1
|
Knowles C, Petrie L, Warren C, Lillico SG, Carlisle A, Whitelaw CBA, Kolb AF. Site specific insertion of a transgene into the murine α-casein (CSN1S1) gene results in the predictable expression of a recombinant protein in milk. Biotechnol J 2024; 19:e2300287. [PMID: 38047759 DOI: 10.1002/biot.202300287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
Gene loci of highly expressed genes provide ideal sites for transgene expression. Casein genes are highly expressed in mammals leading to the synthesis of substantial amounts of casein proteins in milk. The α-casein (CSN1S1) gene has assessed as a site of transgene expression in transgenic mice and a mammary gland cell line. A transgene encoding an antibody light chain gene (A1L) was inserted into the α-casein gene using sequential homologous and site-specific recombination. Expression of the inserted transgene is directed by the α-casein promoter, is responsive to lactogenic hormone activation, leads to the synthesis of a chimeric α-casein/A1L transgene mRNA, and secretion of the recombinant A1L protein into milk. Transgene expression is highly consistent in all transgenic lines, but lower than that of the α-casein gene (4%). Recombinant A1L protein accounted for 0.5% and 1.6% of total milk protein in heterozygous and homozygous transgenic mice, respectively. The absence of the α-casein protein in homozygous A1L transgenic mice leads to a reduction of total milk protein and delayed growth of the pups nursed by these mice. Overall, the data demonstrate that the insertion of a transgene into a highly expressed endogenous gene is insufficient to guarantee its abundant expression.
Collapse
Affiliation(s)
- Christopher Knowles
- Nutrition, Obesity and Disease Research Theme, Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Linda Petrie
- Nutrition, Obesity and Disease Research Theme, Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Claire Warren
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | - Ailsa Carlisle
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | - Andreas F Kolb
- Nutrition, Obesity and Disease Research Theme, Rowett Institute, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
2
|
Whitworth KM, Green JA, Redel BK, Geisert RD, Lee K, Telugu BP, Wells KD, Prather RS. Improvements in pig agriculture through gene editing. CABI AGRICULTURE AND BIOSCIENCE 2022; 3:41. [PMID: 35755158 PMCID: PMC9209828 DOI: 10.1186/s43170-022-00111-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/12/2022] [Indexed: 05/06/2023]
Abstract
Genetic modification of animals via selective breeding is the basis for modern agriculture. The current breeding paradigm however has limitations, chief among them is the requirement for the beneficial trait to exist within the population. Desirable alleles in geographically isolated breeds, or breeds selected for a different conformation and commercial application, and more importantly animals from different genera or species cannot be introgressed into the population via selective breeding. Additionally, linkage disequilibrium results in low heritability and necessitates breeding over successive generations to fix a beneficial trait within a population. Given the need to sustainably improve animal production to feed an anticipated 9 billion global population by 2030 against a backdrop of infectious diseases and a looming threat from climate change, there is a pressing need for responsive, precise, and agile breeding strategies. The availability of genome editing tools that allow for the introduction of precise genetic modification at a single nucleotide resolution, while also facilitating large transgene integration in the target population, offers a solution. Concordant with the developments in genomic sequencing approaches, progress among germline editing efforts is expected to reach feverish pace. The current manuscript reviews past and current developments in germline engineering in pigs, and the many advantages they confer for advancing animal agriculture.
Collapse
Affiliation(s)
- Kristin M. Whitworth
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Jonathan A. Green
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Bethany K. Redel
- United States Department of Agriculture – Agriculture Research Service, Plant Genetics Research Unit, Columbia, MO 65211 USA
| | - Rodney D. Geisert
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Kiho Lee
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Bhanu P. Telugu
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Kevin D. Wells
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Randall S. Prather
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| |
Collapse
|
3
|
Bowyer JE, Ding C, Weinberg BH, Wong WW, Bates DG. A mechanistic model of the BLADE platform predicts performance characteristics of 256 different synthetic DNA recombination circuits. PLoS Comput Biol 2020; 16:e1007849. [PMID: 33338034 PMCID: PMC7781486 DOI: 10.1371/journal.pcbi.1007849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 01/04/2021] [Accepted: 11/03/2020] [Indexed: 11/26/2022] Open
Abstract
Boolean logic and arithmetic through DNA excision (BLADE) is a recently developed platform for implementing inducible and logical control over gene expression in mammalian cells, which has the potential to revolutionise cell engineering for therapeutic applications. This 2-input 2-output platform can implement 256 different logical circuits that exploit the specificity and stability of DNA recombination. Here, we develop the first mechanistic mathematical model of the 2-input BLADE platform based on Cre- and Flp-mediated DNA excision. After calibrating the model on experimental data from two circuits, we demonstrate close agreement between model outputs and data on the other 111 circuits that have so far been experimentally constructed using the 2-input BLADE platform. Model simulations of the remaining 143 circuits that have yet to be tested experimentally predict excellent performance of the 2-input BLADE platform across the range of possible circuits. Circuits from both the tested and untested subsets that perform less well consist of a disproportionally high number of STOP sequences. Model predictions suggested that circuit performance declines with a decrease in recombinase expression and new experimental data was generated that confirms this relationship.
Collapse
Affiliation(s)
- Jack E. Bowyer
- School of Engineering, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom
| | - Chloe Ding
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- Biological Design Center, Boston University, Boston, Massachusetts, United States of America
| | - Benjamin H. Weinberg
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wilson W. Wong
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- Biological Design Center, Boston University, Boston, Massachusetts, United States of America
| | - Declan G. Bates
- School of Engineering, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
4
|
Bowyer JE, Chakravarti D, Wong WW, Bates DG. Mechanistic modelling of tyrosine recombination reveals key parameters determining the performance of a CAR T cell switching circuit. ENGINEERING BIOLOGY 2020; 4:10-19. [PMID: 36970230 PMCID: PMC9996713 DOI: 10.1049/enb.2019.0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/30/2020] [Accepted: 02/10/2020] [Indexed: 12/30/2022] Open
Abstract
Inducible genetic switches based on tyrosine recombinase-based DNA excision are a promising platform for the regulation and control of chimeric antigen receptor (CAR) T cell activity in cancer immunotherapy. These switches exploit the increased stability of DNA excision in tyrosine recombinases through an inversion-excision circuit design. Here, the authors develop the first mechanistic mathematical model of switching dynamics in tyrosine recombinases and validate it against experimental data through both global optimisation and statistical approximation approaches. Analysis of this model provides guidelines regarding which system parameters are best suited to experimental tuning in order to establish optimal switch performance in vivo. In particular, they find that the switching response can be made significantly faster by increasing the concentration of the inducer drug 4-OHT and/or by using promoters generating higher expression levels of the FlpO recombinase.
Collapse
Affiliation(s)
- Jack E. Bowyer
- School of Engineering University of Warwick Coventry CV4 7AL UK
- Warwick Integrative Synthetic Biology Centre Coventry CV4 7AL UK
| | - Deboki Chakravarti
- Department of Biomedical Engineering Boston University Boston MA 02215 USA
- Biological Design Center Boston University Boston MA 02215 USA
| | - Wilson W. Wong
- Department of Biomedical Engineering Boston University Boston MA 02215 USA
- Biological Design Center Boston University Boston MA 02215 USA
| | - Declan G. Bates
- School of Engineering University of Warwick Coventry CV4 7AL UK
- Warwick Integrative Synthetic Biology Centre Coventry CV4 7AL UK
| |
Collapse
|
5
|
Bae SE, Lyu SK, Kim KJ, Shin HJ, Kwon H, Huh S. Intracellular delivery of a native functional protein using cell-penetrating peptide functionalized cubic MSNs with ultra-large mesopores. J Mater Chem B 2018; 6:3456-3465. [DOI: 10.1039/c8tb00330k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pore-enlarged 3D cubic cMSNs were successfully prepared, and their surfaces were functionalized by a cell-penetrating R8-peptide through the click reaction for cytosolic delivery of a functional protein in its native form.
