016; 147:78-93. [PMID: 27477600 DOI: 10.1016/j.biosystems.2016.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 07/15/2016] [Accepted: 07/26/2016] [Indexed: 12/22/2022]
Abstract
Mass spectra of human mitochondrial peptides match non-canonical transcripts systematically (a) deleting mono/dinucleotides after trinucleotides (delRNA), (b) exchanging nucleotides (swinger RNA), translated according to tri, (c) tetra- and pentacodons (codons expanded by a 4th (and 5th) silent nucleotide(s)). Swinger transcriptions are 23 bijective transformations, nine symmetric (X<->Y, e.g. A<->C) and fourteen asymmetric exchanges (X->Y->Z->X, e.g. A->C->G->A). Here, proteomic analyses assuming cleavage after W,Y, F (chymotrypsin-like, for trypsinized samples) detect fewer chymotrypsinized than trypsinized peptides. Detected non-canonical peptides map preferentially on detected non-canonical RNAs for chymotrypsinized peptides, as previously found for trypsinized peptides. This suggests residual natural chymotrypsin-like digestion detectable within experimentally trypsinized peptide data. Some trypsinized peptides are detected twice, by analyses assuming trypsin, and those assuming chymotrypsin cleavages. They have higher spectra counts than peptides detected only once, meaning that abundant peptides are more frequently detected, but detection certainties resemble those for peptides detected only once. Analyses assuming 'incorrect' digestions are inadequate negative controls for digestion enzymes naturally active in biological samples. Chymotrypsin-analyses confirm non-canonical transcriptions/translations independently of results obtained assuming trypsinization, increase non-canonical peptidome coverage, indicating mitogenome-encoding of yet undetected proteins.
Collapse
Affiliation(s)
- Hervé Seligmann
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes, Faculté de Médecine, Université d'Aix-Marseille, URMITE CNRS-IRD 198 UMER 6236, Marseille, France.
| |
Collapse
|
16
|
Chimeric mitochondrial peptides from contiguous regular and swinger RNA. Comput Struct Biotechnol J 2016; 14:283-97. [PMID: 27453772 PMCID: PMC4942731 DOI: 10.1016/j.csbj.2016.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/19/2016] [Accepted: 06/23/2016] [Indexed: 12/20/2022] Open
Abstract
Previous mass spectrometry analyses described human mitochondrial peptides entirely translated from swinger RNAs, RNAs where polymerization systematically exchanged nucleotides. Exchanges follow one among 23 bijective transformation rules, nine symmetric exchanges (X ↔ Y, e.g. A ↔ C) and fourteen asymmetric exchanges (X → Y → Z → X, e.g. A → C → G → A), multiplying by 24 DNA's protein coding potential. Abrupt switches from regular to swinger polymerization produce chimeric RNAs. Here, human mitochondrial proteomic analyses assuming abrupt switches between regular and swinger transcriptions, detect chimeric peptides, encoded by part regular, part swinger RNA. Contiguous regular- and swinger-encoded residues within single peptides are stronger evidence for translation of swinger RNA than previously detected, entirely swinger-encoded peptides: regular parts are positive controls matched with contiguous swinger parts, increasing confidence in results. Chimeric peptides are 200 × rarer than swinger peptides (3/100,000 versus 6/1000). Among 186 peptides with > 8 residues for each regular and swinger parts, regular parts of eleven chimeric peptides correspond to six among the thirteen recognized, mitochondrial protein-coding genes. Chimeric peptides matching partly regular proteins are rarer and less expressed than chimeric peptides matching non-coding sequences, suggesting targeted degradation of misfolded proteins. Present results strengthen hypotheses that the short mitogenome encodes far more proteins than hitherto assumed. Entirely swinger-encoded proteins could exist. Chimeric peptides are translated from contiguous regular and swinger RNA They are 200x rarer than mitochondrial swinger peptides Chimeric peptides integrated in regular mitochondrial proteins are downregulated Contiguous regular parts are matched positive controls for swinger parts The last point validates results beyond other statistical tests for robustness
Collapse
|
17
|
Swinger RNA self-hybridization and mitochondrial non-canonical swinger transcription, transcription systematically exchanging nucleotides. J Theor Biol 2016; 399:84-91. [PMID: 27079465 DOI: 10.1016/j.jtbi.2016.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/02/2016] [Accepted: 04/05/2016] [Indexed: 11/22/2022]
