1
|
Ullah A, Khan M, Zhang Y, Shafiq M, Ullah M, Abbas A, Xianxiang X, Chen G, Diao Y. Advancing Therapeutic Strategies with Polymeric Drug Conjugates for Nucleic Acid Delivery and Treatment. Int J Nanomedicine 2025; 20:25-52. [PMID: 39802382 PMCID: PMC11717654 DOI: 10.2147/ijn.s429279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
The effective clinical translation of messenger RNA (mRNA), small interfering RNA (siRNA), and microRNA (miRNA) for therapeutic purposes hinges on the development of efficient delivery systems. Key challenges include their susceptibility to degradation, limited cellular uptake, and inefficient intracellular release. Polymeric drug conjugates (PDCs) offer a promising solution, combining the benefits of polymeric carriers and therapeutic agents for targeted delivery and treatment. This comprehensive review explores the clinical translation of nucleic acid therapeutics, focusing on polymeric drug conjugates. It investigates how these conjugates address delivery obstacles, enhance systemic circulation, reduce immunogenicity, and provide controlled release, improving safety profiles. The review delves into the conjugation strategies, preparation methods, and various classes of PDCs, as well as strategic design, highlighting their role in nucleic acid delivery. Applications of PDCs in treating diseases such as cancer, immune disorders, and fibrosis are also discussed. Despite significant advancements, challenges in clinical adoption persist. The review concludes with insights into future directions for this transformative technology, underscoring the potential of PDCs to advance nucleic acid-based therapies and combat infectious diseases significantly.
Collapse
Affiliation(s)
- Aftab Ullah
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Marina Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Pakistan
| | - Yibang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Muhammad Shafiq
- Research Institute of Clinical Pharmacy, Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Mohsan Ullah
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Azar Abbas
- Institute of Medicine, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Xu Xianxiang
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Gang Chen
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, People’s Republic of China
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao central Medical Group), Qingdao, Shandong, People’s Republic of China
| | - Yong Diao
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| |
Collapse
|
2
|
Bian X, Yu X, Lu S, Jia L, Li P, Yin J, Tan S. Chitosan-based nanoarchitectures for siRNA delivery in cancer therapy: A review of pre-clinical and clinical importance. Int J Biol Macromol 2025; 284:137708. [PMID: 39571854 DOI: 10.1016/j.ijbiomac.2024.137708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/01/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024]
Abstract
The gene therapy has been developed into a new cancer treatment option. Now that we know which molecular components contribute to carcinogenesis, we may use gene therapy to target particular signalling pathways in cancer treatment. Problems with gene therapy include genetic tool degradation in blood, off-targeting features, and inadequate tumor site accumulation; new delivery mechanisms are needed to address these issues. A polysaccharide made from chitin, chitosan has found extensive use in the creation of nanoparticles. The delivery of genes in the treatment of illnesses, particularly cancer, has made use of nanostructures modified with chitosan. Topics covered in this review center on cancer treatment using chitosan-based polymers for siRNA delivery. This study aims to assess the potential of chitosan nanoparticles for the simultaneous administration of siRNA and anti-cancer medications. In cancer treatment, these nanoparticles can transport phytochemicals or chemotherapeutics together with siRNA. In addition, chitosan nanoparticles loaded with siRNA can inhibit the growth and spread of human malignancies by delivering siRNA that targets particular genes. Chitosan nanoparticles loaded with siRNA can heighten the responsiveness of cancer cells. Future therapeutic applications of chitosan nanoparticles may open the path for cancer treatment, thanks to their biocompatibility and biosafety.
Collapse
Affiliation(s)
- Xiaobo Bian
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaopeng Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shiyang Lu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Linan Jia
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ping Li
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Jianqiao Yin
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Shutao Tan
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Maeshima R, Tagalakis AD, Gyftaki-Venieri D, Jones SA, Rye PD, Tøndervik A, Åstrand OAH, Hart SL. Low Molecular Weight Alginate Oligosaccharides as Alternatives to PEG for Enhancement of the Diffusion of Cationic Nanoparticles Through Cystic Fibrosis Mucus. Adv Healthc Mater 2025; 14:e2400510. [PMID: 39533498 DOI: 10.1002/adhm.202400510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Airway mucus is a major barrier to the delivery of lipid-based nanoparticles in chronic airway diseases such as cystic fibrosis (CF). Receptor-Targeted Nanocomplexes (RTN), comprise mixtures of cationic lipids and bifunctional peptides with receptor-targeting and nucleic acid packaging properties. The aim of this study is to improve the mucus-penetrating properties of cationic siRNA and mRNA RTNs by combining them with low molecular weight alginate oligosaccharides, OligoG and OligoM. Cationic RTNs formulated with either alginate become strongly anionic, while PEGylated messenger RNA (mRNA) and short interfering RNA (siRNA) RTNs remain cationic. Both alginates enhance mucus diffusion rates of cationic siRNA and mRNA RTNs in a static mucus barrier diffusion model, with OligoG particularly effective. PEGylation also enhance mucus diffusion rates of siRNA RTNs but not mRNA RTNs. Electron microscopy shows that RTNs remained intact after mucosal transit. The transfection efficiency of OligoM-coated mRNA RTNs is better than those coated with OligoG or PEG, and similar to cationic RTNs. In siRNA RTN transfections, OligoM is better than OligoG although 1% PEG is slightly better than both. The combination of cationic RTNs and alginate oligosaccharides represents a promising alternative to PEGylation for epithelial delivery of genetic therapies across the mucus barrier while retaining transfection efficiency.
Collapse
Affiliation(s)
- Ruhina Maeshima
- Department of Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Aristides D Tagalakis
- Department of Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Dafni Gyftaki-Venieri
- Department of Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Stuart A Jones
- Institute of Pharmaceutical Science, Faculty of Life Science and Medicine, King's College London, 15- Stamford Street, London, SE1 9NH, UK
| | - Philip D Rye
- AlgiPharma AS, Industriveien 33, Sandvika, Akershus, 1337, Norway
| | - Anne Tøndervik
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Strindvegen 4, Trondheim, 7034, Norway
| | | | - Stephen L Hart
- Department of Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| |
Collapse
|
4
|
Nguyen L, Nguyen TT, Kim JY, Jeong JH. Advanced siRNA delivery in combating hepatitis B virus: mechanistic insights and recent updates. J Nanobiotechnology 2024; 22:745. [PMID: 39616384 PMCID: PMC11608496 DOI: 10.1186/s12951-024-03004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/09/2024] [Indexed: 12/06/2024] Open
Abstract
Hepatitis B virus (HBV) infection is a major health problem, causing thousands of deaths each year worldwide. Although current medications can often inhibit viral replication and reduce the risk of liver carcinoma, several obstacles still hinder their effectiveness. These include viral resistance, prolonged treatment duration, and low efficacy in clearing viral antigens. To address these challenges in current HBV treatment, numerous approaches have been developed with remarkable success. Among these strategies, small-interfering RNA (siRNA) stands out as one of the most promising therapies for hepatitis B. However, naked siRNAs are vulnerable to enzymatic digestion, easily eliminated by renal filtration, and unable to cross the cell membrane due to their large, anionic structure. Therefore, effective delivery systems are required to protect siRNAs and maintain their functionality. In this review, we have discussed the promises of siRNA therapy in treating HBV, milestones in their delivery systems, and products that have entered clinical trials. Finally, we have outlined the future perspectives of siRNA-based therapy for HBV treatment.
Collapse
Affiliation(s)
- Linh Nguyen
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Tiep Tien Nguyen
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea.
| | - Ju-Yeon Kim
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea.