Collapse
Affiliation(s)
- Sang-Eun Bae
- Department of Chemistry and Protein Research Center for Bio-Industry
- Hankuk University of Foreign Studies
- Yongin 17035
- Republic of Korea
| | - Soo Kyung Lyu
- Department of Bioscience and Biotechnology and Protein Research Center for Bio-Industry
- Hankuk University of Foreign Studies
- Yongin 17035
- Republic of Korea
| | - Ki-Jung Kim
- Department of Chemistry and Protein Research Center for Bio-Industry
- Hankuk University of Foreign Studies
- Yongin 17035
- Republic of Korea
| | - Hee Joo Shin
- Department of Bioscience and Biotechnology and Protein Research Center for Bio-Industry
- Hankuk University of Foreign Studies
- Yongin 17035
- Republic of Korea
| | - Hyockman Kwon
- Department of Bioscience and Biotechnology and Protein Research Center for Bio-Industry
- Hankuk University of Foreign Studies
- Yongin 17035
- Republic of Korea
| | - Seong Huh
- Department of Chemistry and Protein Research Center for Bio-Industry
- Hankuk University of Foreign Studies
- Yongin 17035
- Republic of Korea
| |
Collapse
|
6
|
Connolly LR, Erlendson AA, Fargo CM, Jackson KK, Pelker MMG, Mazzola JW, Geisler MS, Freitag M. Application of the Cre/lox System to Construct Auxotrophic Markers for Quantitative Genetic Analyses in Fusarium graminearum. Methods Mol Biol 2018; 1848:235-263. [PMID: 30182239 DOI: 10.1007/978-1-4939-8724-5_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The bacteriophage P1 Cre/lox system has been utilized in diverse fungi for marker recycling and exchange, generation of targeted chromosome translocations, and targeted deletion of interstitial chromosome segments. Here we show the application of this tool in the wheat and maize pathogen, Fusarium graminearum. We explored three different ways to introduce Cre into strains with floxed genes, namely transformation with an episomal or integrative plasmid (pLC28), fusion of protoplasts of strains carrying floxed genes with strains expressing Cre by forcing heterokaryons, and crosses between strains with floxed genes and strains expressing Cre to isolate progeny in which the target genes had been deleted during the cross. We used this system for the construction of strains bearing auxotrophic markers that were generated by gene replacement with positively selectable markers followed by Cre-mediated marker excision. In addition, updated protocols for transformation and crosses for F. graminearum are provided. In combination, strains and tools developed here add to the arsenal of methods that can be used to carry out molecular genetics with F. graminearum.
Collapse
Affiliation(s)
- Lanelle R Connolly
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Allyson A Erlendson
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Corinne M Fargo
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Kendra K Jackson
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Morgan M G Pelker
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Jacob W Mazzola
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Mark S Geisler
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
7
|
Dalla Costa L, Malnoy M, Gribaudo I. Breeding next generation tree fruits: technical and legal challenges. HORTICULTURE RESEARCH 2017; 4:17067. [PMID: 29238598 PMCID: PMC5717367 DOI: 10.1038/hortres.2017.67] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/15/2017] [Accepted: 10/18/2017] [Indexed: 05/04/2023]
Abstract
The new plant breeding technologies (NPBTs) have recently emerged as powerful tools in the context of 'green' biotechnologies. They have wide potential compared to classical genetic engineering and they are attracting the interest of politicians, stakeholders and citizens due to the revolutionary impact they may have on agriculture. Cisgenesis and genome editing potentially allow to obtain pathogen-resistant plants or plants with enhanced qualitative traits by introducing or disrupting specific genes in shorter times compared to traditional breeding programs and by means of minimal modifications in the plant genome. Grapevine, the most important fruit crop in the world from an economical point of view, is a peculiar case for NPBTs because of the load of cultural aspects, varietal traditions and consumer demands, which hinder the use of classical breeding techniques and, furthermore, the application of genetic engineering to wine grape cultivars. Here we explore the technical challenges which may hamper the application of cisgenesis and genome editing to this perennial plant, in particular focusing on the bottlenecks of the Agrobacterium-mediated gene transfer. In addition, strategies to eliminate undesired sequences from the genome and to choose proper target sites are discussed in light of peculiar features of this species. Furthermore is reported an update of the international legislative frameworks regulating NPBT products which shows conflicting positions and, in the case of the European Union, a prolonged lack of regulation.
Collapse
Affiliation(s)
- Lorenza Dalla Costa
- Research and Innovation Centre, Fondazione Edmund Mach, via E Mach 1, San Michele a/Adige 38010, Italy
| | - Mickael Malnoy
- Research and Innovation Centre, Fondazione Edmund Mach, via E Mach 1, San Michele a/Adige 38010, Italy
| | - Ivana Gribaudo
- IPSP-CNR, Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, Torino I-10135, Italy
| |
Collapse
|
8
|
Li H, Song X, Yang F, Bao H, Lu X, Perez-Campo FM, Zhao J. Application of oligonucleotides to construct a conditional targeting vector for porcine IκBα. Mol Med Rep 2017; 17:653-659. [PMID: 29115518 DOI: 10.3892/mmr.2017.7917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 03/31/2017] [Indexed: 11/06/2022] Open
Abstract
Conditional gene targeting at porcine IκBα may be a solution to delayed xenograft rejection, the main barrier to xenotransplantation. An oligonucleotide‑based method was applied to construct the vector for conditional targeting of porcine IκBα. This method was free from PCR amplification during the assembling of the different vector elements, avoiding introduction of unwanted mutations. With the help of short double‑stranded DNA fragments produced by annealing oligonucleotides, nondirectional cloning has also been avoided. By making the best of directional cloning, a highly complex targeting vector was built within 3 weeks. The present study also explained why the two recombination‑based methods (recombineering and gateway recombination), although having demonstrated to be highly efficient in constructing ordinary targeting vectors, were not appropriate in this context. The description in the present study of an additional method to efficiently construct targeting vectors is suggested to introduce more flexibility in the field therefore helping to meet the different needs of the researchers.
Collapse
Affiliation(s)
- Hegang Li
- College of Animal Science, Qingdao Agricultural University, Qingdao, Shandong 266109, P.R. China
| | - Xiaona Song
- College of Animal Science, Qingdao Agricultural University, Qingdao, Shandong 266109, P.R. China
| | - Feng Yang
- College of Animal Science, Qingdao Agricultural University, Qingdao, Shandong 266109, P.R. China
| | - Hanxun Bao
- Jiaozhou Bureau of Animal Husbandry and Veterinary Medicine, Qingdao, Shandong 266300, P.R. China
| | - Xiaolong Lu
- Jiaozhou Bureau of Animal Husbandry and Veterinary Medicine, Qingdao, Shandong 266300, P.R. China
| | - Flor M Perez-Campo
- Stem Cell Biology Group, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Manchester M20 4BX, UK
| | - Jinshan Zhao
- College of Animal Science, Qingdao Agricultural University, Qingdao, Shandong 266109, P.R. China
| |
Collapse
|
9
|
Yumlu S, Stumm J, Bashir S, Dreyer AK, Lisowski P, Danner E, Kühn R. Gene editing and clonal isolation of human induced pluripotent stem cells using CRISPR/Cas9. Methods 2017; 121-122:29-44. [PMID: 28522326 DOI: 10.1016/j.ymeth.2017.05.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/04/2017] [Accepted: 05/10/2017] [Indexed: 12/28/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) represent an ideal in vitro platform to study human genetics and biology. The recent advent of programmable nucleases makes also the human genome amenable to experimental genetics through either the correction of mutations in patient-derived iPSC lines or the de novo introduction of mutations into otherwise healthy iPSCs. The production of specific and sometimes complex genotypes in multiple cell lines requires efficient and streamlined gene editing technologies. In this article we provide protocols for gene editing in hiPSCs. We presently achieve high rates of gene editing at up to three loci using a modified iCRISPR system. This system includes a doxycycline inducible Cas9 and sgRNA/reporter plasmids for the enrichment of transfected cells by fluorescence-activated cell sorting (FACS). Here we cover the selection of target sites, vector construction, transfection, and isolation and genotyping of modified hiPSC clones.
Collapse
Affiliation(s)
- Saniye Yumlu
- Max-Delbrück-Centrum für Molekulare Medizin, 13125 Berlin, Germany; Berlin Institute of Health, Kapelle-Ufer 2, 10117 Berlin, Germany.
| | - Jürgen Stumm
- Max-Delbrück-Centrum für Molekulare Medizin, 13125 Berlin, Germany; Helmholtz Center Munich, 85764 Neuherberg, Germany.
| | - Sanum Bashir
- Max-Delbrück-Centrum für Molekulare Medizin, 13125 Berlin, Germany; Berlin Institute of Health, Kapelle-Ufer 2, 10117 Berlin, Germany.
| | - Anne-Kathrin Dreyer
- Max-Delbrück-Centrum für Molekulare Medizin, 13125 Berlin, Germany; Berlin Institute of Health, Kapelle-Ufer 2, 10117 Berlin, Germany.
| | - Pawel Lisowski
- Max-Delbrück-Centrum für Molekulare Medizin, 13125 Berlin, Germany; Institute of Genetics and Animal Breeding, Polish Academy of Sciences, 05-552 Magdalenka, Poland.
| | - Eric Danner
- Max-Delbrück-Centrum für Molekulare Medizin, 13125 Berlin, Germany.
| | - Ralf Kühn
- Max-Delbrück-Centrum für Molekulare Medizin, 13125 Berlin, Germany; Berlin Institute of Health, Kapelle-Ufer 2, 10117 Berlin, Germany.
| |
Collapse
|
10
|
Manivannan SN, Simcox A. Targeted genetics in Drosophila cell lines: Inserting single transgenes in vitro. Fly (Austin) 2016; 10:134-41. [PMID: 27261098 PMCID: PMC4970541 DOI: 10.1080/19336934.2016.1191716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/14/2016] [Indexed: 12/31/2022] Open
Abstract
A long-standing problem with analyzing transgene expression in tissue-culture cells is the variation caused by random integration of different copy numbers of transfected transgenes. In mammalian cells, single transgenes can be inserted by homologous recombination but this process is inefficient in Drosophila cells. To tackle this problem, our group, and the Cherbas group, used recombination-mediated cassette exchange (RMCE) to introduce single-copy transgenes into specific locations in the Drosophila genome. In both cases, ϕC31 was used to catalyze recombination between its target sequences attP in the genome, and attB flanking the donor sequence. We generated cell lines de novo with a single attP-flanked cassette for recombination, whereas, Cherbas et al. introduced a single attP-flanked cassette into existing cell lines. In both approaches, a 2-drug selection scheme was used to select for cells with a single copy of the donor sequence inserted by RMCE and against cells with random integration of multiple copies. Here we describe the general advantages of using RMCE to introduce genes into fly cells, the different attributes of the 2 methods, and how future work could make use of other recombinases and CRISPR/Cas9 genome editing to further enable genetic manipulation of Drosophila cells in vitro.
