1
|
Paredes O, Farfán-Ugalde E, Gómez-Márquez C, Borrayo E, Mendizabal AP, Morales JA. The calculus of codes - From entropy, complexity, and information to life. Biosystems 2024; 236:105099. [PMID: 38101727 DOI: 10.1016/j.biosystems.2023.105099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Exploring the core components that define living systems and their operational mechanisms within emerging biological entities is a complex endeavor. In the realm of biological systems literature, the terms matter, energy, information, complexity, and entropy are frequently referenced. However, possessing these concepts alone does not guarantee a comprehensive understanding or the ability to reconstruct the intricate nature of life. This study aims to illuminate the trajectory of these organic attributes, presenting a theoretical framework that delves into the integrated role of these concepts in biology. We assert that Code Biology serves as a pivotal steppingstone for unraveling the mechanisms underlying life. Biological codes (BCs) emerge not only from the interplay of matter and energy but also from Information. Contrary to deriving information from the former elements, we propose that information holds its place as a fundamental physical aspect. Consequently, we propose a continuum perspective called Calculus of Fundamentals involving three fundamentals: Matter, Energy, and Information, to depict the dynamics of BCs. To achieve this, we emphasize the necessity of studying Entropy and Complexity as integral organic descriptors. This perspective also facilitates the introduction of a mathematical theoretical framework that aids in comprehending continuous changes, the driving dynamics of biological fundamentals. We posit that Energy, Matter, and Information constitute the essential building blocks of living systems, and their interactions are governed by Entropy and Complexity analyses, redefined as biological descriptors. This interdisciplinary perspective of Code Biology sheds light on the intricate interplay between the controversial phenomenon of life and advances the idea of constructing a theory rooted in information as an organic fundamental.
Collapse
Affiliation(s)
- Omar Paredes
- Biodigital Innovation Lab, Translational Bioengineering Department, CUCEI, UDG, México
| | - Enrique Farfán-Ugalde
- Biodigital Innovation Lab, Translational Bioengineering Department, CUCEI, UDG, México
| | | | - Ernesto Borrayo
- Biodigital Innovation Lab, Translational Bioengineering Department, CUCEI, UDG, México
| | | | - J Alejandro Morales
- Biodigital Innovation Lab, Translational Bioengineering Department, CUCEI, UDG, México.
| |
Collapse
|
2
|
Heng J, Heng HH. Karyotype as code of codes: An inheritance platform to shape the pattern and scale of evolution. Biosystems 2023; 233:105016. [PMID: 37659678 DOI: 10.1016/j.biosystems.2023.105016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
Organismal evolution displays complex dynamics in phase and scale which seem to trend towards increasing biocomplexity and diversity. For over a century, such amazing dynamics have been cleverly explained by the apparently straightforward mechanism of natural selection: all diversification, including speciation, results from the gradual accumulation of small beneficial or near-neutral alterations over long timescales. However, although this has been widely accepted, natural selection makes a crucial assumption that has not yet been validated. Specifically, the informational relationship between small microevolutionary alterations and large macroevolutionary changes in natural selection is unclear. To address the macroevolution-microevolution relationship, it is crucial to incorporate the concept of organic codes and particularly the "karyotype code" which defines macroevolutionary changes. This concept piece examines the karyotype from the perspective of two-phased evolution and four key components of information management. It offers insight into how the karyotype creates and preserves information that defines the scale and phase of macroevolution and, by extension, microevolution. We briefly describe the relationship between the karyotype code, the genetic code, and other organic codes in the context of generating evolutionary novelties in macroevolution and imposing constraints on them as biological routines in microevolution. Our analyses suggest that karyotype coding preserves many organic codes by providing system-level inheritance, and similar analyses are needed to classify and prioritize a large number of different organic codes based on the phases and scales of evolution. Finally, the importance of natural information self-creation is briefly discussed, leading to a call to integrate information and time into the relationship between matter and energy.