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea.
| |
Collapse
|
5
|
Xu R, Xia C, He X, Hu C, Li Y, Zhang Y, Chen Z. siRNA Nanoparticle Dry Powder Formulation with High Transfection Efficiency and Pulmonary Deposition for Acute Lung Injury Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54344-54358. [PMID: 39325628 DOI: 10.1021/acsami.4c04241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Acute lung injury (ALI) is a severe inflammatory syndrome, which was caused by diverse factors. The COVID-19 pandemic has resulted in a higher mortality rate of these conditions. Currently, effective treatments are lacking. Although siRNA nucleotide-based drugs are promising therapeutic approaches, their poor stability and inability to efficiently reach target cells limit their clinical translation. This study identified a peptide from known cell-penetrating peptides that can form an efficient anti-inflammatory complex with TNF-α siRNA, termed SAR6EW/TNF-α siRNA. This complex can effectively transport TNF-α siRNA into the cytoplasm and achieve potent gene silencing in vitro as well as in vivo. By using lactose and triarginine as coexcipients and optimizing the spray-drying process, a powder was produced with micrometer-scale spherical and porous structures, enhancing aerosol release and lung delivery efficiency. The dry powder formulation and process preserve the stability and integrity of the siRNA. When administered intratracheally to ALI model mice, the complex powder demonstrated specific pulmonary gene silencing activity and significantly reduced inflammation symptoms caused by ALI, suggesting a potential strategy for the clinical therapeutic approach of respiratory diseases.
Collapse
Affiliation(s)
- Rui Xu
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chenjie Xia
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiongxiong He
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Changhui Hu
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yinjia Li
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yufeng Zhang
- Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin 214400, China
| | - Zhipeng Chen
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
6
|
Galitsyna EV, Buianova AA, Kozhukhov VI, Domogatsky SP, Bukharova TB, Goldshtein DV. Cytocompatibility and Osteoinductive Properties of Collagen-Fibronectin Hydrogel Impregnated with siRNA Targeting Glycogen Synthase Kinase 3β: In Vitro Study. Biomedicines 2023; 11:2363. [PMID: 37760805 PMCID: PMC10525875 DOI: 10.3390/biomedicines11092363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
In this study, we developed an osteoplastic material based on collagen-fibronectin hydrogel impregnated with siRNA molecules targeting glycogen synthase kinase 3β (GSK3β), which inhibits the osteogenic differentiation of mesenchymal stem cells. The hydrogel impregnated with polyplexes containing siRNA GSK3β and polyethylenimine has been shown to have no cytotoxic effect: there was no statistically significant change in the cell's viability after 7 days of incubation in its presence compared to the control group. On days 2 and 7, an increase in the level of expression of markers of osteogenic differentiation was observed, which confirms the osteoinductive qualities of the material. It has been demonstrated that the hydrogel maintains cell adhesion. Our results obtained in vitro indicate cytocompatibility and osteoinductive properties of collagen-fibronectin hydrogel impregnated with siRNA GSK3β molecules.
Collapse
Affiliation(s)
- Elena V. Galitsyna
- Research Centre for Medical Genetics, 1 Moskvorechye Str., 115522 Moscow, Russia
| | | | - Vadim I. Kozhukhov
- Federal State Budgetary Institution, National Medical Research Centre of Cardiology, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - Sergey P. Domogatsky
- Federal State Budgetary Institution, National Medical Research Centre of Cardiology, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - Tatiana B. Bukharova
- Research Centre for Medical Genetics, 1 Moskvorechye Str., 115522 Moscow, Russia
| | | |
Collapse
|
7
|
Sun J, Ju F, Jin J, Wang HL, Li ZJ, Sun YC, Chen QZ, Yang QQ, Tan J, Zhou YL. M2 Macrophage Membrane-Mediated Biomimetic-Nanoparticle Carrying COX-siRNA Targeted Delivery for Prevention of Tendon Adhesions by Inhibiting Inflammation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300326. [PMID: 37017497 DOI: 10.1002/smll.202300326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/25/2023] [Indexed: 06/19/2023]
Abstract
Tendon adhesion is the most common outcome of tendon or tendon-to-bone healing after injury. Our group developed a hydrogel-nanoparticle sustained-release system previously to inhibit cyclooxygenases (COXs) expression and consequently prevent tendon adhesion and achieved satisfactory results. However, effective treatment of multiple tendon adhesions is always a challenge in research on the prevention of tendon adhesion. In the present study, an M2M@PLGA/COX-siRNA delivery system is successfully constructed using the cell membranes of M2 macrophages and poly (lactic-co-glycolic acid) (PLGA) nanoparticles. Targeting properties and therapeutic effects are observed in mice or rat models of flexor digitorum longus (FDL) tendon injury combined with rotator cuff injury. The results showed that the M2M@PLGA/COX-siRNA delivery system has low toxicity and remarkable targeting properties to the injured areas. Treatment with the M2M@PLGA/COX-siRNA delivery system reduced the inflammatory reaction and significantly improved tendon adhesion in both the FDL tendon and rotator cuff tissues. These findings indicate that the M2M@PLGA delivery system can provide an effective biological strategy for preventing multiple tendon adhesions.
Collapse
Affiliation(s)
- Jie Sun
- Hand Surgery Research Center, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Fei Ju
- Hand Surgery Research Center, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Jing Jin
- Hand Surgery Research Center, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Hao Liang Wang
- Hand Surgery Research Center, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Zhi Jie Li
- Hand Surgery Research Center, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Yu Cheng Sun
- Hand Surgery Research Center, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Qing Zhong Chen
- Hand Surgery Research Center, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Qian Qian Yang
- Hand Surgery Research Center, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Jun Tan
- Hand Surgery Research Center, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - You Lang Zhou
- Hand Surgery Research Center, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| |
Collapse
|
8
|
Swart LE, Fens MHAM, van Oort A, Waranecki P, Mata Casimiro LD, Tuk D, Hendriksen M, van den Brink L, Schweighart E, Seinen C, Nelson R, Krippner-Heidenreich A, O'Toole T, Schiffelers RM, Kooijmans S, Heidenreich O. Increased Bone Marrow Uptake and Accumulation of Very-Late Antigen-4 Targeted Lipid Nanoparticles. Pharmaceutics 2023; 15:1603. [PMID: 37376052 DOI: 10.3390/pharmaceutics15061603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Lipid nanoparticles (LNPs) have evolved rapidly as promising delivery systems for oligonucleotides, including siRNAs. However, current clinical LNP formulations show high liver accumulation after systemic administration, which is unfavorable for the treatment of extrahepatic diseases, such as hematological disorders. Here we describe the specific targeting of LNPs to hematopoietic progenitor cells in the bone marrow. Functionalization of the LNPs with a modified Leu-Asp-Val tripeptide, a specific ligand for the very-late antigen 4 resulted in an improved uptake and functional siRNA delivery in patient-derived leukemia cells when compared to their non-targeted counterparts. Moreover, surface-modified LNPs displayed significantly improved bone-marrow accumulation and retention. These were associated with increased LNP uptake by immature hematopoietic progenitor cells, also suggesting similarly improved uptake by leukemic stem cells. In summary, we describe an LNP formulation that successfully targets the bone marrow including leukemic stem cells. Our results thereby support the further development of LNPs for targeted therapeutic interventions for leukemia and other hematological disorders.
Collapse
Affiliation(s)
- Laura E Swart
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Marcel H A M Fens
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Anita van Oort
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Piotr Waranecki
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - L Daniel Mata Casimiro
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - David Tuk
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Martijn Hendriksen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Luca van den Brink
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Elizabeth Schweighart
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Cor Seinen
- CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Ryan Nelson
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | | | - Tom O'Toole
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Raymond M Schiffelers
- CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Sander Kooijmans
- CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Olaf Heidenreich
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
- Wolfson Childhood Cancer Research Centre, Newcastle University, Newcastle upon Tyne NE1 7RY, UK
| |
Collapse
|
9
|
Li X, Qi H, Cui W, Wang Z, Fu X, Li T, Ma H, Yang Y, Yu T. Recent advances in targeted delivery of non-coding RNA-based therapeutics for atherosclerosis. Mol Ther 2022; 30:3118-3132. [PMID: 35918894 PMCID: PMC9552813 DOI: 10.1016/j.ymthe.2022.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 10/16/2022] Open
Abstract
Cardiovascular disease (CVD) has overtaken infectious illnesses as the leading cause of mortality and disability worldwide. The pathology that underpins CVD is atherosclerosis, characterized by chronic inflammation caused by the accumulation of plaques in the arteries. As our knowledge about the microenvironment of blood vessel walls deepens, there is an opportunity to fine-tune treatments to target the mechanisms driving atherosclerosis more directly. The application of non-coding RNAs (ncRNAs) as biomarkers or intervention targets is increasing. Although these ncRNAs play an important role in driving atherosclerosis and vascular dysfunction, the cellular and extracellular environments pose a challenge for targeted transmission and therapeutic regulation of ncRNAs. Specificity, delivery, and tolerance have hampered the clinical translation of ncRNA-based therapeutics. Nanomedicine is an emerging field that uses nanotechnology for targeted drug delivery and advanced imaging. Recently, nanoscale carriers have shown promising results and have introduced new possibilities for nucleic acid targeted drug delivery, particularly for atherosclerosis. In this review, we discuss the latest developments in nanoparticles to aid ncRNA-based drug development, particularly miRNA, and we analyze the current challenges in ncRNA targeted delivery. In particular, we highlight the emergence of various kinds of nanotherapeutic approaches based on ncRNAs, which can improve treatment options for atherosclerosis.