Collapse
Affiliation(s)
| | - Amanda Simcox
- Department of Molecular Genetics, The Ohio State University, Columbus, OH
| |
Collapse
|
11
|
The Gene Targeting Approach of Small Fragment Homologous Replacement (SFHR) Alters the Expression Patterns of DNA Repair and Cell Cycle Control Genes. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e304. [PMID: 27045208 PMCID: PMC5014528 DOI: 10.1038/mtna.2016.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/12/2015] [Indexed: 12/27/2022]
Abstract
Cellular responses and molecular mechanisms activated by exogenous DNA that
invades cells are only partially understood. This limits the practical use of
gene targeting strategies. Small fragment homologous replacement (SFHR) uses a
small exogenous wild-type DNA fragment to restore the endogenous wild-type
sequence; unfortunately, this mechanism has a low frequency of correction.
In this study, we used a mouse embryonic fibroblast cell line with a stably
integrated mutated gene for enhanced green fluorescence protein. The restoration
of a wild-type sequence can be detected by flow cytometry analysis. We
quantitatively analyzed the expression of 84 DNA repair genes and 84 cell cycle
control genes. Peculiar temporal gene expression patterns were observed for both
pathways. Different DNA repair pathways, not only homologous recombination, as
well as the three main cell cycle checkpoints appeared to mediate the cellular
response. Eighteen genes were selected as highly significant target/effectors of
SFHR. We identified a wide interconnection between SFHR, DNA repair, and cell
cycle control. Our results increase the knowledge of the molecular mechanisms
involved in cell invasion by exogenous DNA and SFHR. Specific molecular targets
of both the cell cycle and DNA repair machineries were selected for manipulation
to enhance the practical application of SFHR.
Collapse
|
12
|
Salient Features of Endonuclease Platforms for Therapeutic Genome Editing. Mol Ther 2016; 24:422-9. [PMID: 26796671 DOI: 10.1038/mt.2016.21] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/07/2016] [Indexed: 12/11/2022] Open
Abstract
Emerging gene-editing technologies are nearing a revolutionary phase in genetic medicine: precisely modifying or repairing causal genetic defects. This may include any number of DNA sequence manipulations, such as knocking out a deleterious gene, introducing a particular mutation, or directly repairing a defective sequence by site-specific recombination. All of these edits can currently be achieved via programmable rare-cutting endonucleases to create targeted DNA breaks that can engage and exploit endogenous DNA repair pathways to impart site-specific genetic changes. Over the past decade, several distinct technologies for introducing site-specific DNA breaks have been developed, yet the different biological origins of these gene-editing technologies bring along inherent differences in parameters that impact clinical implementation. This review aims to provide an accessible overview of the various endonuclease-based gene-editing platforms, highlighting the strengths and weakness of each with respect to therapeutic applications.
Collapse
|
13
|
Weninger A, Killinger M, Vogl T. Key Methods for Synthetic Biology: Genome Engineering and DNA Assembly. Synth Biol (Oxf) 2016. [DOI: 10.1007/978-3-319-22708-5_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
14
|
Targeted Integration of Single-Copy Transgenes in Drosophila melanogaster Tissue-Culture Cells Using Recombination-Mediated Cassette Exchange. Genetics 2015; 201:1319-28. [PMID: 26500255 DOI: 10.1534/genetics.115.181230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/10/2015] [Indexed: 01/24/2023] Open
Abstract
Transfection of transgenes into Drosophila cultured cells is a standard approach for studying gene function. However, the number of transgenes present in the cell following transient transfection or stable random integration varies, and the resulting differences in expression level affect interpretation. Here we developed a system for Drosophila cell lines that allows selection of cells with a single-copy transgene inserted at a specific genomic site using recombination-mediated cassette exchange (RMCE). We used the φC31 integrase and its target sites attP and attB for RMCE. Cell lines with an attP-flanked genomic cassette were transfected with donor plasmids containing a transgene of interest (UAS-x), a dihydrofolate reductase (UAS-DHFR) gene flanked by attB sequences, and a thymidine kinase (UAS-TK) gene in the plasmid backbone outside the attB sequences. In cells undergoing RMCE, UAS-x and UAS-DHFR were exchanged for the attP-flanked genomic cassette, and UAS-TK was excluded. These cells were selected using methotrexate, which requires DHFR expression, and ganciclovir, which causes death in cells expressing TK. Pure populations of cells with one copy of a stably integrated transgene were efficiently selected by cloning or mass culture in ∼6 weeks. Our results show that RMCE avoids the problems associated with current methods, where transgene number is not controlled, and facilitates the rapid generation of Drosophila cell lines in which expression from a single transgene can be studied.
Collapse
|
15
|
Redesigning Recombinase Specificity for Safe Harbor Sites in the Human Genome. PLoS One 2015; 10:e0139123. [PMID: 26414179 PMCID: PMC4587366 DOI: 10.1371/journal.pone.0139123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/09/2015] [Indexed: 11/19/2022] Open
Abstract
Site-specific recombinases (SSRs) are valuable tools for genetic engineering due to their ability to manipulate DNA in a highly specific manner. Engineered zinc-finger and TAL effector recombinases, in particular, are two classes of SSRs composed of custom-designed DNA-binding domains fused to a catalytic domain derived from the resolvase/invertase family of serine recombinases. While TAL effector and zinc-finger proteins can be assembled to recognize a wide range of possible DNA sequences, recombinase catalytic specificity has been constrained by inherent base requirements present within each enzyme. In order to further expand the targeted recombinase repertoire, we used a genetic screen to isolate enhanced mutants of the Bin and Tn21 recombinases that recognize target sites outside the scope of other engineered recombinases. We determined the specific base requirements for recombination by these enzymes and demonstrate their potential for genome engineering by selecting for variants capable of specifically recombining target sites present in the human CCR5 gene and the AAVS1 safe harbor locus. Taken together, these findings demonstrate that complementing functional characterization with protein engineering is a potentially powerful approach for generating recombinases with expanded targeting capabilities.
Collapse
|
16
|
In vitro gene manipulation of spinal muscular atrophy fibroblast cell line using gene-targeting fragment for restoration of SMN protein expression. Gene Ther 2015; 23:10-7. [DOI: 10.1038/gt.2015.92] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 06/17/2015] [Accepted: 08/05/2015] [Indexed: 11/08/2022]
|
17
|
Lee JS, Grav LM, Lewis NE, Faustrup Kildegaard H. CRISPR/Cas9-mediated genome engineering of CHO cell factories: Application and perspectives. Biotechnol J 2015; 10:979-94. [PMID: 26058577 DOI: 10.1002/biot.201500082] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/10/2015] [Accepted: 05/11/2015] [Indexed: 12/13/2022]
Abstract
Chinese hamster ovary (CHO) cells are the most widely used production host for therapeutic proteins. With the recent emergence of CHO genome sequences, CHO cell line engineering has taken on a new aspect through targeted genome editing. The bacterial clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system enables rapid, easy and efficient engineering of mammalian genomes. It has a wide range of applications from modification of individual genes to genome-wide screening or regulation of genes. Facile genome editing using CRISPR/Cas9 empowers researchers in the CHO community to elucidate the mechanistic basis behind high level production of proteins and product quality attributes of interest. In this review, we describe the basis of CRISPR/Cas9-mediated genome editing and its application for development of next generation CHO cell factories while highlighting both future perspectives and challenges. As one of the main drivers for the CHO systems biology era, genome engineering with CRISPR/Cas9 will pave the way for rational design of CHO cell factories.
