Ma Z, Tao L, Bechthold A, Shentu X, Bian Y, Yu X. Overexpression of ribosome recycling factor is responsible for improvement of nucleotide antibiotic-toyocamycin in Streptomyces diastatochromogenes 1628.
Appl Microbiol Biotechnol 2014;
98:5051-8. [PMID:
24509772 DOI:
10.1007/s00253-014-5573-2]
[Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/23/2014] [Accepted: 01/25/2014] [Indexed: 11/29/2022]
Abstract
Ribosome recycling factor (RRF), a product of the frr gene, is responsible for the dissociation of ribosomes from messenger RNA after the termination of translation. In order to overexpress frr gene in the toyocamycin (TM) producer Streptomyces diastatochromogenes 1628, we cloned and placed the gene under the control of the constitutive promoter PermE(*). The resulting plasmid pIB139-frr was integrated into the chromosome of S. diastatochromogenes 1628 by conducting intergeneric conjugation. The strain S. diastatochromogenes 1628 containing pIB139-frr (1628-FRR) showed a 33.3 % increase in cell growth and a 46 % increase in TM production compared to wild-type strain 1628 when cultivated in a 7 l fermentor. In addition, it was possible to shorten the fermentation time from 84 to 72 h. Furthermore, by conducting reverse transcription polymerase chain reaction (RT-PCR) analysis, we discovered that the transcriptional levels of regulatory gene adpA-sd, toyF, and toyG involved in TM biosynthesis were enhanced in S. diastatochromogenes 1628-FRR compared to S. diastatochromogenes 1628. In addition, by using a fluorescent intensity reporter system, which is based on the green fluorescent protein (GFP), and by using Western blot analysis, we revealed that overexpression of frr also strongly promoted protein biosynthesis in late growth phase. These findings confirmed that by increasing copy number of frr gene, it is a useful approach to improve antibiotic production.
Collapse