Collapse
Affiliation(s)
- Xiaoxin Li
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Hongzhao Qi
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Weigang Cui
- Department of Cardiology, People's Hospital of Rizhao, No. 126 Taian Road, Rizhao 276827, People's Republic of China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266000, China
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266000, China
| | - Tianxiang Li
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Huibo Ma
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao 266021, People's Republic of China.
| | - Tao Yu
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China; Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266000, China.
| |
Collapse
|
10
|
Nanoparticle-mediated corneal neovascularization treatments: Toward new generation of drug delivery systems. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Wu R, Tong S, Kahrizi MS, Zhu Z, Chen X. The Application of Sensitive Nano-Confined Nanoparticle System Using siRNA Targeting Extracellular Signal-Regulated Kinase (ERK)/Mitogen-Activated Protein Kinase (MAPK) Pathway in Gastrointestinal Cancer. J Biomed Nanotechnol 2022; 18:986-1000. [PMID: 35854449 DOI: 10.1166/jbn.2022.3320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study we tried to develop a Sensitive Nano-Confined Nanoparticles (S-NCN) system using siRNA against Programmed death-ligand 1 (PDL-1) and Polo Like Kinase 1 (Plk1) to treat gastrointestinal cancer. In this regard, we first synthesized the corresponding materials, prepared the S-NCN system, and verified its functionality. Subsequently, we demonstrated in vitro that S-NCN delivery of siPlk1 could effectively downregulate the expression of Plk1 gene in GC1436 cells and lead to significant apoptosis of tumor cells. Xenografted gastrointestinal cancer model mice were used to evaluate the in vivo efficacy of the nanoparticle. We have demonstrated that the developed S-NCN system can efficiently bind siRNA and deliver it into target tumor cells, solving the main obstacle of siRNA delivery in vivo and effectively silencing target genes with a very potential delivery option.
Collapse
Affiliation(s)
- Runda Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Shan Tong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | | | - Zheng Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Xin Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| |
Collapse
|
12
|
Ryu YC, Lee YE, Hwang BH. Efficient and safe small RNA delivery to macrophage using peptide-based nanocomplex. Biotechnol Bioeng 2021; 119:482-492. [PMID: 34761810 DOI: 10.1002/bit.27988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 01/29/2023]
Abstract
As one of the gene therapies, RNA interference (RNAi) effectively suppresses only specific genes, targeting various diseases in which they are involved. For the successful process of RNAi, efficient and safe delivery of small RNAs, including small interfering RNA and short hairpin RNA, is essential. Herein, an S-R11 fusion peptide, SPACE peptide conjugated with poly-arginine, was introduced to deliver small RNAs into immune cells that are difficult to transfect. This S-R11 peptide stably formed a spontaneous self-assembling nanocomplex through electrostatic attraction and hydrogen bonding with small RNAs. The nanocomplex showed about 5.3-fold better permeation efficiency than the conventional Lipofectamine™ 2000 for RAW 264.7 macrophage cells. Moreover, it induced about 66.2% silencing effect of the target gene in the cells activated with polyinosinic:polycytidylic acid (poly (I:C)). In addition, the cell viability of fusion peptide was ensured even in a concentration range exceeding the concentration used in the nanocomplex. Based on these results, it is expected that the nanocomplex in this study can be used as a new gene delivery system that can overcome the challenge of gene therapies to immune cells.
Collapse
Affiliation(s)
- Yeong Chae Ryu
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon, Korea
| | - Yoo Eun Lee
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon, Korea
| | - Byeong Hee Hwang
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon, Korea.,Division of Bioengineering, Incheon National University, Incheon, Korea
| |
Collapse
|
13
|
Multifunctional polymeric micellar nanomedicine in the diagnosis and treatment of cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112186. [PMID: 34082985 DOI: 10.1016/j.msec.2021.112186] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Polymeric micelles are a prevalent topic of research for the past decade, especially concerning their fitting ability to deliver drug and diagnostic agents. This delivery system offers outstanding advantages, such as biocompatibility, high loading efficiency, water-solubility, and good stability in biological fluids, to name a few. The multifunctional polymeric micellar architect offers the added capability to adapt its surface to meet the looked-for clinical needs. This review cross-talks the recent reports, proof-of-concept studies, patents, and clinical trials that utilize polymeric micellar family architectures concerning cancer targeted delivery of anticancer drugs, gene therapeutics, and diagnostic agents. The manuscript also expounds on the underlying opportunities, allied challenges, and ways to resolve their bench-to-bedside translation for allied clinical applications.
Collapse
|
14
|
Wang Q, Fan X, Jing N, Zhao H, Yu L, Tang X. Photoregulation of Gene Expression with Ligand-Modified Caged siRNAs through Host/Guest Interaction. Chembiochem 2021; 22:1901-1907. [PMID: 33432703 DOI: 10.1002/cbic.202000763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/22/2020] [Indexed: 02/05/2023]
Abstract
Small interfering RNA (siRNA) can effectively silence target genes through Argonate 2 (Ago2)-induced RNA interference (RNAi). It is very important to control siRNA activity in both spatial and temporal modes. Among different masking strategies, photocaging can be used to regulate gene expression through light irradiation with spatiotemporal and dose-dependent resolution. Many different caging strategies and caging groups have been reported for light-activated siRNA gene silencing. Herein, we describe a novel caging strategy that increases the blocking effect of RISC complex formation/process through host/guest (including ligand/receptor) interactions, thereby enhancing the inhibition of caged siRNA activity until light activation. This strategy can be used as a general approach to design caged siRNAs for the photomodulation of gene silencing of exogenous and endogenous genes.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing, P. R. China
| | - Xinli Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing, P. R. China
| | - Nannan Jing
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing, P. R. China
| | - Han Zhao
- National Center for Occupational Safety and Health, NHC, No. 27 Shilong Road, Beijing, P. R. China
| | - Lijia Yu
- National Center for Occupational Safety and Health, NHC, No. 27 Shilong Road, Beijing, P. R. China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing, P. R. China
| |
Collapse
|
15
|
Ryu YC, Kim KA, Kim BC, Wang HMD, Hwang BH. Novel fusion peptide-mediated siRNA delivery using self-assembled nanocomplex. J Nanobiotechnology 2021; 19:44. [PMID: 33579303 PMCID: PMC7881583 DOI: 10.1186/s12951-021-00791-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
Background Gene silencing using siRNA can be a new potent strategy to treat many incurable diseases at the genetic level, including cancer and viral infections. Treatments using siRNA essentially requires an efficient and safe method of delivering siRNA into cells while maintaining its stability. Thus, we designed novel synergistic fusion peptides, i.e., SPACE and oligoarginine. Results Among the novel fusion peptides and siRNAs, nanocomplexes have enhanced cellular uptake and gene silencing effect in vitro and improved retention and gene silencing effects of siRNAs in vivo. Oligoarginine could attract siRNAs electrostatically to form stable and self-assembled nanocomplexes, and the SPACE peptide could interact with the cellular membrane via hydrogen bonding. Therefore, nanocomplexes using fusion peptides showed improved and evident cellular uptake and gene silencing of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) via the lipid raft-mediated endocytosis pathway, especially to the HDFn cells of the skin, and all of the fusion peptides were biocompatible. Also, intratumorally injected nanocomplexes had increased retention time of siRNAs at the site of the tumor. Finally, nanocomplexes demonstrated significant in vivo gene silencing effect without overt tissue damage and immune cell infiltration. Conclusions The new nanocomplex strategy could become a safe and efficient platform for the delivery of siRNAs into cells and tissues to treat various target diseases through gene silencing.![]()
Collapse
Affiliation(s)
- Yeong Chae Ryu
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Academy-ro 119, Yeonsu-gu, Incheon, 22012, Korea
| | - Kyung Ah Kim
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Academy-ro 119, Yeonsu-gu, Incheon, 22012, Korea
| | - Byoung Choul Kim
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Academy-ro 119, Yeonsu-gu, Incheon, 22012, Korea.,Division of Bioengineering, Incheon National University, Incheon, 22012, Korea
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 402, Taiwan
| | - Byeong Hee Hwang
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Academy-ro 119, Yeonsu-gu, Incheon, 22012, Korea. .,Division of Bioengineering, Incheon National University, Incheon, 22012, Korea.