Collapse
Affiliation(s)
- Jae Seong Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Lise Marie Grav
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.,The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego School of Medicine, CA, USA
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark.
| |
Collapse
|
18
|
Grav LM, Lee JS, Gerling S, Kallehauge TB, Hansen AH, Kol S, Lee GM, Pedersen LE, Kildegaard HF. One-step generation of triple knockout CHO cell lines using CRISPR/Cas9 and fluorescent enrichment. Biotechnol J 2015; 10:1446-56. [PMID: 25864574 DOI: 10.1002/biot.201500027] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/02/2015] [Accepted: 04/04/2015] [Indexed: 12/26/2022]
Abstract
The CRISPR/Cas9 genome editing technology has previously been shown to be a highly efficient tool for generating gene disruptions in CHO cells. In this study we further demonstrate the applicability and efficiency of CRISPR/Cas9 genome editing by disrupting FUT8, BAK and BAX simultaneously in a multiplexing setup in CHO cells. To isolate Cas9-expressing cells from transfected cell pools, GFP was linked to the Cas9 nuclease via a 2A peptide. With this method, the average indel frequencies generated at the three genomic loci were increased from 11% before enrichment to 68% after enrichment. Despite the high number of genome editing events in the enriched cell pools, no significant off-target effects were observed from off-target prediction followed by deep sequencing. Single cell sorting of enriched multiplexed cells and deep sequencing of 97 clones revealed the presence of four single, 23 double and 34 triple gene-disrupted cell lines. Further characterization of selected potential triple knockout clones confirmed the removal of Bak and Bax protein and disrupted fucosylation activity as expected. The knockout cell lines showed improved resistance to apoptosis compared to wild-type CHO-S cells. Taken together, multiplexing with CRISPR/Cas9 can accelerate genome engineering efforts in CHO cells even further.
Collapse
Affiliation(s)
- Lise Marie Grav
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Jae Seong Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Signe Gerling
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Thomas Beuchert Kallehauge
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Anders Holmgaard Hansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Stefan Kol
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Lasse Ebdrup Pedersen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark.
| |
Collapse
|
19
|
Crawford Y, Zhou M, Hu Z, Joly J, Snedecor B, Shen A, Gao A. Fast identification of reliable hosts for targeted cell line development from a limited-genome screening using combined φC31 integrase and CRE-Lox technologies. Biotechnol Prog 2013; 29:1307-15. [DOI: 10.1002/btpr.1783] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 07/18/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Yongping Crawford
- Dept. of Early Stage Cell Culture; Genentech Inc.; A Member of the Roche Group; South San Francisco CA 94080
| | - Michelle Zhou
- Dept. of Early Stage Cell Culture; Genentech Inc.; A Member of the Roche Group; South San Francisco CA 94080
| | - Zhilan Hu
- Dept. of Early Stage Cell Culture; Genentech Inc.; A Member of the Roche Group; South San Francisco CA 94080
| | - John Joly
- Dept. of Early Stage Cell Culture; Genentech Inc.; A Member of the Roche Group; South San Francisco CA 94080
| | - Brad Snedecor
- Dept. of Early Stage Cell Culture; Genentech Inc.; A Member of the Roche Group; South San Francisco CA 94080
| | - Amy Shen
- Dept. of Early Stage Cell Culture; Genentech Inc.; A Member of the Roche Group; South San Francisco CA 94080
| | - Albert Gao
- School of Engineering, Tufts University; Boston MA 02155
| |
Collapse
|
20
|
Voziyanova E, Malchin N, Anderson RP, Yagil E, Kolot M, Voziyanov Y. Efficient Flp-Int HK022 dual RMCE in mammalian cells. Nucleic Acids Res 2013; 41:e125. [PMID: 23630322 PMCID: PMC3695500 DOI: 10.1093/nar/gkt341] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Recombinase-mediated cassette exchange, or RMCE, is a clean approach of gene delivery into a desired chromosomal location, as it is able to insert only the required sequences, leaving behind the unwanted ones. RMCE can be mediated by a single site-specific DNA recombinase or by two recombinases with different target specificities (dual RMCE). Recently, using the Flp–Cre recombinase pair, dual RMCE proved to be efficient, provided the relative ratio of the enzymes during the reaction is optimal. In the present report, we analyzed how the efficiency of dual RMCE mediated by the Flp–Int (HK022) pair depends on the variable input of the recombinases—the amount of the recombinase expression vectors added at transfection—and on the order of the addition of these vectors: sequential or simultaneous. We found that both in the sequential and the simultaneous modes, the efficiency of dual RMCE was critically dependent on the absolute and the relative concentrations of the Flp and Int expression vectors. Under optimal conditions, the efficiency of ‘simultaneous’ dual RMCE reached ∼12% of the transfected cells. Our results underline the importance of fine-tuning the reaction conditions for achieving the highest levels of dual RMCE.
Collapse
Affiliation(s)
- Eugenia Voziyanova
- School of Biosciences, Louisiana Tech University, 1 Adams Boulveard, Ruston, LA 71272, USA.
| | | | | | | | | | | |
Collapse
|
21
|
|
22
|
González-Prieto C, Agúndez L, Linden RM, Llosa M. HUH site-specific recombinases for targeted modification of the human genome. Trends Biotechnol 2013; 31:305-12. [PMID: 23545167 DOI: 10.1016/j.tibtech.2013.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/27/2013] [Accepted: 02/27/2013] [Indexed: 11/16/2022]
Abstract
Site-specific recombinases (SSRs) have been crucial in the development of mammalian transgenesis. For gene therapy purposes, this approach remains challenging, because, for example, SSR delivery is largely unresolved and SSR DNA substrates must pre-exist in target cells. In this review, we discuss the potential of His-hydrophobic-His (HUH) recombinases to overcome some of the limitations of conventional SSRs. Members of the HUH protein family cleave single-stranded (ss)DNA, but can mediate site-specific integration with the aid of the host replication machinery. Adeno-associated virus (AAV) Rep remains the only known example to support site-specific integration in human cells, and AAV is an excellent gene delivery vector that can be targeted to specific cells and organelles. Bacterial protein TrwC catalyzes integration into human sequences and can be delivered to human cells covalently linked to DNA, offering attractive new features for targeted genome modification.
Collapse
Affiliation(s)
- Coral González-Prieto
- Departamento de Biología Molecular (Universidad de Cantabria) and IBBTEC (UC, CSIC, SODERCAN), Santander, Spain
| | | | | | | |
Collapse
|
23
|
Gaj T, Mercer AC, Sirk SJ, Smith HL, Barbas CF. A comprehensive approach to zinc-finger recombinase customization enables genomic targeting in human cells. Nucleic Acids Res 2013; 41:3937-46. [PMID: 23393187 PMCID: PMC3616721 DOI: 10.1093/nar/gkt071] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Zinc-finger recombinases (ZFRs) represent a potentially powerful class of tools for targeted genetic engineering. These chimeric enzymes are composed of an activated catalytic domain derived from the resolvase/invertase family of serine recombinases and a custom-designed zinc-finger DNA-binding domain. The use of ZFRs, however, has been restricted by sequence requirements imposed by the recombinase catalytic domain. Here, we combine substrate specificity analysis and directed evolution to develop a diverse collection of Gin recombinase catalytic domains capable of recognizing an estimated 3.77 × 107 unique DNA sequences. We show that ZFRs assembled from these engineered catalytic domains recombine user-defined DNA targets with high specificity, and that designed ZFRs integrate DNA into targeted endogenous loci in human cells. This study demonstrates the feasibility of generating customized ZFRs and the potential of ZFR technology for a diverse range of applications, including genome engineering, synthetic biology and gene therapy.
