1
|
Rourk C. Comment on Albantakis et al. Computing the Integrated Information of a Quantum Mechanism. Entropy 2023, 25, 449. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1436. [PMID: 37895557 PMCID: PMC10606108 DOI: 10.3390/e25101436] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/20/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023]
Abstract
Integrated information theory (IIT) is a powerful tool that provides a framework for evaluating consciousness, whether in the human brain or in other systems. In Computing the Integrated Information of a Quantum Mechanism, the authors extend IIT from digital gates to a quantum CNOT logic gate, and while they explicitly distinguish the analysis from quantum theories of consciousness, they nonetheless provide an analytical road map for extending IIT not only to other quantum mechanisms but also to hybrid computing structures like the brain. This comment provides additional information relating to an adiabatic quantum mechanical energy routing mechanism that is part of a hybrid biological computer that provides an action selection mechanism, which has been hypothesized to exist in the human brain and for which predicted evidence has been subsequently observed, and it hopes to motivate the further evaluation and extension of IIT not only to that hypothesized mechanism but also to other hybrid biological computers.
Collapse
|
2
|
Albantakis L, Prentner R, Durham I. Computing the Integrated Information of a Quantum Mechanism. ENTROPY (BASEL, SWITZERLAND) 2023; 25:449. [PMID: 36981337 PMCID: PMC10047696 DOI: 10.3390/e25030449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Originally conceived as a theory of consciousness, integrated information theory (IIT) provides a theoretical framework intended to characterize the compositional causal information that a system, in its current state, specifies about itself. However, it remains to be determined whether IIT as a theory of consciousness is compatible with quantum mechanics as a theory of microphysics. Here, we present an extension of IIT's latest formalism to evaluate the mechanism integrated information (φ) of a system subset to discrete, finite-dimensional quantum systems (e.g., quantum logic gates). To that end, we translate a recently developed, unique measure of intrinsic information into a density matrix formulation and extend the notion of conditional independence to accommodate quantum entanglement. The compositional nature of the IIT analysis might shed some light on the internal structure of composite quantum states and operators that cannot be obtained using standard information-theoretical analysis. Finally, our results should inform theoretical arguments about the link between consciousness, causation, and physics from the classical to the quantum.
Collapse
Affiliation(s)
- Larissa Albantakis
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Association for Mathematical Consciousness Science, 80539 Munich, Germany
| | - Robert Prentner
- Association for Mathematical Consciousness Science, 80539 Munich, Germany
- Munich Center for Mathematical Philosophy, Ludwig-Maximilians-University, 80539 Munich, Germany
| | - Ian Durham
- Association for Mathematical Consciousness Science, 80539 Munich, Germany
- Department of Physics, Saint Anselm College, Manchester, NH 03102, USA
| |
Collapse
|
3
|
Direct investigations of the electrical conductivity of normal and cancer breast cells by conductive atomic force microscopy. Ultramicroscopy 2022; 237:113531. [DOI: 10.1016/j.ultramic.2022.113531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/21/2022] [Accepted: 04/10/2022] [Indexed: 12/24/2022]
|
4
|
Zhang Y, Ju T, Gao M, Song Z, Xu H, Wang Z, Wang Y. Electrical characterization of tumor-derived exosomes by conductive atomic force microscopy. NANOTECHNOLOGY 2022; 33:295103. [PMID: 35051909 DOI: 10.1088/1361-6528/ac4d57] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The physical properties of tumor-derived exosomes have gained much attention because they are helpful to better understand the exosomes in biomedicine. In this study, the conductive atomic force microscopy (C-AFM) was employed to perform the electrical characterizations of exosomes, and it obtained the topography and current images of samples simultaneously. The exosomes were absorbed onto the mica substrates coated with a gold film of 20 nm thick for obtaining the current images of samples by C-AFM in air. The results showed that the single exosomes had the weak conductivity. Furthermore, the currents on exosomes were measured at different bias voltages and pH conditions. It illustrated that the conductivity of exosomes was affected by external factors such as bias voltages and solutions with different pH values. In addition, the electrical responses of low and high metastatic potential cell-derived exosomes were also compared under different voltages and pH conditions. This work is important for better understanding the physical properties of tumor-derived exosomes and promoting the clinical applications of tumor-derived exosomes.
Collapse
Affiliation(s)
- Yu Zhang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Tuoyu Ju
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Mingyan Gao
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Zhengxun Song
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Hongmei Xu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- JR3CN & IRAC, University of Bedfordshire, Luton LU1 3JU, United Kingdom
| | - Ying Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| |
Collapse
|
5
|
Application of the Catecholaminergic Neuron Electron Transport (CNET) Physical Substrate for Consciousness and Action Selection to Integrated Information Theory. ENTROPY 2022; 24:e24010091. [PMID: 35052119 PMCID: PMC8774445 DOI: 10.3390/e24010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/04/2023]
Abstract
A newly discovered physical mechanism involving incoherent electron tunneling in layers of the protein ferritin that are found in catecholaminergic neurons (catecholaminergic neuron electron transport or CNET) is hypothesized to support communication between neurons. Recent tests further confirm that these ferritin layers can also perform a switching function (in addition to providing an electron tunneling mechanism) that could be associated with action selection in those neurons, consistent with earlier predictions based on CNET. While further testing would be needed to confirm the hypothesis that CNET allows groups of neurons to communicate and act as a switch for selecting one of the neurons in the group to assist in reaching action potential, this paper explains how that hypothesized behavior would be consistent with Integrated Information Theory (IIT), one of a number of consciousness theories (CTs). While the sheer number of CTs suggest that any one of them alone is not sufficient to explain consciousness, this paper demonstrates that CNET can provide a physical substrate and action selection mechanism that is consistent with IIT and which can also be applied to other CTs, such as to conform them into a single explanation of consciousness.