| |
Collapse
|
16
|
Fernandes F, Kotharkar P, Chakravorty A, Kowshik M, Talukdar I. Nanocarrier Mediated siRNA Delivery Targeting Stem Cell Differentiation. Curr Stem Cell Res Ther 2020; 15:155-172. [PMID: 31789134 DOI: 10.2174/1574888x14666191202095041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/16/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022]
Abstract
Stem cell-based regenerative medicine holds exceptional therapeutic potential and hence the development of efficient techniques to enhance control over the rate of differentiation has been the focus of active research. One of the strategies to achieve this involves delivering siRNA into stem cells and exploiting the RNA interference (RNAi) mechanism. Transport of siRNA across the cell membrane is a challenge due to its anionic property, especially in primary human cells and stem cells. Moreover, naked siRNA incites immune responses, may cause off-target effects, exhibits low stability and is easily degraded by endonucleases in the bloodstream. Although siRNA delivery using viral vectors and electroporation has been used in stem cells, these methods demonstrate low transfection efficiency, cytotoxicity, immunogenicity, events of integration and may involve laborious customization. With the advent of nanotechnology, nanocarriers which act as novel gene delivery vehicles designed to overcome the problems associated with safety and practicality are being developed. The various nanomaterials that are currently being explored and discussed in this review include liposomes, carbon nanotubes, quantum dots, protein and peptide nanocarriers, magnetic nanoparticles, polymeric nanoparticles, etc. These nanodelivery agents exhibit advantages such as low immunogenic response, biocompatibility, design flexibility allowing for surface modification and functionalization, and control over the surface topography for achieving the desired rate of siRNA delivery and improved gene knockdown efficiency. This review also includes discussion on siRNA co-delivery with imaging agents, plasmid DNA, drugs etc. to achieve combined diagnostic and enhanced therapeutic functionality, both for in vitro and in vivo applications.
Collapse
Affiliation(s)
- Fiona Fernandes
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa campus, Zuarinagar, Goa-403726, India
| | - Pooja Kotharkar
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa campus, Zuarinagar, Goa-403726, India
| | - Adrija Chakravorty
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa campus, Zuarinagar, Goa-403726, India
| | - Meenal Kowshik
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa campus, Zuarinagar, Goa-403726, India
| | - Indrani Talukdar
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa campus, Zuarinagar, Goa-403726, India
| |
Collapse
|
17
|
Nanocarriers in effective pulmonary delivery of siRNA: current approaches and challenges. Ther Deliv 2020; 10:311-332. [PMID: 31116099 DOI: 10.4155/tde-2019-0012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Research on siRNA is increasing due to its wide applicability as a therapeutic agent in irreversible medical conditions. siRNA inhibits expression of the specific gene after its delivery from formulation to cytosol region of a cell. RNAi (RNA interference) is a mechanism by which siRNA is silencing gene expression for a particular disease. Numerous studies revealed that naked siRNA delivery is not preferred due to instability and poor pharmacokinetic performance. Nanocarriers based delivery of siRNA has the advantage to overcome physiological barriers and protect the integrity of siRNA from degradation by RNAase. Various diseases like lung cancer, cystic fibrosis, asthma, etc can be treated effectively by local lung delivery. The selective targeted therapeutic action in diseased organ and least off targeted cytotoxicity are the key benefits of pulmonary delivery. The current review highlights recent developments in pulmonary delivery of siRNA with novel nanosized formulation approach with the proven in vitro/in vivo applications.
Collapse
|
18
|
Rudra A, Li J, Shakur R, Bhagchandani S, Langer R. Trends in Therapeutic Conjugates: Bench to Clinic. Bioconjug Chem 2020; 31:462-473. [PMID: 31990184 DOI: 10.1021/acs.bioconjchem.9b00828] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, therapeutic conjugates have attracted considerable attention as a new class of drug due to their unique pharmacological properties, especially from the pharmaceutical community. Their molecular structure tunability, improved targeting specificity, and therapeutic efficacy have been demonstrated in a wide range of research and clinical applications. In this topical review, we summarize selected recent advances in bioconjugation strategies for the development of therapeutic conjugates, their emerging application in clinical settings, as well as perspectives on the direction of future research.
Collapse
Affiliation(s)
- Arnab Rudra
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Junwei Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Rameen Shakur
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sachin Bhagchandani
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
19
|
Kimura Y, Shu Z, Ito M, Abe N, Nakamoto K, Tomoike F, Shuto S, Ito Y, Abe H. Intracellular build-up RNAi with single-strand circular RNAs as siRNA precursors. Chem Commun (Camb) 2020; 56:466-469. [DOI: 10.1039/c9cc04872c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We herein report a new approach for RNA interference, so-called “build-up RNAi” approach, where single-strand circular RNAs with a photocleavable unit or disulfide moiety were used as siRNA precursors.
Collapse
Affiliation(s)
- Yasuaki Kimura
- Department of Chemistry
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Zhaoma Shu
- Department of Chemistry
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Mika Ito
- Faculty of Pharmaceutical Sciences
- Hokkaido University
- Kita-12, Nishi-6, Kita-ku
- Sapporo 060-0812
- Japan
| | - Naoko Abe
- Department of Chemistry
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Kosuke Nakamoto
- Department of Chemistry
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Fumiaki Tomoike
- Research Center for Materials Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences
- Hokkaido University
- Kita-12, Nishi-6, Kita-ku
- Sapporo 060-0812
- Japan
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team
- RIKEN Center for Emergent Matter Science
- Wako-Shi
- Japan
| | - Hiroshi Abe
- Department of Chemistry
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| |
Collapse
|
20
|
Cytoplasmic expression of EGFR shRNA using a modified T7 autogene-based hybrid mRNA/DNA system induces long-term EGFR silencing and prolongs antitumor effects. Biochem Pharmacol 2020; 171:113735. [DOI: 10.1016/j.bcp.2019.113735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022]
|
21
|
Liu J, Zhang Y, Zeng Q, Zeng H, Liu X, Wu P, Xie H, He L, Long Z, Lu X, Xiao M, Zhu Y, Bo H, Cao K. Delivery of RIPK4 small interfering RNA for bladder cancer therapy using natural halloysite nanotubes. SCIENCE ADVANCES 2019; 5:eaaw6499. [PMID: 31579820 PMCID: PMC6760933 DOI: 10.1126/sciadv.aaw6499] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 09/03/2019] [Indexed: 05/28/2023]
Abstract
RNA interference (RNAi) technology can specifically silence the expression of a target gene and has emerged as a promising therapeutic method to treat cancer. In the present study, we showed that natural halloysite nanotube (HNT)-assisted delivery of an active small interfering RNA (siRNA) targeting receptor-interacting protein kinase 4 ( RIPK4 ) efficiently silenced its expression to treat bladder cancer. The HNTs/siRNA complex increased the serum stability of the siRNA, increased its circulation lifetime in blood, and promoted the cellular uptake and tumor accumulation of the siRNA. The siRNA markedly down-regulated RIPK4 expression in bladder cancer cells and bladder tumors, thus inhibiting tumorigenesis and progression in three bladder tumor models (a subcutaneous model, an in situ bladder tumor model, and a lung metastasis model), with no adverse effects. Thus, we revealed a simple but effective method to inhibit bladder cancer using RIPK4 silencing, indicating a promising therapeutic method for bladder cancer.