Collapse
Affiliation(s)
- Thomas Gaj
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
24
|
Bire S, Rouleux-Bonnin F. Transgene Site-Specific Integration: Problems and Solutions. SITE-DIRECTED INSERTION OF TRANSGENES 2013. [DOI: 10.1007/978-94-007-4531-5_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Michael IP, Monetti C, Chiu AC, Zhang P, Baba T, Nishino K, Agha-Mohammadi S, Woltjen K, Sung HK, Nagy A. Highly efficient site-specific transgenesis in cancer cell lines. Mol Cancer 2012; 11:89. [PMID: 23231822 PMCID: PMC3537676 DOI: 10.1186/1476-4598-11-89] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/06/2012] [Indexed: 01/13/2023] Open
Abstract
Background Transgenes introduced into cancer cell lines serve as powerful tools for identification of genes involved in cancer. However, the random nature of genomic integration site of a transgene highly influences the fidelity, reliability and level of its expression. In order to alleviate this bottleneck, we characterized the potential utility of a novel PhiC31 integrase-mediated site-specific insertion system (PhiC31-IMSI) for introduction of transgenes into a pre-inserted docking site in the genome of cancer cells. Methods According to this system, a “docking-site” was first randomly inserted into human cancer cell lines and clones with a single copy were selected. Subsequently, an “incoming” vector containing the gene of interest was specifically inserted in the docking-site using PhiC31. Results Using the Pc-3 and SKOV-3 cancer cell lines, we showed that transgene insertion is reproducible and reliable. Furthermore, the selection system ensured that all surviving stable transgenic lines harbored the correct integration site. We demonstrated that the expression levels of reporter genes, such as green fluorescent protein and luciferase, from the same locus were comparable among sister, isogenic clones. Using in vivo xenograft studies, we showed that the genetically altered cancer cell lines retain the properties of the parental line. To achieve temporal control of transgene expression, we coupled our insertion strategy with the doxycycline inducible system and demonstrated tight regulation of the expression of the antiangiogenic molecule sFlt-1-Fc in Pc-3 cells. Furthermore, we introduced the luciferase gene into the insertion cassette allowing for possible live imaging of cancer cells in transplantation assays. We also generated a series of Gateway cloning-compatible intermediate cassettes ready for high-throughput cloning of transgenes and demonstrated that PhiC31-IMSI can be achieved in a high throughput 96-well plate format. Conclusions The novel PhiC31-IMSI system described in this study represents a powerful tool that can facilitate the characterization of cancer-related genes.
Collapse
Affiliation(s)
- Iacovos P Michael
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Llosa M, Schröder G, Dehio C. New perspectives into bacterial DNA transfer to human cells. Trends Microbiol 2012; 20:355-9. [PMID: 22748513 DOI: 10.1016/j.tim.2012.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 05/28/2012] [Accepted: 05/31/2012] [Indexed: 12/26/2022]
Abstract
The type IV secretion system (T4SS) VirB/D4 of the facultative intracellular pathogen Bartonella henselae is known to translocate bacterial effector proteins into human cells. Two recent reports on DNA transfer into human cells have demonstrated the versatility of this bacterial secretion system for macromolecular substrate transfer. Moreover, these findings have opened the possibility for developing new tools for DNA delivery into specific human cell types. DNA can be introduced into these cells covalently attached to a site-specific integrase with potential target sequences in the human genome. This novel DNA delivery system is discussed in the context of existing methods for genetic modification of human cells.
Collapse
Affiliation(s)
- Matxalen Llosa
- Departamento de Biología Molecular, Universidad de Cantabria-UC, and IBBTEC-UC-CSIC-SODERCAN, Santander, Spain
| | | | | |
Collapse
|
27
|
Small fragment homologous replacement: evaluation of factors influencing modification efficiency in an eukaryotic assay system. PLoS One 2012; 7:e30851. [PMID: 22359552 PMCID: PMC3281040 DOI: 10.1371/journal.pone.0030851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 12/26/2011] [Indexed: 02/07/2023] Open
Abstract
Homologous Replacement is used to modify specific gene sequences of chromosomal DNA in a process referred to as “Small Fragment Homologous Replacement”, where DNA fragments replace genomic target resulting in specific sequence changes. To optimize the efficiency of this process, we developed a reporter based assay system where the replacement frequency is quantified by cytofluorimetric analysis following restoration of a stably integrated mutated eGFP gene in the genome of SV-40 immortalized mouse embryonic fibroblasts (MEF-SV-40). To obtain the highest correction frequency with this system, several parameters were considered: fragment synthesis and concentration, cell cycle phase and methylation status of both fragment and recipient genome. In addition, different drugs were employed to test their ability to improve technique efficiency. SFHR-mediated genomic modification resulted to be stably transmitted for several cell generations and confirmed at transcript and genomic levels. Modification efficiency was estimated in a range of 0.01–0.5%, further increasing when PARP-1 repair pathway was inhibited. In this study, for the first time SFHR efficiency issue was systematically approached and in part addressed, therefore opening new potential therapeutic ex-vivo applications.
Collapse
|
28
|
Heat-shock-mediated elimination of the nptII marker gene in transgenic apple (Malus×domestica Borkh.). Gene 2012; 498:41-9. [PMID: 22349025 DOI: 10.1016/j.gene.2012.01.074] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/04/2012] [Accepted: 01/27/2012] [Indexed: 01/05/2023]
Abstract
Production of marker-free genetically modified (GM) plants is one of the major challenges of molecular fruit breeding. Employing clean vector technologies, allowing the removal of undesired DNA sequences from GM plants, this goal can be achieved. The present study describes the establishment of a clean vector system in apple Malus×domestica Borkh., which is based on the use of the neomycin phosphotransferase II gene (nptII) as selectable marker gene and kanamycin/paramomycin as selective agent. The nptII gene can be removed after selection of GM shoots via site-specific excision mediated by heat-shock-inducible expression of the budding yeast FLP recombinase driven by the soybean Gmhsp17.5-E promoter. We created a monitoring vector containing the nptII and the flp gene as a box flanked by two direct repeats of the flp recognition target (FRT) sites. The FRT-flanked box separates the gusA reporter gene from the Cauliflower Mosaic Virus 35S (CaMV 35S) promoter. Consequently, GUS expression does only occur after elimination of the FRT-flanked box. Transformation experiments using the monitoring vector resulted in a total of nine transgenic lines. These lines were investigated for transgenicity by PCR, RT-PCR and Southern hybridization. Among different temperature regimes tested, exposure to 42 °C for 3.5 to 4h led to efficient induction of FLP-mediated recombination and removal of the nptII marker gene. A second round of shoot regeneration from leaf explants led to GM apple plants completely free of the nptII gene.
Collapse
|
29
|
Gersbach CA, Gaj T, Gordley RM, Mercer AC, Barbas CF. Targeted plasmid integration into the human genome by an engineered zinc-finger recombinase. Nucleic Acids Res 2011; 39:7868-78. [PMID: 21653554 PMCID: PMC3177191 DOI: 10.1093/nar/gkr421] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/06/2011] [Accepted: 05/09/2011] [Indexed: 11/13/2022] Open
Abstract
The development of new methods for gene addition to mammalian genomes is necessary to overcome the limitations of conventional genetic engineering strategies. Although a variety of DNA-modifying enzymes have been used to directly catalyze the integration of plasmid DNA into mammalian genomes, there is still an unmet need for enzymes that target a single specific chromosomal site. We recently engineered zinc-finger recombinase (ZFR) fusion proteins that integrate plasmid DNA into a synthetic target site in the human genome with exceptional specificity. In this study, we present a two-step method for utilizing these enzymes in any cell type at randomly-distributed target site locations. The piggyBac transposase was used to insert recombinase target sites throughout the genomes of human and mouse cell lines. The ZFR efficiently and specifically integrated a transfected plasmid into these genomic target sites and into multiple transposons within a single cell. Plasmid integration was dependent on recombinase activity and the presence of recombinase target sites. This work demonstrates the potential for broad applicability of the ZFR technology in genome engineering, synthetic biology and gene therapy.
Collapse
Affiliation(s)
- Charles A. Gersbach
- The Skaggs Institute for Chemical Biology, Department of Molecular Biology and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Thomas Gaj
- The Skaggs Institute for Chemical Biology, Department of Molecular Biology and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Russell M. Gordley
- The Skaggs Institute for Chemical Biology, Department of Molecular Biology and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Andrew C. Mercer
- The Skaggs Institute for Chemical Biology, Department of Molecular Biology and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Carlos F. Barbas
- The Skaggs Institute for Chemical Biology, Department of Molecular Biology and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
30
|
Proudfoot C, McPherson AL, Kolb AF, Stark WM. Zinc finger recombinases with adaptable DNA sequence specificity. PLoS One 2011; 6:e19537. [PMID: 21559340 PMCID: PMC3084882 DOI: 10.1371/journal.pone.0019537] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 03/31/2011] [Indexed: 12/31/2022] Open
Abstract
Site-specific recombinases have become essential tools in genetics and molecular biology for the precise excision or integration of DNA sequences. However, their utility is currently limited to circumstances where the sites recognized by the recombinase enzyme have been introduced into the DNA being manipulated, or natural 'pseudosites' are already present. Many new applications would become feasible if recombinase activity could be targeted to chosen sequences in natural genomic DNA. Here we demonstrate efficient site-specific recombination at several sequences taken from a 1.9 kilobasepair locus of biotechnological interest (in the bovine β-casein gene), mediated by zinc finger recombinases (ZFRs), chimaeric enzymes with linked zinc finger (DNA recognition) and recombinase (catalytic) domains. In the "Z-sites" tested here, 22 bp casein gene sequences are flanked by 9 bp motifs recognized by zinc finger domains. Asymmetric Z-sites were recombined by the concomitant action of two ZFRs with different zinc finger DNA-binding specificities, and could be recombined with a heterologous site in the presence of a third recombinase. Our results show that engineered ZFRs may be designed to promote site-specific recombination at many natural DNA sequences.
