1
|
Azimi A, Ahmadi S, Javan MJ, Rouhani M, Mirjafary Z. QSAR models for the ozonation of diverse volatile organic compounds at different temperatures. RSC Adv 2024; 14:8041-8052. [PMID: 38454938 PMCID: PMC10918768 DOI: 10.1039/d3ra08805g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/06/2024] [Indexed: 03/09/2024] Open
Abstract
In order to assess the fate and persistence of volatile organic compounds (VOCs) in the atmosphere, it is necessary to determine their oxidation rate constants for their reaction with ozone (kO3). However, given that experimental values of kO3 are only available for a few hundred compounds and their determination is expensive and time-consuming, developing predictive models for kO3 is of great importance. Thus, this study aimed to develop reliable quantitative structure-activity relationship (QSAR) models for 302 values of 149 VOCs across a broad temperature range (178-409 K). The model was constructed based on the combination of a simplified molecular-input line-entry system (SMILES) and temperature as an experimental condition, namely quasi-SMILES. In this study, temperature was incorporated in the models as an independent feature. The hybrid optimal descriptor generated from the combination of quasi-SMILES and HFG (hydrogen-filled graph) was used to develop reliable, accurate, and predictive QSAR models employing the CORAL software. The balance between the correlation method and four different target functions (target function without considering IIC or CII, target function using each IIC or CII, and target function based on the combination of IIC and CII) was used to improve the predictability of the QSAR models. The performance of the developed models based on different target functions was compared. The correlation intensity index (CII) significantly enhanced the predictability of the model. The best model was selected based on the numerical value of Rm2 of the calibration set (split #1, Rtrain2 = 0.9834, Rcalibration2 = 0.9276, Rvalidation2 = 0.9136, and calibration = 0.8770). The promoters of increase/decrease for log kO3 were also computed based on the best model. The presence of a double bond (BOND10000000 and $10 000 000 000), absence of halogen (HALO00000000), and the nearest neighbor codes for carbon equal to 321 (NNC-C⋯321) are some significant promoters of endpoint increase.
Collapse
Affiliation(s)
- Ali Azimi
- Department of Chemistry, Science and Research Branch, Islamic Azad University Tehran Iran
| | - Shahin Ahmadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University Tehran Iran
| | - Marjan Jebeli Javan
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University Tehran Iran
| | - Morteza Rouhani
- Department of Chemistry, Science and Research Branch, Islamic Azad University Tehran Iran
| | - Zohreh Mirjafary
- Department of Chemistry, Science and Research Branch, Islamic Azad University Tehran Iran
| |
Collapse
|
2
|
Toropova AP, Toropov AA. Using the local symmetry in amino acids sequences of polypeptides to improve the predictive potential of models of their inhibitor activity. Amino Acids 2023; 55:1437-1445. [PMID: 37707646 DOI: 10.1007/s00726-023-03322-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023]
Abstract
The minimal inhibitory concentrations (pMIC) are a valuable measure of the biological activity of polypeptides. Numerical data on the pMIC are necessary to systematize knowledge on polypeptides' biochemical behaviour. The model of negative decimal logarithm of pMIC of polypeptides in the form of a mathematical function of a sequence of amino acids is suggested. The suggested model is based on the so-called correlation weights of amino acids together with the correlation weights of fragments of local symmetry (FLS). Three kinds of the FLS are considered: (i) three-symbol fragments '…xyx…', (ii) four-symbol fragments '…xyyx…', and (iii) five-symbol fragments '…xyzyx…'. The models built using the Monte Carlo technique improved by applying the index of ideality of correlation (IIC) and correlation intensity index (CII).