Collapse
Affiliation(s)
- Jianye Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
- Institute of Prostate Disease of Central South University, Changsha 410013, China
| | - Yi Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Qinghai Zeng
- Department of Dermatology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Hongliang Zeng
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs, Changsha 410331, China
| | - Xiaoming Liu
- Department of Digestive, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Pei Wu
- Department of Operation Center, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Hongyi Xie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Leye He
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
- Institute of Prostate Disease of Central South University, Changsha 410013, China
| | - Zhi Long
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
- Institute of Prostate Disease of Central South University, Changsha 410013, China
| | - Xiaoyong Lu
- Department of Urology, Hunan Aerospace Hospital, Changsha 410205, China
| | - Mengqing Xiao
- Department of Onology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Yuxing Zhu
- Department of Onology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Hao Bo
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha 410008, China
| | - Ke Cao
- Department of Onology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| |
Collapse
|
22
|
Sun X, Dong S, Li X, Yu K, Sun F, Lee RJ, Li Y, Teng L. Delivery of siRNA using folate receptor-targeted pH-sensitive polymeric nanoparticles for rheumatoid arthritis therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 20:102017. [PMID: 31128293 DOI: 10.1016/j.nano.2019.102017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 05/01/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023]
Abstract
Systemic delivery of siRNA to target tissues is difficult to achieve owing to its limited cellular uptake and poor serum stability. Herein, polymeric nanoparticles were developed for systemic administration of siRNA to inflamed tissues. The polymeric nanoparticles were composed of PK3 as a pH-sensitive polymer, folate-polyethyleneglycol-poly(lactide-co-glycolide) as a targeting ligand, and a DOTAP/siRNA core. The polymeric nanoparticles had a mean particle size of 142.6 ± 0.61 nm and a zeta potential of 3.6 ± 0.43 mV. In vitro studies indicated pH-dependent siRNA release from polymeric nanoparticles, with accelerated release at pH 5.0. Cellular uptake was efficient and gene silencing was confirmed by Western blot. In vivo, polymeric nanoparticles were shown to have inflammation-targeting activity and potent therapeutic effects in an adjuvant-induced arthritis rat model. These results suggest that pH-sensitive and folate receptor-targeted nanoparticles are a promising drug carrier for siRNA delivery for rheumatoid arthritis.
Collapse
Affiliation(s)
- Xiangshi Sun
- School of Life Sciences, Jilin University, Changchun, China
| | - Shiyan Dong
- School of Life Sciences, Jilin University, Changchun, China
| | - Xiangyu Li
- School of Life Sciences, Jilin University, Changchun, China
| | - Kongtong Yu
- School of Life Sciences, Jilin University, Changchun, China
| | - Fengying Sun
- School of Life Sciences, Jilin University, Changchun, China
| | - Robert J Lee
- School of Life Sciences, Jilin University, Changchun, China; Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA
| | - Youxin Li
- School of Life Sciences, Jilin University, Changchun, China.
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, China.
| |
Collapse
|
23
|
Chen X, Mangala LS, Rodriguez-Aguayo C, Kong X, Lopez-Berestein G, Sood AK. RNA interference-based therapy and its delivery systems. Cancer Metastasis Rev 2019; 37:107-124. [PMID: 29243000 DOI: 10.1007/s10555-017-9717-6] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RNA interference (RNAi) is considered a highly specific approach for gene silencing and holds tremendous potential for treatment of various pathologic conditions such as cardiovascular diseases, viral infections, and cancer. Although gene silencing approaches such as RNAi are widely used in preclinical models, the clinical application of RNAi is challenging primarily because of the difficulty in achieving successful systemic delivery. Effective delivery systems are essential to enable the full therapeutic potential of RNAi. An ideal nanocarrier not only addresses the challenges of delivering naked siRNA/miRNA, including its chemically unstable features, extracellular and intracellular barriers, and innate immune stimulation, but also offers "smart" targeted delivery. Over the past decade, great efforts have been undertaken to develop RNAi delivery systems that overcome these obstacles. This review presents an update on current progress in the therapeutic application of RNAi with a focus on cancer therapy and strategies for optimizing delivery systems, such as lipid-based nanoparticles.
Collapse
Affiliation(s)
- Xiuhui Chen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lingegowda S Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristian Rodriguez-Aguayo
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xianchao Kong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gabriel Lopez-Berestein
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
24
|
Nam H, Ku SH, Yoon HY, Kim K, Kwon IC, Kim SH, Lee JB. Enhancing Systemic Delivery of Enzymatically Generated RNAi Nanocomplexes for Cancer Therapy. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Hyangsu Nam
- Department of Chemical EngineeringUniversity of Seoul Seoul 02504 South Korea
| | - Sook Hee Ku
- Mechatronics Technology Convergence R&D GroupKorea Institute of Industrial Technology (KITECH) Daegu 42990 South Korea
| | - Hong Yeol Yoon
- Center for TheragnosisBiomedical Research InstituteKorea Institute of Science and Technology (KIST) Seoul 02792 South Korea
| | - Kwangmeyung Kim
- Center for TheragnosisBiomedical Research InstituteKorea Institute of Science and Technology (KIST) Seoul 02792 South Korea
| | - Ick Chan Kwon
- Center for TheragnosisBiomedical Research InstituteKorea Institute of Science and Technology (KIST) Seoul 02792 South Korea
| | - Sun Hwa Kim
- Center for TheragnosisBiomedical Research InstituteKorea Institute of Science and Technology (KIST) Seoul 02792 South Korea
| | - Jong Bum Lee
- Department of Chemical EngineeringUniversity of Seoul Seoul 02504 South Korea
| |
Collapse
|
25
|
Kwak SY, Han HD, Ahn HJ. A T7 autogene-based hybrid mRNA/DNA system for long-term shRNA expression in cytoplasm without inefficient nuclear entry. Sci Rep 2019; 9:2993. [PMID: 30816180 PMCID: PMC6395690 DOI: 10.1038/s41598-019-39407-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 01/24/2019] [Indexed: 12/30/2022] Open
Abstract
The transient silencing effects currently demonstrated by nonviral siRNA delivery systems limit the therapeutic utility of RNAi, but it remains a technical challenge to prolong duration of gene silencing. We have developed a T7 autogene-based hybrid mRNA/DNA system to enable long-term expression of shRNA in cytoplasm in vitro and in vivo. This hybrid mRNA/DNA system consists of T7 polymerase (T7pol) mRNA, pT7/shRNA-encoding DNA fragment and T7 autogene plasmid, and it can generate higher levels of T7pol proteins, compared to pCMV-triggering T7 autogene system, especially without the need of nuclear entry of any gene. A large amount of T7pol proteins produced are used to induce pT7-driven expression of shRNA in cytoplasm, and through cellular processing of RNA hairpins, mature siRNAs are generated for more than 13 days. We here demonstrate that a single liposomal delivery of this hybrid system leads to the long-term silencing effects in vitro and in vivo, in contrast to the conventional siRNA methods relying on the repeated administrations every 2 or 3 days. These sustainable shRNA expression properties in cytoplasm can provide an efficient strategy to address the limitations caused by shRNA-encoding plasmid DNA systems such as low nuclear entry efficiency and short-term silencing effect. The development of long-term shRNA expression system in vivo could scale down administration frequency of RNAi therapeutics in the treatment of chronic diseases, thereby increasing its clinical utility.
