1
|
Casotti MC, Meira DD, Zetum ASS, Campanharo CV, da Silva DRC, Giacinti GM, da Silva IM, Moura JAD, Barbosa KRM, Altoé LSC, Mauricio LSR, Góes LSBDB, Alves LNR, Linhares SSG, Ventorim VDP, Guaitolini YM, dos Santos EDVW, Errera FIV, Groisman S, de Carvalho EF, de Paula F, de Sousa MVP, Fechine PBA, Louro ID. Integrating frontiers: a holistic, quantum and evolutionary approach to conquering cancer through systems biology and multidisciplinary synergy. Front Oncol 2024; 14:1419599. [PMID: 39224803 PMCID: PMC11367711 DOI: 10.3389/fonc.2024.1419599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer therapy is facing increasingly significant challenges, marked by a wide range of techniques and research efforts centered around somatic mutations, precision oncology, and the vast amount of big data. Despite this abundance of information, the quest to cure cancer often seems more elusive, with the "war on cancer" yet to deliver a definitive victory. A particularly pressing issue is the development of tumor treatment resistance, highlighting the urgent need for innovative approaches. Evolutionary, Quantum Biology and System Biology offer a promising framework for advancing experimental cancer research. By integrating theoretical studies, translational methods, and flexible multidisciplinary clinical research, there's potential to enhance current treatment strategies and improve outcomes for cancer patients. Establishing stronger links between evolutionary, quantum, entropy and chaos principles and oncology could lead to more effective treatments that leverage an understanding of the tumor's evolutionary dynamics, paving the way for novel methods to control and mitigate cancer. Achieving these objectives necessitates a commitment to multidisciplinary and interprofessional collaboration at the heart of both research and clinical endeavors in oncology. This entails dismantling silos between disciplines, encouraging open communication and data sharing, and integrating diverse viewpoints and expertise from the outset of research projects. Being receptive to new scientific discoveries and responsive to how patients react to treatments is also crucial. Such strategies are key to keeping the field of oncology at the forefront of effective cancer management, ensuring patients receive the most personalized and effective care. Ultimately, this approach aims to push the boundaries of cancer understanding, treating it as a manageable chronic condition, aiming to extend life expectancy and enhance patient quality of life.
Collapse
Affiliation(s)
- Matheus Correia Casotti
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - Débora Dummer Meira
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | | | | | | | - Giulia Maria Giacinti
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - Iris Moreira da Silva
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - João Augusto Diniz Moura
- Laboratório de Oncologia Clínica e Experimental, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - Karen Ruth Michio Barbosa
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - Lorena Souza Castro Altoé
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | | | | | - Lyvia Neves Rebello Alves
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | | | - Vinícius do Prado Ventorim
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - Yasmin Moreto Guaitolini
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | | | | | - Sonia Groisman
- Instituto de Biologia Roberto Alcântara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Elizeu Fagundes de Carvalho
- Instituto de Biologia Roberto Alcântara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Flavia de Paula
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | | | - Pierre Basílio Almeida Fechine
- Group of Chemistry of Advanced Materials (GQMat), Department of Analytical Chemistry and Physical-Chemistry, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Iuri Drumond Louro
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| |
Collapse
|
2
|
Walczak M, Marszalek W, Sadecki J. Identification of Ca 2+ oscillations with the 0-1 test for periodic and chaotic time-series: One- and two-parameter bifurcations. Biosystems 2022; 212:104590. [PMID: 34999171 DOI: 10.1016/j.biosystems.2021.104590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/10/2021] [Indexed: 11/02/2022]
Abstract
This paper examines the oscillatory responses (periodic and chaotic) of a biosystem store model for bursting and complex Ca2+ oscillations in which three compartments have been taken into consideration: the cytosol, endoplasmic reticulum (ER) and mitochondria. The oscillatory model is used to examine the reliability of the 0-1 test for chaos in the bifurcation analysis of continuous signals obtained when the frequencies of oscillatory responses vary significantly with a relatively small changes of the bifurcation parameters. The illustrative examples in both the one- and two-parameter cases are designed to show that for a periodic time-series the test's reliability may be questioned when a periodic series is classified as a chaotic one - the 'false-positive' case. To prevent the incorrect result an additional computational work is needed to examine the frequency spectrum of the periodic time-series. The illustrative examples utilize an autonomous dynamical model of cytosolic calcium oscillations with three dynamical variables and sixteen parameters. The dynamical model is such that the frequency of oscillations may change by the factor of about 200, when a certain dynamical system's parameter changes from its minimum to maximum values, making selection of the parameters in the 0-1 test extremely difficult. The extra computational work improves the test's reliability and eliminates the 'false-positive' outcomes of the test. The paper is focused on the computational aspects of the 0-1 test for periodic and chaotic oscillations rather than on the properties of the store model for bursting and complex Ca2+ oscillations.