Collapse
Affiliation(s)
- Alla P Toropova
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy.
| | - Andrey A Toropov
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| |
Collapse
|
3
|
Toropova AP, Toropov AA, Roncaglioni A, Benfenati E. The System of Self-Consistent Models: QSAR Analysis of Drug-Induced Liver Toxicity. TOXICS 2023; 11:toxics11050419. [PMID: 37235234 DOI: 10.3390/toxics11050419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
Removing a drug-like substance that can cause drug-induced liver injury from the drug discovery process is a significant task for medicinal chemistry. In silico models can facilitate this process. Semi-correlation is an approach to building in silico models representing the prediction in the active (1)-inactive (0) format. The so-called system of self-consistent models has been suggested as an approach for two tasks: (i) building up a model and (ii) estimating its predictive potential. However, this approach has been tested so far for regression models. Here, the approach is applied to building up and estimating a categorical hepatotoxicity model using the CORAL software. This new process yields good results: sensitivity = 0.77, specificity = 0.75, accuracy = 0.76, and Matthew correlation coefficient = 0.51 (all compounds) and sensitivity = 0.83, specificity = 0.81, accuracy = 0.83 and Matthew correlation coefficient = 0.63 (validation set).
Collapse
Affiliation(s)
- Alla P Toropova
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Andrey A Toropov
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Alessandra Roncaglioni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Emilio Benfenati
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| |
Collapse
|
4
|
Quantitative structure-activity relationship modeling for predication of inhibition potencies of imatinib derivatives using SMILES attributes. Sci Rep 2022; 12:21708. [PMID: 36522400 PMCID: PMC9755126 DOI: 10.1038/s41598-022-26279-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Chronic myelogenous leukemia (CML) which is resulted from the BCR-ABL tyrosine kinase (TK) chimeric oncoprotein, is a malignant clonal disorder of hematopoietic stem cells. Imatinib is used as an inhibitor of BCR-ABL TK in the treatment of CML patients. The main object of the present manuscript is focused on constructing quantitative activity relationships (QSARs) models for the prediction of inhibition potencies of a large series of imatinib derivatives against BCR-ABL TK. Herren, the inbuilt Monte Carlo algorithm of CORAL software is employed to develop QSAR models. The SMILES notations of chemical structures are used to compute the descriptor of correlation weights (CWs). QSAR models are established using the balance of correlation method with the index of ideality of correlation (IIC). The data set of 306 molecules is randomly divided into three splits. In QSAR modeling, the numerical value of R2, Q2, and IIC for the validation set of splits 1 to 3 are in the range of 0.7180-0.7755, 0.6891-0.7561, and 0.4431-0.8611 respectively. The numerical result of [Formula: see text] > 0.5 for all three constructed models in the Y-randomization test validate the reliability of established models. The promoters of increase/decrease for pIC50 are recognized and used for the mechanistic interpretation of structural attributes.
Collapse
|
5
|
Toropova AP, Raškova M, Raška I, Toropov AA. The sequence of amino acids as the basis for the model of biological activity of peptides. Theor Chem Acc 2021; 140:15. [PMID: 33500680 PMCID: PMC7820519 DOI: 10.1007/s00214-020-02707-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/15/2020] [Indexed: 01/06/2023]
Abstract
The algorithm of building up a model for the biological activity of peptides as a mathematical function of a sequence of amino acids is suggested. The general scheme is the following: The total set of available data is distributed into the active training set, passive training set, calibration set, and validation set. The training (both active and passive) and calibration sets are a system of generation of a model of biological activity where each amino acid obtains special correlation weight. The numerical data on the correlation weights calculated by the Monte Carlo method using the CORAL software (http://www.insilico.eu/coral). The target function aimed to give the best result for the calibration set (not for the training set). The final checkup of the model is carried out with data on the validation set (peptides, which are not visible during the creation of the model). Described computational experiments confirm the ability of the approach to be a tool for the design of predictive models for the biological activity of peptides (expressed by pIC50).