Collapse
Affiliation(s)
- Seo Young Kwak
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Hee Dong Han
- Department of Immunology, School of Medicine, Konkuk University, Chungju, South Korea
| | - Hyung Jun Ahn
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, South Korea.
| |
Collapse
|
26
|
Vio V, Riveros AL, Tapia-Bustos A, Lespay-Rebolledo C, Perez-Lobos R, Muñoz L, Pismante P, Morales P, Araya E, Hassan N, Herrera-Marschitz M, Kogan MJ. Gold nanorods/siRNA complex administration for knockdown of PARP-1: a potential treatment for perinatal asphyxia. Int J Nanomedicine 2018; 13:6839-6854. [PMID: 30498346 PMCID: PMC6207385 DOI: 10.2147/ijn.s175076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Perinatal asphyxia interferes with neonatal development, resulting in long-term deficits associated with systemic and neurological diseases. Despite the important role of poly (ADP-ribose) polymerase 1 (PARP-1) in the regulation of gene expression and DNA repair, overactivation of PARP-1 in asphyxia-exposed animals worsens the ATP-dependent energetic crisis. Inhibition of PARP-1 offers a therapeutic strategy for diminishing the effects of perinatal asphyxia. Methods We designed a nanosystem that incorporates a specific siRNA for PARP-1 knockdown. The siRNA was complexed with gold nanorods (AuNR) conjugated to the peptide CLPFFD for brain targeting. Results The siRNA was efficiently delivered into PC12 cells, resulting in gene silencing. The complex was administered intraperitoneally in vivo to asphyxia-exposed rat pups, and the ability of the AuNR-CLPFFD/siRNA complex to reach the brain was demonstrated. Conclusion The combination of a nanosystem for delivery and a specific siRNA for gene silencing resulted in effective inhibition of PARP-1 in vivo.
Collapse
Affiliation(s)
- Valentina Vio
- Department of Pharmacological and Toxicology Chemistry, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile, .,Program of Molecular and Clinical Pharmacology, Medical Faculty, Universidad de Chile, Santiago, Chile,
| | - Ana L Riveros
- Department of Pharmacological and Toxicology Chemistry, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile,
| | - Andrea Tapia-Bustos
- Program of Molecular and Clinical Pharmacology, Medical Faculty, Universidad de Chile, Santiago, Chile,
| | - Carolyne Lespay-Rebolledo
- Program of Molecular and Clinical Pharmacology, Medical Faculty, Universidad de Chile, Santiago, Chile,
| | - Ronald Perez-Lobos
- Program of Molecular and Clinical Pharmacology, Medical Faculty, Universidad de Chile, Santiago, Chile,
| | - Luis Muñoz
- Chemical Meteorology Section, Comisión Chilena de Energía Nuclear, Santiago, Chile
| | - Paola Pismante
- Chemical Meteorology Section, Comisión Chilena de Energía Nuclear, Santiago, Chile
| | - Paola Morales
- Program of Molecular and Clinical Pharmacology, Medical Faculty, Universidad de Chile, Santiago, Chile, .,Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Eyleen Araya
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Natalia Hassan
- Department of Pharmacological and Toxicology Chemistry, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile, .,Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Mario Herrera-Marschitz
- Program of Molecular and Clinical Pharmacology, Medical Faculty, Universidad de Chile, Santiago, Chile,
| | - Marcelo J Kogan
- Department of Pharmacological and Toxicology Chemistry, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile, .,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile,
| |
Collapse
|
27
|
Wu S, Li N, Yang C, Yan L, Liang X, Ren M, Yang L. Synthesis of cationic branched tea polysaccharide derivatives for targeted delivery of siRNA to hepatocytes. Int J Biol Macromol 2018; 118:808-815. [PMID: 29857104 DOI: 10.1016/j.ijbiomac.2018.05.221] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/20/2018] [Accepted: 05/28/2018] [Indexed: 01/01/2023]
Abstract
The cationic branched tea polysaccharide (CTPSA) derivative bearing N-acylurea and 3-(dimethylamino)-1-propylamine residues was synthesized and characterized using FTIR and 1H NMR spectroscopy. A nonspecific siRNA (NsiRNA) was used as a model molecule of functional siRNA that could downregulate over-expressed glycometabolism enzymes in the liver. The result from the agarose gel electrophoresis confirmed that the CTPSA and NsiRNA could form stable complexes when their weight ratio was larger than 18. The zeta potentials and sizes of the complexes were in the range of +8-+15 mv and 120-150 nm, respectively. The CTPSA/NsiRNA complex was observed as nanoparticles with a spherical shape of approximately 100 nm using scanning electron microscopy. The CTPSA derivative and the CTPSA/NsiRNA complexes exhibited lower cytotoxicity in HL-7702 cells when compared with the branched PEI (bPEI) and bPEI/NsiRNA complexes assessed by the Cell Counting Kit-8 assay. The results of flow cytometric analysis and laser confocal microscopy indicated that the CTPSA derivative could effectively target the transfer of the NsiRNA to HL-7702 cells. This work provides a potential approach to promote the CTPSA derivative as a nonviral vector for targeted delivery of functional siRNA to hepatocytes.
Collapse
Affiliation(s)
- Shuyun Wu
- Department of Polymer and Material Science, School of Chemistry, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-Sen University, Guangzhou 510275, China
| | - Na Li
- Department of Endocrinology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Chuan Yang
- Department of Endocrinology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Li Yan
- Department of Endocrinology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xuan Liang
- Department of Polymer and Material Science, School of Chemistry, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-Sen University, Guangzhou 510275, China
| | - Meng Ren
- Department of Endocrinology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Liqun Yang
- Department of Polymer and Material Science, School of Chemistry, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
28
|
Li D, Hu C, Li H. Survivin as a novel target protein for reducing the proliferation of cancer cells. Biomed Rep 2018; 8:399-406. [PMID: 29725522 DOI: 10.3892/br.2018.1077] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/28/2018] [Indexed: 12/12/2022] Open
Abstract
Survivin, also known as baculoviral inhibitor of apoptosis repeat-containing 5, is a novel member of the inhibitor of apoptosis protein family. Survivin is highly expressed in tumors and embryonic tissues and is associated with tumor cell differentiation, proliferation, invasion and metastasis; however, survivin is expressed at low levels in normal terminally differentiated adult tissues. Meanwhile, the expression level of survivin is also a negative prognostic factor for patients with cancer. These unique characteristics of survivin make it an exciting potential therapeutic target for cancer treatment. This review will discuss the biological characteristics of survivin and its potential use as a treatment target to reduce cancer cell proliferation.
Collapse
Affiliation(s)
- Dongyu Li
- Department of Genetics, College of Agricultural and Life Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chenghao Hu
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Huibin Li
- Department of Burns and Plastic Surgery, People's Hospital of Linyi, Linyi, Shandong 276000, P.R. China
| |
Collapse
|
29
|
Zhang T, Guo W, Zhang C, Yu J, Xu J, Li S, Tian JH, Wang PC, Xing JF, Liang XJ. Transferrin-Dressed Virus-like Ternary Nanoparticles with Aggregation-Induced Emission for Targeted Delivery and Rapid Cytosolic Release of siRNA. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16006-16014. [PMID: 28447465 PMCID: PMC5545884 DOI: 10.1021/acsami.7b03402] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Viruses have evolved to be outstandingly efficient at gene delivery, but their use as vectors is limited by safety risks. Inspired by the structure of viruses, we constructed a virus-mimicking vector (denoted as TR4@siRNA@Tf NCs) with virus-like architecture and infection properties. Composed of a hydrophilic peptide, an aggregation-induced emission (AIE) luminogen, and a lipophilic tail, TR4 imitates the viral capsid and endows the vector with AIE properties as well as efficient siRNA compaction. The outer glycoprotein transferrin (Tf) mimics the viral envelope protein and endows the vector with reduced cytotoxicity as well as enhanced targeting capability. Because of the strong interaction between Tf and transferrin receptors on the cell surface, the Tf coating can accelerate the intracellular release of siRNA into the cytosol. Tf and TR4 are eventually cycled back to the cell membrane. Our results confirmed that the constructed siRNA@TR4@Tf NCs show a high siRNA silencing efficiency of 85% with significantly reduced cytotoxicity. These NCs have comparable transfection ability to natural viruses while avoiding the toxicity issues associated with typical nonviral vectors. Therefore, this proposed virus-like siRNA vector, which integrates the advantages of both viral and nonviral vectors, should find many potential applications in gene therapy.