Collapse
Affiliation(s)
- Julie Heng
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Henry H Heng
- Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
3
|
Prinz R. Nothing in evolution makes sense except in the light of code biology. Biosystems 2023; 229:104907. [PMID: 37207840 DOI: 10.1016/j.biosystems.2023.104907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
This article highlights the potential contribution of biological codes to the course and dynamics of evolution. The concept of organic codes, developed by Marcello Barbieri, has fundamentally changed our view of how living systems function. The notion that molecular interactions built on adaptors that arbitrarily link molecules from different "worlds" in a conventional, i.e., rule-based way, departs significantly from the law-based constraints imposed on livening things by physical and chemical mechanisms. In other words, living and non-living things behave like rules and laws, respectively, but this important distinction is rarely considered in current evolutionary theory. The many known codes allow quantification of codes that relate to a cell, or comparisons between different biological systems and may pave the way to a quantitative and empirical research agenda in code biology. A starting point for such an endeavour is the introduction of a simple dichotomous classification of structural and regulatory codes. This classification can be used as a tool to analyse and quantify key organising principles of the living world, such as modularity, hierarchy, and robustness, based on organic codes. The implications for evolutionary research are related to the unique dynamics of codes, or ´Eigendynamics´ (self-momentum) and how they determine the behaviour of biological systems from within, whereas physical constraints are imposed mainly from without. A speculation on the drivers of macroevolution in light of codes is followed by the conclusion that a meaningful and comprehensive understanding of evolution depends including codes into the equation of life.
Collapse
|
4
|
Paredes O, Magaña-Cuevas E, Lora-Castro S, Serna-Grilló JD, De la Mora DY, Ríos Patiño D, Romo-Vázquez R, Morales JA. A letter to the editor about the article "The modularity codes". J Theor Biol 2023; 559:111369. [PMID: 36574525 DOI: 10.1016/j.jtbi.2022.111369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/28/2022] [Accepted: 11/20/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Omar Paredes
- Translational Bioengineering Department, CUCEI, Guadalajara University, Guadalajara 44430, Mexico
| | - Elsa Magaña-Cuevas
- Translational Bioengineering Department, CUCEI, Guadalajara University, Guadalajara 44430, Mexico
| | - Sorpresa Lora-Castro
- Translational Bioengineering Department, CUCEI, Guadalajara University, Guadalajara 44430, Mexico
| | - Juan D Serna-Grilló
- Translational Bioengineering Department, CUCEI, Guadalajara University, Guadalajara 44430, Mexico
| | - D Y De la Mora
- Translational Bioengineering Department, CUCEI, Guadalajara University, Guadalajara 44430, Mexico
| | - Diana Ríos Patiño
- Translational Bioengineering Department, CUCEI, Guadalajara University, Guadalajara 44430, Mexico
| | - Rebeca Romo-Vázquez
- Translational Bioengineering Department, CUCEI, Guadalajara University, Guadalajara 44430, Mexico
| | - J Alejandro Morales
- Translational Bioengineering Department, CUCEI, Guadalajara University, Guadalajara 44430, Mexico.
| |
Collapse
|
5
|
Gentili PL, Stano P. Monitoring the advancements in the technology of artificial cells by determining their complexity degree: Hints from complex systems descriptors. Front Bioeng Biotechnol 2023; 11:1132546. [PMID: 36815888 PMCID: PMC9928734 DOI: 10.3389/fbioe.2023.1132546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Affiliation(s)
- Pier Luigi Gentili
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Perugia, Italy,*Correspondence: Pier Luigi Gentili, ; Pasquale Stano,
| | - Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Ecotekne, Lecce, Italy,*Correspondence: Pier Luigi Gentili, ; Pasquale Stano,
| |
Collapse
|
6
|
Abstract
The hypothesis presented here is that codes as described by Marcello Barbieri are the fundamental principle behind biological modularity. Modularity has been studied in different life science disciplines, especially in the fields of evolution and development, as well as in network biology, yet there is still no consensus on how modularity evolved itself. Modularity is basically the functional integrity of multiple molecular players involved in a common process. Codes as defined by Barbieri describe a tripartite relation involving an adapter molecule connecting two other independent types of molecules to each other in an arbitrary, but semantic manner. This form of interaction goes beyond predictable mere physical or chemical one-to-one interactions and always relates three molecules to each other. A code of three topologically related molecules interacting in a defined order may be considered a minimal module on its own, but when one regards a set of multiple, overlapping tripartite, coded interactions, this paves the way towards logically and functionally consistent coherence of multiple participants of a certain, modular process. A theoretical outline of how to identify and describe such modular structures is given.
Collapse
|