1
|
Li R, Rozum JC, Quail MM, Qasim MN, Sindi SS, Nobile CJ, Albert R, Hernday AD. Inferring gene regulatory networks using transcriptional profiles as dynamical attractors. PLoS Comput Biol 2023; 19:e1010991. [PMID: 37607190 PMCID: PMC10473541 DOI: 10.1371/journal.pcbi.1010991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/01/2023] [Accepted: 07/19/2023] [Indexed: 08/24/2023] Open
Abstract
Genetic regulatory networks (GRNs) regulate the flow of genetic information from the genome to expressed messenger RNAs (mRNAs) and thus are critical to controlling the phenotypic characteristics of cells. Numerous methods exist for profiling mRNA transcript levels and identifying protein-DNA binding interactions at the genome-wide scale. These enable researchers to determine the structure and output of transcriptional regulatory networks, but uncovering the complete structure and regulatory logic of GRNs remains a challenge. The field of GRN inference aims to meet this challenge using computational modeling to derive the structure and logic of GRNs from experimental data and to encode this knowledge in Boolean networks, Bayesian networks, ordinary differential equation (ODE) models, or other modeling frameworks. However, most existing models do not incorporate dynamic transcriptional data since it has historically been less widely available in comparison to "static" transcriptional data. We report the development of an evolutionary algorithm-based ODE modeling approach (named EA) that integrates kinetic transcription data and the theory of attractor matching to infer GRN architecture and regulatory logic. Our method outperformed six leading GRN inference methods, none of which incorporate kinetic transcriptional data, in predicting regulatory connections among TFs when applied to a small-scale engineered synthetic GRN in Saccharomyces cerevisiae. Moreover, we demonstrate the potential of our method to predict unknown transcriptional profiles that would be produced upon genetic perturbation of the GRN governing a two-state cellular phenotypic switch in Candida albicans. We established an iterative refinement strategy to facilitate candidate selection for experimentation; the experimental results in turn provide validation or improvement for the model. In this way, our GRN inference approach can expedite the development of a sophisticated mathematical model that can accurately describe the structure and dynamics of the in vivo GRN.
Collapse
Affiliation(s)
- Ruihao Li
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, California, United States of America
| | - Jordan C. Rozum
- Department of Systems Science and Industrial Engineering, Binghamton University (State University of New York), Binghamton, New York, United States of America
| | - Morgan M. Quail
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, California, United States of America
| | - Mohammad N. Qasim
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, California, United States of America
| | - Suzanne S. Sindi
- Department of Applied Mathematics, University of California, Merced, Merced, California, United States of America
| | - Clarissa J. Nobile
- Department of Molecular Cell Biology, University of California, Merced, Merced, California, United States of America
- Health Sciences Research Institute, University of California, Merced, Merced, California, United States of America
| | - Réka Albert
- Department of Physics, Pennsylvania State University, University Park, University Park, Pennsylvania, United States of America
- Department of Biology, Pennsylvania State University, University Park, University Park, Pennsylvania, United States of America
| | - Aaron D. Hernday
- Department of Molecular Cell Biology, University of California, Merced, Merced, California, United States of America
- Health Sciences Research Institute, University of California, Merced, Merced, California, United States of America
| |
Collapse
|