Collapse
Affiliation(s)
- Tingbin Zhang
- School of Chemical Engineering and Technology, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Jinnan District, Tianjin 300350, China
| | - Weisheng Guo
- CAS Center for Excellence in Nanoscience, Chinese Academy of Sciences, CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunqiu Zhang
- CAS Center for Excellence in Nanoscience, Chinese Academy of Sciences, CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Yu
- College of Materials Science and Engineering, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou 310014, China
| | - Jing Xu
- CAS Center for Excellence in Nanoscience, Chinese Academy of Sciences, CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyi Li
- CAS Center for Excellence in Nanoscience, Chinese Academy of Sciences, CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Hua Tian
- School of Chemical Engineering and Technology, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Jinnan District, Tianjin 300350, China
| | - Paul C. Wang
- Laboratory of Molecular Imaging, Department of Radiology, Howard University, Washington, D.C. 20060, United States
- College of Science and Engineering, Fu Jen Catholic University, Taipei 24205, Taiwan
| | - Jin-Feng Xing
- School of Chemical Engineering and Technology, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Jinnan District, Tianjin 300350, China
| | - Xing-Jie Liang
- CAS Center for Excellence in Nanoscience, Chinese Academy of Sciences, CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Antimisiaris S, Mourtas S, Papadia K. Targeted si-RNA with liposomes and exosomes (extracellular vesicles): How to unlock the potential. Int J Pharm 2017; 525:293-312. [PMID: 28163221 DOI: 10.1016/j.ijpharm.2017.01.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 12/17/2022]
Abstract
The concept of RNA interference therapeutics has been initiated 18 years ago, and the main bottleneck for translation of the technology into therapeutic products remains the delivery of functional RNA molecules into the cell cytoplasm. In the present review article after an introduction about the theoretical basis of RNAi therapy and the main challenges encountered for its realization, an overview of the different types of delivery systems or carriers, used as potential systems to overcome RNAi delivery issues, will be provided. Characteristic examples or results obtained with the most promising systems will be discussed. Focus will be given mostly on the applications of liposomes or other types of lipid carriers, such as exosomes, towards improved delivery of RNAi to therapeutic targets. Finally the approach of integrating the advantages of these two vesicular systems, liposomes and exosomes, as a potential solution to realize RNAi therapy, will be proposed.
Collapse
Affiliation(s)
- Sophia Antimisiaris
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio 26504, Greece; Institute of Chemical Engineering, FORTH/ICE-HT, Rio 26504, Greece.
| | - Spyridon Mourtas
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio 26504, Greece
| | - Konstantina Papadia
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio 26504, Greece
| |
Collapse
|
31
|
Bradford BJ, Cooper CA, Tizard ML, Doran TJ, Hinton TM. RNA interference-based technology: what role in animal agriculture? ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an15437] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Animal agriculture faces a broad array of challenges, ranging from disease threats to adverse environmental conditions, while attempting to increase productivity using fewer resources. RNA interference (RNAi) is a biological phenomenon with the potential to provide novel solutions to some of these challenges. Discovered just 20 years ago, the mechanisms underlying RNAi are now well described in plants and animals. Intracellular double-stranded RNA triggers a conserved response that leads to cleavage and degradation of complementary mRNA strands, thereby preventing production of the corresponding protein product. RNAi can be naturally induced by expression of endogenous microRNA, which are critical in the regulation of protein synthesis, providing a mechanism for rapid adaptation of physiological function. This endogenous pathway can be co-opted for targeted RNAi either through delivery of exogenous small interfering RNA (siRNA) into target cells or by transgenic expression of short hairpin RNA (shRNA). Potentially valuable RNAi targets for livestock include endogenous genes such as developmental regulators, transcripts involved in adaptations to new physiological states, immune response mediators, and also exogenous genes such as those encoded by viruses. RNAi approaches have shown promise in cell culture and rodent models as well as some livestock studies, but technical and market barriers still need to be addressed before commercial applications of RNAi in animal agriculture can be realised. Key challenges for exogenous delivery of siRNA include appropriate formulation for physical delivery, internal transport and eventual cellular uptake of the siRNA; additionally, rigorous safety and residue studies in target species will be necessary for siRNA delivery nanoparticles currently under evaluation. However, genomic incorporation of shRNA can overcome these issues, but optimal promoters to drive shRNA expression are needed, and genetic engineering may attract more resistance from consumers than the use of exogenous siRNA. Despite these hurdles, the convergence of greater understanding of RNAi mechanisms, detailed descriptions of regulatory processes in animal development and disease, and breakthroughs in synthetic chemistry and genome engineering has created exciting possibilities for using RNAi to enhance the sustainability of animal agriculture.
Collapse
|
32
|
Sim T, Park G, Min H, Kang S, Lim C, Bae S, Lee ES, Youn YS, Oh KT. Development of a gene carrier using a triblock co-polyelectrolyte with poly(ethylene imine)-poly(lactic acid)-poly(ethylene glycol). J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911516671154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The success of gene therapy mainly depends on the carriers for effective gene delivery. A non-viral vector using a cationic block co-polyelectrolyte, PEI-PLA-PEG polyethyleneimine-poly(lactic acid)-poly(ethylene glycol)) was developed as a potential gene carrier. The cationic PEI-PLA-PEG showed less toxicity compared to PEI and formed a gene nanocomplex (termed polyplex) by interaction with plasmid DNA or small interference RNA. The polyplex showed smaller particle size and greater positive zeta potential by increasing the high polymer nitrogen/DNA phosphate ratio. The polyplex with a nitrogen/DNA phosphate ratio of 16 or 32 demonstrated higher gene transfection by fluorescence imaging, flow cytometry measurement, and β-galactosidase activity. In particular, the polyplex with therapeutic histone deacetylase small interference RNA at nitrogen/DNA phosphate ratio 16 showed the most favorable properties with definite tumor growth inhibition. The synthetic PEI-PLA-PEG also showed less toxicity and would, therefore, be a great potential gene carrier, particularly given that small interference RNA delivery does not increase the charge density of small interference RNA due to the formation of a stable complex through conjugation with PLA-PEG.
Collapse
Affiliation(s)
- Taehoon Sim
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Gayoung Park
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Hyeyoung Min
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Soowon Kang
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Chaemin Lim
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Sungmin Bae
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Eun Seong Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, SungKyunKwan University, Suwon, Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| |
Collapse
|
33
|
Lee SJ, Kim MJ, Kwon IC, Roberts TM. Delivery strategies and potential targets for siRNA in major cancer types. Adv Drug Deliv Rev 2016; 104:2-15. [PMID: 27259398 DOI: 10.1016/j.addr.2016.05.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 02/24/2016] [Accepted: 05/15/2016] [Indexed: 02/08/2023]
Abstract
Small interfering RNA (siRNA) has gained attention as a potential therapeutic reagent due to its ability to inhibit specific genes in many genetic diseases. For many years, studies of siRNA have progressively advanced toward novel treatment strategies against cancer. Cancer is caused by various mutations in hundreds of genes including both proto-oncogenes and tumor suppressor genes. In order to develop siRNAs as therapeutic agents for cancer treatment, delivery strategies for siRNA must be carefully designed and potential gene targets carefully selected for optimal anti-cancer effects. In this review, various modifications and delivery strategies for siRNA delivery are discussed. In addition, we present current thinking on target gene selection in major tumor types.
Collapse
|
34
|
Jeong EH, Kim H, Jang B, Cho H, Ryu J, Kim B, Park Y, Kim J, Lee JB, Lee H. Technological development of structural DNA/RNA-based RNAi systems and their applications. Adv Drug Deliv Rev 2016; 104:29-43. [PMID: 26494399 DOI: 10.1016/j.addr.2015.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 09/01/2015] [Accepted: 10/12/2015] [Indexed: 01/04/2023]
Abstract
RNA interference (RNAi)-based gene therapy has drawn tremendous attention due to its highly specific gene regulation by selective degradation of any target mRNA. There have been multiple reports regarding the development of various cationic materials for efficient siRNA delivery, however, many studies still suffer from the conventional delivery problems such as suboptimal transfection performance, a lack of tissue specificity, and potential cytotoxicity. Despite the huge therapeutic potential of siRNAs, conventional gene carriers have failed to guarantee successful gene silencing in vivo, thus not warranting clinical trials. The relatively short double-stranded structure of siRNAs has resulted in uncompromising delivery formulations, as well as low transfection efficiency, compared with the conventional nucleic acid drugs such as plasmid DNAs. Recent developments in structural siRNA and RNAi nanotechnology have enabled more refined and reliable in vivo gene silencing with multiple advantages over naked siRNAs. This review focuses on recent progress in the development of structural DNA/RNA-based RNAi systems and their potential therapeutic applications. In addition, an extensive list of prior reports on various RNAi systems is provided and categorized by their distinctive molecular characters.