Collapse
Affiliation(s)
- Chris Proudfoot
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Arlene L. McPherson
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Andreas F. Kolb
- Nutrition and Epigenetics Group, Life Long Health Division, Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - W. Marshall Stark
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Arm site independence of coliphage HK022 integrase in human cells. Mol Genet Genomics 2011; 285:403-13. [DOI: 10.1007/s00438-011-0614-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 03/09/2011] [Indexed: 01/21/2023]
|
32
|
Structure-guided reprogramming of serine recombinase DNA sequence specificity. Proc Natl Acad Sci U S A 2010; 108:498-503. [PMID: 21187418 DOI: 10.1073/pnas.1014214108] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Routine manipulation of cellular genomes is contingent upon the development of proteins and enzymes with programmable DNA sequence specificity. Here we describe the structure-guided reprogramming of the DNA sequence specificity of the invertase Gin from bacteriophage Mu and Tn3 resolvase from Escherichia coli. Structure-guided and comparative sequence analyses were used to predict a network of amino acid residues that mediate resolvase and invertase DNA sequence specificity. Using saturation mutagenesis and iterative rounds of positive antibiotic selection, we identified extensively redesigned and highly convergent resolvase and invertase populations in the context of engineered zinc-finger recombinase (ZFR) fusion proteins. Reprogrammed variants selectively catalyzed recombination of nonnative DNA sequences > 10,000-fold more effectively than their parental enzymes. Alanine-scanning mutagenesis revealed the molecular basis of resolvase and invertase DNA sequence specificity. When used as rationally designed ZFR heterodimers, the reprogrammed enzyme variants site-specifically modified unnatural and asymmetric DNA sequences. Early studies on the directed evolution of serine recombinase DNA sequence specificity produced enzymes with relaxed substrate specificity as a result of randomly incorporated mutations. In the current study, we focused our mutagenesis exclusively on DNA determinants, leading to redesigned enzymes that remained highly specific and directed transgene integration into the human genome with > 80% accuracy. These results demonstrate that unique resolvase and invertase derivatives can be developed to site-specifically modify the human genome in the context of zinc-finger recombinase fusion proteins.
Collapse
|
33
|
Eipers PG, Salazar-Gonzalez JF, Morrow CD. HIV gene expression from intact proviruses positioned in bacterial artificial chromosomes at integration sites previously identified in latently infected T cells. Virology 2010; 410:151-60. [PMID: 21115184 DOI: 10.1016/j.virol.2010.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/10/2010] [Accepted: 11/01/2010] [Indexed: 01/18/2023]
Abstract
HIV integration predominantly occurs in introns of transcriptionally active genes. To study the impact of the integration site on HIV gene expression, a complete HIV-1 provirus (with GFP as a fusion with Nef) was inserted into bacterial artificial chromosomes (BACs) at three sites previously identified in latent T cells of patients: topoisomerase II (Top2A), DNA methyltransferase 1 (DNMT1), or basic leucine transcription factor 2 (BACH2). Transfection of BAC-HIV into 293T cells resulted in a fourfold difference in production of infectious HIV-1. Cell lines were established that contained BAC-Top2A, BAC-DNMT1, or BAC-BACH2, but only BAC-DNMT1 spontaneously produced virus, albeit at a low level. Stimulation with TNF-α resulted in virus production from four of five BAC-Top2A and all BAC-DNMT1 cell lines, but not from the BAC-BACH2 lines. The results of these studies highlight differences between integration sites identified in latent T cells to support virus production and reactivation from latency.
Collapse
Affiliation(s)
- Peter G Eipers
- Department of Cell Biology, University of Alabama at Birmingham, 802 Kaul Building, 720 20th Street South, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
34
|
Nuclear targeting of a bacterial integrase that mediates site-specific recombination between bacterial and human target sequences. Appl Environ Microbiol 2010; 77:201-10. [PMID: 21037296 DOI: 10.1128/aem.01371-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TrwC is a bacterial protein involved in conjugative transfer of plasmid R388. It is transferred together with the DNA strand into the recipient bacterial cell, where it can integrate the conjugatively transferred DNA strand into its target sequence present in the recipient cell. Considering that bacterial conjugation can occur between bacteria and eukaryotic cells, this protein has great biotechnological potential as a site-specific integrase. We have searched for possible TrwC target sequences in the human genome. Recombination assays showed that TrwC efficiently catalyzes recombination between its natural target sequence and a discrete number of sequences, located in noncoding sites of the human genome, which resemble this target. We have determined the cellular localization of TrwC and derivatives in human cells by immunofluorescence and also by an indirect yeast-based assay to detect both nuclear import and export signals. The results indicate that the recombinase domain of TrwC (N600) has nuclear localization, but full-length TrwC locates in the cytoplasm, apparently due to the presence of a nuclear export signal in its C-terminal domain. The recombinase domain of TrwC can be transported to recipient cells by conjugation in the presence of the helicase domain of TrwC, but with very low efficiency. We mutagenized the trwC gene and selected for mutants with nuclear localization. We obtained one such mutant with a point A904T mutation and an extra peptide at its C terminus, which maintained its functionality in conjugation and recombination. This TrwC mutant could be useful for future TrwC-mediated site-specific integration assays in mammalian cells.
Collapse
|
35
|
Malchin N, Molotsky T, Borovok I, Voziyanov Y, Kotlyar AB, Yagil E, Kolot M. High efficiency of a sequential recombinase-mediated cassette exchange reaction in Escherichia coli. J Mol Microbiol Biotechnol 2010; 19:117-22. [PMID: 20924197 DOI: 10.1159/000321497] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A comparison between the efficiency of recombinase-mediated cassette exchange (RMCE) reactions catalyzed in Escherichia coli by the site-specific recombinases Flp of yeast and Int of coliphage HK022 has revealed that an Flp-catalyzed RMCE reaction is more efficient than an Int-HK022 catalyzed reaction. In contrast, an RMCE reaction with 1 pair of frt sites and 1 pair of att sites catalyzed in the presence of both recombinases is very inefficient. However, the same reaction catalyzed by each recombinase individually supplied in a sequential order is very efficient, regardless of the order. Atomic force microscopy images of Flp with its DNA substrates show that only 1 pair of recombination sites forms a synaptic complex with the recombinase. The results suggest that the RMCE reaction is sequential.
Collapse
Affiliation(s)
- Natalia Malchin
- Department of Biochemistry, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
36
|
Ohtsuka M, Ogiwara S, Miura H, Mizutani A, Warita T, Sato M, Imai K, Hozumi K, Sato T, Tanaka M, Kimura M, Inoko H. Pronuclear injection-based mouse targeted transgenesis for reproducible and highly efficient transgene expression. Nucleic Acids Res 2010; 38:e198. [PMID: 20880997 PMCID: PMC3001095 DOI: 10.1093/nar/gkq860] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mouse transgenesis has proven invaluable for analysis of gene function and generation of human disease models. We describe here the development of a pronuclear injection-based targeted transgenesis (PITT) system, involving site-specific integration in fertilized eggs. The system was applied to two different genomic target loci to generate a series of transgenic lines including fluorescent mice, which reproducibly displayed strong, ubiquitous and stable transgene expression. We also demonstrated that knockdown mice could be readily generated by PITT by taking advantage of the reproducible and highly efficient expression system. The PITT system, which circumvents the problem of unpredictable and unstable transgene expression of conventional random-integration transgenic mice, reduces the time, cost and effort needed to generate transgenic mice, and is potentially applicable to both in vivo ‘gain-of-function’ and ‘loss-of-function’ studies.
Collapse
Affiliation(s)
- Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sorrell DA, Robinson CJ, Smith JA, Kolb AF. Recombinase mediated cassette exchange into genomic targets using an adenovirus vector. Nucleic Acids Res 2010; 38:e123. [PMID: 20371519 PMCID: PMC2887974 DOI: 10.1093/nar/gkq192] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recombinase mediated cassette exchange (RMCE) is a process in which site-specific recombinases exchange one gene cassette flanked by a pair of incompatible target sites for another cassette flanked by an identical pair of sites. Typically one cassette is present in the host genome, whereas the other gene cassette is introduced into the host cell by chemical or biological means. We show here that the frequency of cassette exchange is dependent on the relative and absolute quantities of the transgene cassette and the recombinase. We were able to successfully modify genomic targets not only by electroporation or chemically mediated gene transfer but also by using an adenovirus vector carrying both the transgene cassette to be inserted and the recombinase coding region. RMCE proceeds efficiently in cells in which the adenovirus vector is able to replicate. In contrast, insufficient quantities of the transgene cassette are produced in cells in which the virus cannot replicate. Additional transfection of the transgene cassette significantly enhances the RMCE frequency. This demonstrates that an RMCE system in the context of a viral vector allows the site directed insertion of a transgene into a defined genomic site.