Collapse
Affiliation(s)
- Maciej Walczak
- Opole University of Technology, Department of Computer Science, 45-758 Opole, Poland
| | - Wieslaw Marszalek
- Opole University of Technology, Department of Computer Science, 45-758 Opole, Poland.
| | - Jan Sadecki
- Opole University of Technology, Department of Computer Science, 45-758 Opole, Poland
| |
Collapse
|
4
|
Zhou H, Qin C, Han S, Zhang L, Chen R, Zhang G, Liu Y, Wu Z, Li S, Xiao L, Jia S. Visualizing Quantum Coherence Based on Single-Molecule Coherent Modulation Microscopy. NANO LETTERS 2021; 21:1477-1483. [PMID: 33507086 DOI: 10.1021/acs.nanolett.0c04626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Massive magical phenomena in nature are closely related to quantum effects at the microscopic scale. However, the lack of straightforward methods to observe the quantum coherent dynamics in integrated biological systems limits the study of essential biological mechanisms. In this work, we developed a single-molecule coherent modulation (SMCM) microscopy by combining the superior features of single-molecule microscopy with ultrafast spectroscopy. By introducing the modem technology and defining the coherent visibility, we realized visualization and real-time observation of the decoherence process of a single molecule influenced by the microenvironment for the first time. In particular, we applied this technique to observe the quantum coherent properties of the entire chlorella cells and found the correlation between the coherent visibility and metabolic activities, which may have potential applications in molecular diagnostics and precision medicine.
Collapse
Affiliation(s)
- Haitao Zhou
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Molecular Imaging Precision Medical Collaborative Innovation Center, Taiyuan, Shanxi Province 030001, China
| | - Chengbing Qin
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Shuangping Han
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Lei Zhang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Ruiyun Chen
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Guofeng Zhang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yaoming Liu
- Scientific Instrument Center, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhifang Wu
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Molecular Imaging Precision Medical Collaborative Innovation Center, Taiyuan, Shanxi Province 030001, China
| | - Sijin Li
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Molecular Imaging Precision Medical Collaborative Innovation Center, Taiyuan, Shanxi Province 030001, China
| | - Liantuan Xiao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Suotang Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
5
|
A review of applications of principles of quantum physics in oncology: do quantum physics principles have any role in oncology research and applications? JOURNAL OF RADIOTHERAPY IN PRACTICE 2019. [DOI: 10.1017/s1460396919000153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractBackground:Research in the applications of the principles of quantum physics in oncology has progressed significantly over the past decades; and several research groups with professionals from diverse scientific background, including electrical engineers, mathematicians, biologists, atomic physicists, computer programmers, and biochemists, are working collaboratively in an unprecedented and pioneering economic, organisational and human effort searching for a wider and more effective, potentially definitive, understanding of the cancers. It is hypothesised that the principles of quantum physics could open new and broader understanding of the cancers and the development of new effective, targeted, accurate, personalised and possibly definitive cancer treatment.Materials and methods:This paper reports on a review of recent studies in the field of the applications of the principles of quantum physics in biology, chemistry, biochemistry and quantum physics in cancer research, including quantum physics principles and cancer, quantum modelling techniques, quantum dots and its applications in oncology, quantum cascade laser histopathology and quantum computing applications.Conclusions:The applications of the principles of quantum physics in oncology, chemistry and biology are providing new perspectives and greater insights into a long-studied disease, which could result in a greater understanding of the cancers and the potential for personalised and definitive treatment methods.
Collapse
|