Abstract
Stem-loop hairpins punctuate mitochondrial post-transcriptional processing. Regulation of mitochondrial swinger transcription, transcription producing RNAs matching the mitogenome only assuming systematic exchanges between nucleotides (23 bijective transformations along 9 symmetric exchanges X<>Y, e.g. A<>G, and 14 asymmetric exchanges X>Y>Z>X, e.g. A>G>C>A) remains unknown. Does swinger RNA self-hybridization regulate swinger, as regular, transcription? Groups of 8 swinger transformations share canonical self-hybridization properties within each group, group 0 includes identity (regular) transcription. The human mitogenome has more stem-loop hairpins than randomized sequences for all groups. Group 2 transformations reveal complementarity of the light strand replication origin (OL) loop and a neighboring tRNA gene, detecting the longtime presumed OL/tRNA homology. Non-canonical G=U pairings in hairpins increases with swinger RNA detection. These results confirm biological relevancy of swinger-transformed DNA/RNA, independently of, and in combination with, previously detected swinger DNA/RNA and swinger peptides. Swinger-transformed mitogenomes include unsuspected multilayered information.
Collapse
|
18
|
Systematically frameshifting by deletion of every 4th or 4th and 5th nucleotides during mitochondrial transcription: RNA self-hybridization regulates delRNA expression. Biosystems 2016; 142-143:43-51. [PMID: 27018206 DOI: 10.1016/j.biosystems.2016.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/11/2016] [Accepted: 03/23/2016] [Indexed: 02/05/2023]
Abstract
In mitochondria, secondary structures punctuate post-transcriptional RNA processing. Recently described transcripts match the human mitogenome after systematic deletions of every 4th, respectively every 4th and 5th nucleotides, called delRNAs. Here I explore predicted stem-loop hairpin formation by delRNAs, and their associations with delRNA transcription and detected peptides matching their translation. Despite missing 25, respectively 40% of the nucleotides in the original sequence, del-transformed sequences form significantly more secondary structures than corresponding randomly shuffled sequences, indicating biological function, independently of, and in combination with, previously detected delRNA and thereof translated peptides. Self-hybridization decreases delRNA abundances, indicating downregulation. Systematic deletions of the human mitogenome reveal new, unsuspected coding and structural informations.
Collapse
|
19
|
Seligmann H. Translation of mitochondrial swinger RNAs according to tri-, tetra- and pentacodons. Biosystems 2015; 140:38-48. [PMID: 26723232 DOI: 10.1016/j.biosystems.2015.11.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/08/2015] [Accepted: 11/23/2015] [Indexed: 10/22/2022]
Abstract
Transcriptomes and proteomes include RNA and protein fragments not matching regular transcription/translation. Some 'non-canonical' mitochondrial transcripts match mitogenomes after assuming one among 23 systematic exchanges between nucleotides, producing swinger RNAs (nine symmetric, X↔Y, example C↔T; 14 asymmetric, X→Y→Z→X, example A→T→G→A) in GenBank's EST database. Here, reanalyzes of (a) public human mitochondrial transcriptome data (Illumina: RNA-seq) allowed to detect mitochondrial swinger RNAs for all 23 exchanges and (b) independent public human mitochondrial trypsinized proteomic mass spectrometry data allowed to detect peptides predicted from translation of parts of swinger-transformed mitogenomes covered by detected swinger reads. RNA-seq and previous EST swinger transcript data converge. Swinger RNA translation frequently inserts various amino acids at stop codons. Swinger RNA-peptide associations exist also for peptides matching systematically frameshifting translation, peptides entirely coded by tetra- and pentacodons (regular codons expanded by silent mononucleotides at 4th, and silent dinucleotides at 4th and 5th position(s), respectively). Swinger peptides differ from regular mitochondrial proteins: not membrane embedded, reflect warmer, anaerobic, low resource conditions, reminding a free-living ancestor. Tetra- and pentacoded peptides associate with low, high GC contents, respectively, suggesting expanded codon translations associate with thermic stresses. Results confirm experimentally predicted swinger, tetra- and pentacoded mitochondrial peptides, increasing mitogenomic coding density.