Collapse
Affiliation(s)
- David A Sorrell
- Molecular Recognition Group, Hannah Research Institute, Ayr, KA6 5HL, UK
| | | | | | | |
Collapse
|
38
|
A versatile nonviral vector system for tetracycline-dependent one-step conditional induction of transgene expression. Gene Ther 2010; 16:1383-94. [PMID: 19759563 DOI: 10.1038/gt.2009.105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, we describe a novel self-contained, nonviral vector system for the rapid development of tetracycline (Tet)-inducible transgene expression systems in mammalian cell lines. To avoid multiple rounds of clonal selection for the establishment of stably transfected cell clones, as is necessary with conventional systems, we constructed a multicomplementary DNA(cDNA) expression vector that enables both one-step targeted genomic integration and conditional induction of transgene expression. This vector system consists of several modules including a Tet-inducible promoter directing the expression of a transgene and two Tet repressor expression units placed in tandem on a single vector. The cell clones, generated using a one-step phiC31 integrase-mediated chromosomal integration of the multi-cDNA expression construct, showed a stable and robust expression with high induction rates upon addition of doxycycline inducer in five different cell lines tested. By using this system, we show c-Src-induced cell transformation and anticancer cell therapy for this transformation in cultured fibroblast cells. The results show a rapid production and accumulation of target protein on addition of the inducer starting from extremely low background levels and reduction to background levels in a matter of days after the inducer was withdrawn from the culture medium.
Collapse
|
39
|
Laible G, Alonso-González L. Gene targeting from laboratory to livestock: current status and emerging concepts. Biotechnol J 2009; 4:1278-92. [PMID: 19606430 DOI: 10.1002/biot.200900006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of methods for cell-mediated transgenesis, based on somatic cell nuclear transfer, provides a tremendous opportunity to shape the genetic make-up of livestock animals in a much more directed approach than traditional animal breeding and selection schemes. Progress in the site-directed modulation of livestock genomes is currently limited by the low efficiencies of gene targeting imposed by the low frequency of homologous recombination and limited proliferative capacity of primary somatic cells that are used to produce transgenic animals. Here we review the current state of the art in the field, discuss the crucial aspects of the methodology and provide an overview of emerging approaches to increase the efficiency of gene targeting in somatic cells.
Collapse
Affiliation(s)
- Götz Laible
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand.
| | | |
Collapse
|
40
|
Feng X, Bednarz AL, Colloms SD. Precise targeted integration by a chimaeric transposase zinc-finger fusion protein. Nucleic Acids Res 2009; 38:1204-16. [PMID: 19965773 PMCID: PMC2831304 DOI: 10.1093/nar/gkp1068] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Transposons of the Tc1/mariner family have been used to integrate foreign DNA stably into the genome of a large variety of different cell types and organisms. Integration is at TA dinucleotides located essentially at random throughout the genome, potentially leading to insertional mutagenesis, inappropriate activation of nearby genes, or poor expression of the transgene. Here, we show that fusion of the zinc-finger DNA-binding domain of Zif268 to the C-terminus of ISY100 transposase leads to highly specific integration into TA dinucleotides positioned 6-17 bp to one side of a Zif268 binding site. We show that the specificity of targeting can be changed using Zif268 variants that bind to sequences from the HIV-1 promoter, and demonstrate a bacterial genetic screen that can be used to select for increased levels of targeted transposition. A TA dinucleotide flanked by two Zif268 binding sites was efficiently targeted by our transposase-Zif268 fusion, suggesting the possibility of designer 'Z-transposases' that could deliver transgenic cargoes to chosen genomic locations.
Collapse
Affiliation(s)
- Xiaofeng Feng
- Faculty of Biomedical and Life Sciences, University of Glasgow, Bower Building, University Ave, Glasgow G12 8QQ, Scotland, UK
| | | | | |
Collapse
|
41
|
Yamauchi T, Johzuka-Hisatomi Y, Fukada-Tanaka S, Terada R, Nakamura I, Iida S. Homologous recombination-mediated knock-in targeting of the MET1a gene for a maintenance DNA methyltransferase reproducibly reveals dosage-dependent spatiotemporal gene expression in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:386-96. [PMID: 19519802 DOI: 10.1111/j.1365-313x.2009.03947.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Although homologous recombination-promoted knock-in targeting to monitor the expression of a gene by fusing a reporter gene with its promoter is routine practice in mice, gene targeting to modify endogenous genes in flowering plants remains in its infancy. In the knock-in targeting, the junction sequence between a reporter gene and an endogenous target promoter can be designed properly, and transgenic plants carrying an identical and desired knock-in allele can be repeatedly obtained. By employing a reproducible gene-targeting procedure with positive-negative selection in rice, we were able to obtain fertile transgenic knock-in plants with the promoterless GUS reporter gene encoding beta-glucuronidase fused with the endogenous promoter of MET1a, one of two rice MET1 genes encoding a maintenance DNA methyltransferase. All of the primary (T(0)) transgenic knock-in plants obtained were found to carry only one copy of GUS, with the anticipated structure in the heterozygous condition, and no ectopic events associated with gene targeting could be detected. We showed the reproducible, dosage-dependent and spatiotemporal expression of GUS in the selfed progenies of independently isolated knock-in targeted plants. The results in knock-in targeted plants contrast sharply with the results in transgenic plants with the MET1a promoter-fused GUS reporter gene integrated randomly in the genome: clear interindividual variation of GUS expression was observed among independently obtained plants bearing the randomly integrated transgenes. As our homologous recombination-mediated gene-targeting strategy with positive-negative selection is, in principle, applicable to modify any endogenous gene, knock-in targeting would facilitate basic and applied plant research.
Collapse
Affiliation(s)
- Takaki Yamauchi
- National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Graham C, Cole S, Laible G. Site-specific modification of the bovine genome using Cre recombinase-mediated gene targeting. Biotechnol J 2009; 4:108-18. [PMID: 19156732 DOI: 10.1002/biot.200800200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cre recombinase (Cre)-mediated targeted insertion of a transgene is a powerful technique that can be used to tailor genomes. When combined with somatic cell nuclear transfer it could offer an efficient way to generate transgenic livestock with site-specific genetic modifications that are free of antibiotic selection markers. We have engineered primary bovine fibroblasts to contain a chromosomal acceptor site with incompatible loxP/lox2272 sites for Cre-mediated cassette exchange and show for the first time that Cre-mediated targeting can be applied in these acceptor cells. Molecular characterization of the resulting cell clones revealed Cre-mediated transgene insertion efficiencies of up to 98% when antibiotic selection was used to identify transgene containing cell clones. Most clonal lines also contained random insertions of the targeting and Cre expression plasmids with only about 10% of the clones being exclusively modified by the intended targeted insertion. This targeting efficiency was sufficient to enable the isolation of correctly targeted clones without the help of antibiotic selection. Therefore, this recombinase-mediated insertion strategy has the potential to produce transgenic cattle from antibiotic selection marker-free somatic cells with transgenes inserted into proven genomic loci ensuring reliable expression levels.
Collapse
|
43
|
Adar S, Izhar L, Hendel A, Geacintov N, Livneh Z. Repair of gaps opposite lesions by homologous recombination in mammalian cells. Nucleic Acids Res 2009; 37:5737-48. [PMID: 19654238 PMCID: PMC2761288 DOI: 10.1093/nar/gkp632] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Damages in the DNA template inhibit the progression of replication, which may cause single-stranded gaps. Such situations can be tolerated by translesion DNA synthesis (TLS), or by homology-dependent repair (HDR), which is based on transfer or copying of the missing information from the replicated sister chromatid. Whereas it is well established that TLS plays an important role in DNA damage tolerance in mammalian cells, it is unknown whether HDR operates in this process. Using a newly developed plasmid-based assay that distinguishes between the three mechanisms of DNA damage tolerance, we found that mammalian cells can efficiently utilize HDR to repair DNA gaps opposite an abasic site or benzo[a]pyrene adduct. The majority of these events occurred by a physical strand transfer (homologous recombination repair; HRR), rather than a template switch mechanism. Furthermore, cells deficient in either the human RAD51 recombination protein or NBS1, but not Rad18, exhibited decreased gap repair through HDR, indicating a role for these proteins in DNA damage tolerance. To our knowledge, this is the first direct evidence of gap-lesion repair via HDR in mammalian cells, providing further molecular insight into the potential activity of HDR in overcoming replication obstacles and maintaining genome stability.