Collapse
|
6
|
|
7
|
Zhao W, Cheong LZ, Xu S, Cui W, Song S, Rourk CJ, Shen C. Direct investigation of current transport in cells by conductive atomic force microscopy. J Microsc 2019; 277:49-57. [PMID: 31883281 DOI: 10.1111/jmi.12861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/06/2019] [Accepted: 12/25/2019] [Indexed: 01/23/2023]
Abstract
Currents play critical roles in neurons. Direct observation of current flows in cells at nanometre dimensions and picoampere current resolution is still a daunting task. In this study, we investigated the current flows in hippocampal neurons, PC12 cells and astrocytes in response to voltages applied to the cell membranes using conductive atomic force microscopy (CAFM). The spines in the hippocampal neurons play crucial roles in nerve signal transfer. When the applied voltage was greater than 7.2 V, PC12 cells even show metallic nanowire-like characteristics. Both the cell body and glial filaments of astrocytes yielded CAFM test results that reflect different electrical conductance. To our best knowledge, the electrical characteristics and current transport through components of cells (especially neurons) in response to an applied external voltage have been revealed for the first time at nanometre dimensions and picoampere current levels. We believe that such studies will pave new ways to study and model the electrical characteristics and physiological behaviours in cells and other biological samples.
Collapse
Affiliation(s)
- W Zhao
- Chinese Academy of Sciences, Ningbo Institute of Materials Technology & Engineering, Ningbo, Zhejiang, China.,School of Information Engineering, Gannan Medical University, Ganzhou, China
| | - L-Z Cheong
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - S Xu
- Ningbo Key Laboratory of Behavioural Neuroscience, Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - W Cui
- Ningbo Key Laboratory of Behavioural Neuroscience, Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - S Song
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - C J Rourk
- 4512 Beverly Drive, 75205, Dallas, TX, U.S.A
| | - C Shen
- Chinese Academy of Sciences, Ningbo Institute of Materials Technology & Engineering, Ningbo, Zhejiang, China
| |
Collapse
|
8
|
Rourk CJ. Conductive atomic force microscopy data from substantia nigra tissue. Data Brief 2019; 27:103986. [PMID: 31799341 PMCID: PMC6881600 DOI: 10.1016/j.dib.2019.103986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/24/2019] [Accepted: 05/03/2019] [Indexed: 12/01/2022] Open
Abstract
Ferritin and neuromelanin are present within the dopamine neurons of the substantia nigra pars compacta (SNc), and ferritin is also distributed in the intercellular regions of those neurons. It is has been shown that ferritin has electron transport behavior that is the same as electron transport properties of semiconductor quantum dots, and neuromelanin also has similar physical characteristics to the physical characteristics of semiconductor quantum dots. Based on the distribution of ferritin and neuromelanin in the SNc, it has been hypothesized that they could support electron transport in the same manner as disordered or semi-ordered arrays of quantum dots, and that such behavior could be detected from the results of conductive atomic force microscopy (c-AFM) testing. This data article provides the c-AFM measurement data as reported and discussed in “Indication of quantum mechanical electron transport in human substantia nigra tissue from conductive atomic force microscopy analysis.” [1].
Collapse
|
9
|
Poznanski RR, Cacha LA, Latif AZA, Salleh SH, Ali J, Yupapin P, Tuszynski JA, Ariff TM. Molecular orbitals of delocalized electron clouds in neuronal domains. Biosystems 2019; 183:103982. [PMID: 31195028 DOI: 10.1016/j.biosystems.2019.103982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 02/08/2023]
Abstract
We have further developed the two-brains hypothesis as a form of complementarity (or complementary relationship) of endogenously induced weak magnetic fields in the electromagnetic brain. The locally induced magnetic field between electron magnetic dipole moments of delocalized electron clouds in neuronal domains is complementary to the exogenous electromagnetic waves created by the oscillating molecular dipoles in the electro-ionic brain. In this paper, we mathematically model the operation of the electromagnetic grid, especially in regard to the functional role of atomic orbitals of dipole-bound delocalized electrons. A quantum molecular dynamic approach under quantum equilibrium conditions is taken to illustrate phase differences between quasi-free electrons tethered to an oscillating molecular core. We use a simplified version of the many-body problem to analytically solve the macro-quantum wave equation (equivalent to the Kohn-Sham equation). The resultant solution for the mechanical angular momentum can be used to approximate the molecular orbital of the dipole-bound delocalized electrons. In addition to non-adiabatic motion of the molecular core, 'guidance waves' may contribute to the delocalized macro-quantum wave functions in generating nonlocal phase correlations. The intrinsic magnetic properties of the origins of the endogenous electromagnetic field are considered to be a nested hierarchy of electromagnetic fields that may also include electromagnetic patterns in three-dimensional space. The coupling between the two-brains may involve an 'anticipatory affect' based on the conceptualization of anticipation as potentiality, arising either from the macro-quantum potential energy or from the electrostatic effects of residual charges in the quantum and classical subsystems of the two-brains that occurs through partitioning of the potential energy of the combined quantum molecular dynamic system.
Collapse
Affiliation(s)
- Roman R Poznanski
- Faculty of Medicine, Universiti Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia.
| | - Lleuvelyn A Cacha
- Faculty of Medicine, Universiti Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia
| | - Ahmad Z A Latif
- Faculty of Medicine, Universiti Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia
| | - Sheik H Salleh
- Centre for Biomedical Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Jalil Ali
- Laser Centre, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Preecha Yupapin
- Computational Optics Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Jack A Tuszynski
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R7, Canada; Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129, Torino, Italy
| | - Tengku M Ariff
- Faculty of Medicine, Universiti Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|