1
|
Voges N, Lima V, Hausmann J, Brovelli A, Battaglia D. Decomposing Neural Circuit Function into Information Processing Primitives. J Neurosci 2024; 44:e0157232023. [PMID: 38050070 PMCID: PMC10866194 DOI: 10.1523/jneurosci.0157-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 12/06/2023] Open
Abstract
It is challenging to measure how specific aspects of coordinated neural dynamics translate into operations of information processing and, ultimately, cognitive functions. An obstacle is that simple circuit mechanisms-such as self-sustained or propagating activity and nonlinear summation of inputs-do not directly give rise to high-level functions. Nevertheless, they already implement simple the information carried by neural activity. Here, we propose that distinct functions, such as stimulus representation, working memory, or selective attention, stem from different combinations and types of low-level manipulations of information or information processing primitives. To test this hypothesis, we combine approaches from information theory with simulations of multi-scale neural circuits involving interacting brain regions that emulate well-defined cognitive functions. Specifically, we track the information dynamics emergent from patterns of neural dynamics, using quantitative metrics to detect where and when information is actively buffered, transferred or nonlinearly merged, as possible modes of low-level processing (storage, transfer and modification). We find that neuronal subsets maintaining representations in working memory or performing attentional gain modulation are signaled by their boosted involvement in operations of information storage or modification, respectively. Thus, information dynamic metrics, beyond detecting which network units participate in cognitive processing, also promise to specify how and when they do it, that is, through which type of primitive computation, a capability that may be exploited for the analysis of experimental recordings.
Collapse
Affiliation(s)
- Nicole Voges
- Institut de Neurosciences de La Timone, UMR 7289, CNRS, Aix-Marseille Université, Marseille 13005, France
- Institute for Language, Communication and the Brain (ILCB), Aix-Marseille Université, Marseille 13005, France
| | - Vinicius Lima
- Institut de Neurosciences des Systèmes (INS), UMR 1106, Aix-Marseille Université, Marseille 13005, France
| | - Johannes Hausmann
- R&D Department, Hyland Switzerland Sarl, Corcelles NE 2035, Switzerland
| | - Andrea Brovelli
- Institut de Neurosciences de La Timone, UMR 7289, CNRS, Aix-Marseille Université, Marseille 13005, France
- Institute for Language, Communication and the Brain (ILCB), Aix-Marseille Université, Marseille 13005, France
| | - Demian Battaglia
- Institute for Language, Communication and the Brain (ILCB), Aix-Marseille Université, Marseille 13005, France
- Institut de Neurosciences des Systèmes (INS), UMR 1106, Aix-Marseille Université, Marseille 13005, France
- University of Strasbourg Institute for Advanced Studies (USIAS), Strasbourg 67000, France
| |
Collapse
|
2
|
Celotto M, Bím J, Tlaie A, De Feo V, Lemke S, Chicharro D, Nili H, Bieler M, Hanganu-Opatz IL, Donner TH, Brovelli A, Panzeri S. An information-theoretic quantification of the content of communication between brain regions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544903. [PMID: 37398375 PMCID: PMC10312682 DOI: 10.1101/2023.06.14.544903] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Quantifying the amount, content and direction of communication between brain regions is key to understanding brain function. Traditional methods to analyze brain activity based on the Wiener-Granger causality principle quantify the overall information propagated by neural activity between simultaneously recorded brain regions, but do not reveal the information flow about specific features of interest (such as sensory stimuli). Here, we develop a new information theoretic measure termed Feature-specific Information Transfer (FIT), quantifying how much information about a specific feature flows between two regions. FIT merges the Wiener-Granger causality principle with information-content specificity. We first derive FIT and prove analytically its key properties. We then illustrate and test them with simulations of neural activity, demonstrating that FIT identifies, within the total information flowing between regions, the information that is transmitted about specific features. We then analyze three neural datasets obtained with different recording methods, magneto- and electro-encephalography, and spiking activity, to demonstrate the ability of FIT to uncover the content and direction of information flow between brain regions beyond what can be discerned with traditional anaytical methods. FIT can improve our understanding of how brain regions communicate by uncovering previously hidden feature-specific information flow.
Collapse
Affiliation(s)
- Marco Celotto
- Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, Rovereto (TN), Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Jan Bím
- Datamole, s. r. o, Vitezne namesti 577/2 Dejvice, 160 00 Praha 6, The Czech Republic
| | - Alejandro Tlaie
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, Rovereto (TN), Italy
| | - Vito De Feo
- Artificial Intelligence Team, Future Health Technology, and Brain-Computer Interfaces laboratories, School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Stefan Lemke
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, United States
| | - Daniel Chicharro
- Department of Computer Science, City, University of London, London, UK
| | - Hamed Nili
- Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Malte Bieler
- Mobile Technology Lab, School of Economics, Innovation and Technology, University College Kristiania, Oslo, Norway
| | - Ileana L. Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias H. Donner
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Brovelli
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Université, CNRS, Marseille, France
| | - Stefano Panzeri
- Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, Rovereto (TN), Italy
| |
Collapse
|
3
|
Tauste Campo A. Inferring neural information flow from spiking data. Comput Struct Biotechnol J 2020; 18:2699-2708. [PMID: 33101608 PMCID: PMC7548302 DOI: 10.1016/j.csbj.2020.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 01/02/2023] Open
Abstract
The brain can be regarded as an information processing system in which neurons store and propagate information about external stimuli and internal processes. Therefore, estimating interactions between neural activity at the cellular scale has significant implications in understanding how neuronal circuits encode and communicate information across brain areas to generate behavior. While the number of simultaneously recorded neurons is growing exponentially, current methods relying only on pairwise statistical dependencies still suffer from a number of conceptual and technical challenges that preclude experimental breakthroughs describing neural information flows. In this review, we examine the evolution of the field over the years, starting from descriptive statistics to model-based and model-free approaches. Then, we discuss in detail the Granger Causality framework, which includes many popular state-of-the-art methods and we highlight some of its limitations from a conceptual and practical estimation perspective. Finally, we discuss directions for future research, including the development of theoretical information flow models and the use of dimensionality reduction techniques to extract relevant interactions from large-scale recording datasets.
Collapse
Affiliation(s)
- Adrià Tauste Campo
- Centre for Brain and Cognition, Universitat Pompeu Fabra, Ramon Trias Fargas 25, 08018 Barcelona, Spain
| |
Collapse
|