Collapse
Affiliation(s)
- Sheera Adar
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
44
|
Yang M, Djukanovic V, Stagg J, Lenderts B, Bidney D, Falco SC, Lyznik LA. Targeted mutagenesis in the progeny of maize transgenic plants. PLANT MOLECULAR BIOLOGY 2009; 70:669-679. [PMID: 19466565 DOI: 10.1007/s11103-009-9499-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 04/25/2009] [Indexed: 05/27/2023]
Abstract
We have demonstrated that targeted mutagenesis can be accomplished in maize plants by excision, activation, and subsequent elimination of an endonuclease in the progeny of genetic crosses. The yeast FLP/FRT site-specific recombination system was used to excise and transiently activate the previously integrated yeast I-SceI homing endonuclease in maize zygotes and/or developing embryos. An artificial I-SceI recognition sequence integrated into genomic DNA was analyzed for mutations to indicate the I-SceI endonuclease activity. Targeted mutagenesis of the I-SceI site occurred in about 1% of analyzed F1 plants. Short deletions centered on the I-SceI-produced double-strand break were the predominant genetic lesions observed in the F1 plants. The I-SceI expression cassette was not detected in the mutant F1 plants and their progeny. However, the original mutations were faithfully transmitted to the next generation indicating that the mutations occurred early during the F1 plant development. The procedure offers simultaneous production of double-strand breaks and delivery of DNA template combined with a large number of progeny plants for future gene targeting experiments.
Collapse
Affiliation(s)
- Meizhu Yang
- Pioneer Hi-Bred International, A DuPont Business, Research Center, 7300 NW 62nd Avenue, Johnston, IA 50131-1004, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
[Construction of the oocyte-specific expressing phiC31 integrase vector pZP3-INT and its expression in mouse oocytes]. YI CHUAN = HEREDITAS 2009; 31:595-9. [PMID: 19586858 DOI: 10.3724/sp.j.1005.2009.00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Streptomyces phage phiC31 integrase is a site-specific recombinase, which can catalyze site-specific, unidirectional recombination between the attP site and attB site. To explore whether it can be used to mediate the recombination of specific gene in oocytes, GV-stage oocytes were collected from 3-week-old Kunming White mice by puncturing antral follocles with a sharp needle, and micro-injected with oocyte-specific expressing phiC31 integrase vector pZP3-INT and site -specific recombination detection vector pBCPB+. phiC31 integrase mRNA were detected by RT-PCR and the recombination of pBCPB+ was evaluated by PCR in mouse oocytes at 48 h after injection. Both can get corresponding bands. These results indicated that the expression of phiC31 integrase can be driven by ZP3 promoter efficiently and phiC31 integrase can mediate the site-specific recombination between attP site and attB site in mouse GV-stage oocytes. It could be a powerful tool for the study of recombination of specific gene in mouse oocytes and would provide an alternative way for the mouse oocyte genome manipulation.
Collapse
|
46
|
Site-specific recombination in the cyanobacterium Anabaena sp. strain PCC 7120 catalyzed by the integrase of coliphage HK022. J Bacteriol 2009; 191:4458-64. [PMID: 19429625 DOI: 10.1128/jb.00368-09] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The integrase (Int) of the lambda-like coliphage HK022 catalyzes the site-specific integration and excision of the phage DNA into and from the chromosome of its host, Escherichia coli. Int recognizes two different pairs of recombining sites attP x attB and attL x attR for integration and excision, respectively. This system was adapted to the cyanobacterium Anabaena sp. strain PCC 7120 as a potential tool for site-specific gene manipulations in the cyanobacterium. Two plasmids were consecutively cointroduced by conjugation into Anabaena cells, one plasmid that expresses HK022 Int recombinase and the other plasmid that carries the excision substrate P(glnA)-attL-T1/T2-attR-lacZ, where T1/T2 are the strong transcription terminators of rrnB, to prevent expression of the lacZ reporter under the constitutive promoter P(glnA). The Int-catalyzed site-specific recombination reaction was monitored by the expression of lacZ emanating as a result of T1/T2 excision. Int catalyzed the site-specific excision reaction in Anabaena cells when its substrate was located either on the plasmid or on the chromosome with no need to supply an accessory protein, such as integration host factor and excisionase (Xis), which are indispensable for this reaction in its host, E. coli.
Collapse
|
47
|
Yamamoto M, Shook NA, Kanisicak O, Yamamoto S, Wosczyna MN, Camp JR, Goldhamer DJ. A multifunctional reporter mouse line for Cre- and FLP-dependent lineage analysis. Genesis 2009; 47:107-14. [PMID: 19165827 DOI: 10.1002/dvg.20474] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The Cre/lox and FLP/FRT recombination systems have been used extensively for both conditional knockout and cell lineage analysis in mice. Here we report a new multifunctional Cre/FLP dual reporter allele (R26(NZG)) that exhibits strong and apparently ubiquitous marker expression in embryos and adults. The reporter construct, which is driven by the CAG promoter, was knocked into the ROSA26 locus providing an open chromatin domain for consistent expression and avoiding site-of-integration effects often observed with transgenic reporters. R26(NZG) directs Cre-dependent nuclear-localized beta-galactosidase (beta-gal) expression, and can be converted into a Cre-dependent EGFP reporter (R26(NG)) by germline excision of the FRT-flanked nlslacZ cassette. Alternatively, germline excision of the floxed PGKNEO cassette in R26(NZG) generates an FLP-dependent EGFP reporter (R26(ZG)) that expresses beta-gal in FLP-nonexpressing cells. Finally, by the simultaneous use of both Cre and FLP deleters, R26(NZG) allows lineage relationships to be interrogated with greater refinement than is possible with single recombinase reporter systems.
Collapse
Affiliation(s)
- Masakazu Yamamoto
- Department of Molecular and Cell Biology, Center for Regenerative Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Malchin N, Goltsman J, Dabool L, Gorovits R, Bao Q, Dröge P, Yagil E, Kolot M. Optimization of coliphage HK022 Integrase activity in human cells. Gene 2009; 437:9-13. [DOI: 10.1016/j.gene.2009.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 02/18/2009] [Accepted: 02/19/2009] [Indexed: 11/26/2022]
|
49
|
Gordley RM, Gersbach CA, Barbas CF. Synthesis of programmable integrases. Proc Natl Acad Sci U S A 2009; 106:5053-8. [PMID: 19282480 PMCID: PMC2654808 DOI: 10.1073/pnas.0812502106] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Indexed: 01/07/2023] Open
Abstract
Accurate modification of the 3 billion-base-pair human genome requires tools with exceptional sequence specificity. Here, we describe a general strategy for the design of enzymes that target a single site within the genome. We generated chimeric zinc finger recombinases with cooperative DNA-binding and catalytic specificities that integrate transgenes with >98% accuracy into the human genome. These modular recombinases can be reprogrammed: New combinations of zinc finger domains and serine recombinase catalytic domains generate novel enzymes with distinct substrate sequence specificities. Because of their accuracy and versatility, the recombinases/integrases reported in this work are suitable for a wide variety of applications in biological research, medicine, and biotechnology where accurate delivery of DNA is desired.
Collapse
Affiliation(s)
- Russell M. Gordley
- Departments of Molecular Biology and Chemistry and The Skaggs Institute for Chemical Biology, BCC 550, The Scripps Research Institute, La Jolla, CA 92037
| | - Charles A. Gersbach
- Departments of Molecular Biology and Chemistry and The Skaggs Institute for Chemical Biology, BCC 550, The Scripps Research Institute, La Jolla, CA 92037
| | - Carlos F. Barbas
- Departments of Molecular Biology and Chemistry and The Skaggs Institute for Chemical Biology, BCC 550, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
50
|
Nishiumi F, Sone T, Kishine H, Thyagarajan B, Kogure T, Miyawaki A, Chesnut JD, Imamoto F. Simultaneous single cell stable expression of 2-4 cDNAs in HeLaS3 using psiC31 integrase system. Cell Struct Funct 2009; 34:47-59. [PMID: 19305101 DOI: 10.1247/csf.08044] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
An important consideration in the design of multigene delivery technology is the availability of suitable vectors to introduce multiple genes stably and stoichiometrically into living cells and co-express these genes efficiently. As a promising system for this purpose, we developed multi-cDNA expression constructs harboring two to three tandemly situated cDNAs in a single plasmid. The utility of this vector system is amplified by combining it with the psiC31 recombinase system which mediates site-specific integration of the genes into naturally occurring chromosomal sequences. By analyzing 55 psiC31-mediated integration events with five different constructs, each carrying one, two or three tandem cDNA expression cassettes, we identified 39 pseudo attP sites in the HeLaS3 chromosomes. All these sites share a common motif containing an inverted repeat and showing a similarity to the native psiC31 attP. The 36 integration events represented 27 different pseudo attP sites, suggesting the possibility of duplicate integration of the multigene expression plasmids into different genomic loci in a single cell. We demonstrated successive introduction of two different multi-cDNA expression plasmids into definite chromosomal pseudo attP sites, attaining integration of four cDNAs of known genomic constitution at precise genomic loci of a single HeLaS3 cell. The expression levels of these several transgenes were enhanced and made equally stable and robust by inserting the cHS4 insulator between genes.
Collapse
Affiliation(s)
- Fumiko Nishiumi
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|