Collapse
Affiliation(s)
- Alla P Toropova
- Department of Environmental Health Science, Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Maria Raškova
- 3Rd Medical Department, 1st Faculty of Medicine, Charles University in Prague, U Nemocnice 1, 12808 Prague 2, Czech Republic
| | - Ivan Raška
- 3Rd Medical Department, 1st Faculty of Medicine, Charles University in Prague, U Nemocnice 1, 12808 Prague 2, Czech Republic
| | - Andrey A Toropov
- Department of Environmental Health Science, Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| |
Collapse
|
6
|
Toropov AA, Toropova AP, Roncaglioni A, Benfenati E. The system of self-consistent semi-correlations as one of the tools of cheminformatics for designing antiviral drugs. NEW J CHEM 2021. [DOI: 10.1039/d1nj03394h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development of antiviral agents against SARS-CoV-2 is necessary.
Collapse
Affiliation(s)
- Andrey A. Toropov
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Alla P. Toropova
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Alessandra Roncaglioni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Emilio Benfenati
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| |
Collapse
|
7
|
Toropov AA, Toropova AP. The Monte Carlo Method as a Tool to Build up Predictive QSPR/QSAR. Curr Comput Aided Drug Des 2020; 16:197-206. [DOI: 10.2174/1573409915666190328123112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/15/2019] [Accepted: 03/19/2019] [Indexed: 11/22/2022]
Abstract
Background:
The Monte Carlo method has a wide application in various scientific researches.
For the development of predictive models in a form of the quantitative structure-property / activity relationships
(QSPRs/QSARs), the Monte Carlo approach also can be useful. The CORAL software provides the
Monte Carlo calculations aimed to build up QSPR/QSAR models for different endpoints.
Methods:
Molecular descriptors are a mathematical function of so-called correlation weights of various
molecular features. The numerical values of the correlation weights give the maximal value of a target
function. The target function leads to a correlation between endpoint and optimal descriptor for the visible
training set. The predictive potential of the model is estimated with the validation set, i.e. compounds that
are not involved in the process of building up the model.
Results:
The approach gave quite good models for a large number of various physicochemical, biochemical,
ecological, and medicinal endpoints. Bibliography and basic statistical characteristics of several CORAL
models are collected in the present review. In addition, the extended version of the approach for more
complex systems (nanomaterials and peptides), where behaviour of systems is defined by a group of conditions
besides the molecular structure is demonstrated.
Conclusion:
The Monte Carlo technique available via the CORAL software can be a useful and convenient
tool for the QSPR/QSAR analysis.
Collapse
Affiliation(s)
- Andrey A. Toropov
- Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via La Masa 19, 20156 Milan, Italy
| | - Alla P. Toropova
- Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via La Masa 19, 20156 Milan, Italy
| |
Collapse
|
8
|
Huang S, Gong Y, Li Y, Ruan S, Roknul Azam SM, Duan Y, Ye X, Ma H. Preparation of ACE-inhibitory peptides from milk protein in continuous enzyme membrane reactor with gradient dilution feeding substrate. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.02.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Toropova AP, Toropov AA. Application of the Monte Carlo Method for the Prediction of Behavior of Peptides. Curr Protein Pept Sci 2019; 20:1151-1157. [DOI: 10.2174/1389203720666190123163907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/26/2022]
Abstract
Prediction of physicochemical and biochemical behavior of peptides is an important and attractive
task of the modern natural sciences, since these substances have a key role in life processes. The
Monte Carlo technique is a possible way to solve the above task. The Monte Carlo method is a tool with
different applications relative to the study of peptides: (i) analysis of the 3D configurations (conformers);
(ii) establishment of quantitative structure – property / activity relationships (QSPRs/QSARs); and (iii)
development of databases on the biopolymers. Current ideas related to application of the Monte Carlo
technique for studying peptides and biopolymers have been discussed in this review.
Collapse
Affiliation(s)
- Alla P. Toropova
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via La Masa 19, 20156 Milano, Italy
| | - Andrey A. Toropov
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via La Masa 19, 20156 Milano, Italy
| |
Collapse
|
10
|
“Ideal correlations” for biological activity of peptides. Biosystems 2019; 181:51-57. [DOI: 10.1016/j.biosystems.2019.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/18/2019] [Accepted: 04/12/2019] [Indexed: 02/08/2023]
|