Collapse
Affiliation(s)
- Hervé Seligmann
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes, Faculté de Médecine, URMITE CNRS-IRD 198 UMER 6236, Université de la Méditerranée, Marseille, France.
| |
Collapse
|
20
|
Seligmann H. Codon expansion and systematic transcriptional deletions produce tetra-, pentacoded mitochondrial peptides. J Theor Biol 2015; 387:154-65. [PMID: 26456204 DOI: 10.1016/j.jtbi.2015.09.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/28/2015] [Accepted: 09/30/2015] [Indexed: 11/28/2022]
Abstract
Genes include occasionally isolated codons with a fourth (and fifth) silent nucleotide(s). Assuming tetracodons, translated hypothetical peptides align with regular GenBank proteins; predicted tetracodons coevolve with predicted tRNAs with expanded anticodons in each mammal, Drosophila and Lepidosauria mitogenomes, GC contents and with lepidosaurian body temperatures, suggesting that expanded codons are an adaptation of translation to high temperature. Hypothetically, continuous stretches of tetra- and pentacodons code for peptides. Both systematic nucleotide deletions during transcription, and translation by tRNAs with expanded anticodons could produce these peptides. Reanalyses of human nanoLc mass spectrometry peptidome data detect numerous tetra- and pentapeptides translated from the human mitogenome. These map preferentially on (BLAST-detected) human RNAs matching the human mitogenome, assuming systematic mono- and dinucleotide deletions after each third nucleotide (delRNAs). Translation by expanded anticodons is incompatible with silent nucleotides in the midst rather than at codon 3' extremity. More than 1/3 of detected tetra- and pentapeptides assume silent positions at codon extremity, suggesting that both mechanisms, regular translation of delRNAs and translation of regular RNAs by expanded anticodons, produce this peptide subgroup. Results show that systematically deleting polymerization occurs, and confirm serial translation of expanded codons. Non-canonical transcriptions and translations considerably expand the coding potential of DNA and RNA sequences.
Collapse
Affiliation(s)
- Hervé Seligmann
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes, Faculté de Médecine, URMITE CNRS-IRD 198 UMER 6236, Université de la Méditerranée, 13385 Marseille, France.
| |
Collapse
|
21
|
Seligmann H. Systematic exchanges between nucleotides: Genomic swinger repeats and swinger transcription in human mitochondria. J Theor Biol 2015; 384:70-7. [PMID: 26297891 DOI: 10.1016/j.jtbi.2015.07.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 07/11/2015] [Accepted: 07/24/2015] [Indexed: 10/23/2022]
Abstract
Chargaff׳s second parity rule, quasi-equal single strand frequencies for complementary nucleotides, presumably results from insertion of repeats and inverted repeats during sequence genesis. Vertebrate mitogenomes escape this rule because repeats are counterselected: their hybridization produces loop bulges whose deletion is deleterious. Some DNA/RNA sequences match mitogenomes only after assuming one among 23 systematic nucleotide exchanges (swinger DNA/RNA: nine symmetric, e.g. A ↔ C; and 14 asymmetric, e.g. A → C → G → A). Swinger-transformed repeats do not hybridize, escaping selection against deletions due to bulge formation. Blast analyses of the human mitogenome detect swinger repeats for all 23 swinger types, more than in randomized sequences with identical length and nucleotide contents. Mean genomic swinger repeat lengths increase with observed human swinger RNA frequencies: swinger repeat and swinger RNA productions appear linked, perhaps by swinger RNA retrotranscription. Mean swinger repeat lengths are proportional to reading frame retrievability, post-swinger transformation, by the natural circular code. Genomic swinger repeats confirm at genomic level, independently of swinger RNA detection, occurrence of swinger polymerizations. They suggest that repeats, and swinger repeats in particular, contribute to genome genesis.
Collapse
Affiliation(s)
- Hervé Seligmann
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes, Faculté de Médecine, URMITE CNRS-IRD 198 UMER 6236, Université Aix-Marseille, Marseille, France.
| |
Collapse
|