Collapse
|
35
|
Han H, Son S, Son S, Kim N, Yhee JY, Lee JH, Choi JS, Joo CK, Lee H, Lee D, Kim WJ, Kim SH, Kwon IC, Kim H, Kim K. Reducible Polyethylenimine Nanoparticles for Efficient siRNA Delivery in Corneal Neovascularization Therapy. Macromol Biosci 2016; 16:1583-1597. [DOI: 10.1002/mabi.201600051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/14/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Hyounkoo Han
- Center for Theragnosis; Biomedical Research Institute Korea Institute of Science and Technology (KIST); Hwarangno 14-gil 6 Seongbuk-gu Seoul 136-791 South Korea
- Department of Chemical and Biomolecular Engineering; Sogang University; Shinsu-dong Mapo-gu Seoul 121-742 South Korea
| | - Sohee Son
- Center for Theragnosis; Biomedical Research Institute Korea Institute of Science and Technology (KIST); Hwarangno 14-gil 6 Seongbuk-gu Seoul 136-791 South Korea
| | - Sejin Son
- Center for Theragnosis; Biomedical Research Institute Korea Institute of Science and Technology (KIST); Hwarangno 14-gil 6 Seongbuk-gu Seoul 136-791 South Korea
| | - Namho Kim
- Center for Theragnosis; Biomedical Research Institute Korea Institute of Science and Technology (KIST); Hwarangno 14-gil 6 Seongbuk-gu Seoul 136-791 South Korea
| | - Ji Young Yhee
- Center for Theragnosis; Biomedical Research Institute Korea Institute of Science and Technology (KIST); Hwarangno 14-gil 6 Seongbuk-gu Seoul 136-791 South Korea
| | - Jae Hyeop Lee
- Center for Theragnosis; Biomedical Research Institute Korea Institute of Science and Technology (KIST); Hwarangno 14-gil 6 Seongbuk-gu Seoul 136-791 South Korea
- Department of Chemical and Biomolecular Engineering; Sogang University; Shinsu-dong Mapo-gu Seoul 121-742 South Korea
| | - Jun-Sub Choi
- Department of Ophthalmology and Visual Science; Seoul St. Mary's Hospital; College of Medicine; The Catholic University of Korea; 505, Banpo-dong Seocho-gu Seoul 137-040 South Korea
| | - Choun-Ki Joo
- Department of Ophthalmology and Visual Science; Seoul St. Mary's Hospital; College of Medicine; The Catholic University of Korea; 505, Banpo-dong Seocho-gu Seoul 137-040 South Korea
| | - Hohyeon Lee
- Department of Chemical and Biomolecular Engineering; Sogang University; Shinsu-dong Mapo-gu Seoul 121-742 South Korea
| | - Duhwan Lee
- Center for Self-Assembly and Complexity; Institute for Basic Science (IBS); Pohang 790-784 South Korea
- Department of Chemistry Polymer Research Institute; Pohang University of Science and Technology (POSTECH); Pohang 790-784 South Korea
| | - Won Jong Kim
- Center for Self-Assembly and Complexity; Institute for Basic Science (IBS); Pohang 790-784 South Korea
- Department of Chemistry Polymer Research Institute; Pohang University of Science and Technology (POSTECH); Pohang 790-784 South Korea
| | - Sun Hwa Kim
- Center for Theragnosis; Biomedical Research Institute Korea Institute of Science and Technology (KIST); Hwarangno 14-gil 6 Seongbuk-gu Seoul 136-791 South Korea
| | - Ick Chan Kwon
- Center for Theragnosis; Biomedical Research Institute Korea Institute of Science and Technology (KIST); Hwarangno 14-gil 6 Seongbuk-gu Seoul 136-791 South Korea
| | - Hyuncheol Kim
- Department of Chemical and Biomolecular Engineering; Sogang University; Shinsu-dong Mapo-gu Seoul 121-742 South Korea
| | - Kwangmeyung Kim
- Center for Theragnosis; Biomedical Research Institute Korea Institute of Science and Technology (KIST); Hwarangno 14-gil 6 Seongbuk-gu Seoul 136-791 South Korea
| |
Collapse
|
36
|
Hong CA, Nam YS. Reducible Dimeric Conjugates of Small Internally Segment Interfering RNA for Efficient Gene Silencing. Macromol Biosci 2016; 16:1442-1449. [PMID: 27273465 DOI: 10.1002/mabi.201600137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 05/12/2016] [Indexed: 01/29/2023]
Abstract
The condensation of nucleic acids into compact nanoparticles with cationic carriers is a powerful tool for translocating exogenous nucleic acids into cells. To date, most efforts have been focused on the development of novel gene carriers for safe and efficient gene delivery. However, small interfering RNA (siRNA) is generally not strongly associated with cationic carriers due to its stiff structure and low spatial charge density. To overcome this limitation, this work introduces a well-defined dimeric conjugate of small internally segment interfering RNA (sisiRNA) linked via a disulfide bond for enhanced cellular uptake and gene silencing. Dimeric sisiRNA is synthesized through oxidizing two monomeric sisiRNA molecules, each of which consists of a sense strand carrying a nick and an antisense strand modified with a thiol group at the 3'-end. The nick in the sense strand enables the dimeric sisiRNA to be more effectively condensed into nanosized complexes due to the increased structural flexibility, which results in a higher gene silencing efficiency compared with the dimeric siRNA containing the intact sense strands. The results indicate that the discontinuity of the sense strands is a simple method of adding more flexibility to various siRNA-based nanostructures for enhanced gene silencing.
Collapse
Affiliation(s)
- Cheol Am Hong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yoon Sung Nam
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea. .,Department of Materials Science and Engineering, and KAIST Institutes for NanoCentury and Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
37
|
Yang Y, Yang Y, Xie X, Xu X, Xia X, Wang H, Li L, Dong W, Ma P, Liu Y. Dual stimulus of hyperthermia and intracellular redox environment triggered release of siRNA for tumor-specific therapy. Int J Pharm 2016; 506:158-73. [DOI: 10.1016/j.ijpharm.2016.04.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/31/2016] [Accepted: 04/15/2016] [Indexed: 01/06/2023]
|
38
|
|
39
|
Yang Y, Xia X, Dong W, Wang H, Li L, Ma P, Sheng W, Xu X, Liu Y. Acid Sensitive Polymeric Micelles Combining Folate and Bioreducible Conjugate for Specific Intracellular siRNA Delivery. Macromol Biosci 2016; 16:759-73. [DOI: 10.1002/mabi.201500389] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/30/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100050 P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100050 P.R. China
| | - Xuejun Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100050 P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100050 P.R. China
| | - Wujun Dong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100050 P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100050 P.R. China
| | - Hongliang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100050 P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100050 P.R. China
| | - Lin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100050 P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100050 P.R. China
| | - Panpan Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100050 P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100050 P.R. China
| | - Wei Sheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100050 P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100050 P.R. China
| | - Xueqing Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100050 P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100050 P.R. China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100050 P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100050 P.R. China
| |
Collapse
|
40
|
Giacca M, Zacchigna S. Harnessing the microRNA pathway for cardiac regeneration. J Mol Cell Cardiol 2015; 89:68-74. [PMID: 26431632 DOI: 10.1016/j.yjmcc.2015.09.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/28/2015] [Accepted: 09/28/2015] [Indexed: 10/23/2022]
Abstract
Mounting evidence over the last few years has indicated that the rate of cardiomyocyte proliferation, and thus the extent of cardiac renewal, is under the control of the microRNA network. Several microRNAs (e.g. miR-1) regulate expansion of the cardiomyocyte pool and its terminal differentiation during the embryonic life; some not only promote cardiomyocyte proliferation but also their de-differentiation towards an embryonic cell phenotype (e.g. the miR-302/367 cluster); a few others are involved in the repression of cardiomyocyte proliferation occurring suddenly after birth (e.g. the miR-15 family); others again are not physiologically involved in the regulation of cardiomyocyte turnover, but nevertheless are able to promote cardiomyocyte proliferation and cardiac regeneration when delivered exogenously (e.g. miR-199a-3p). With a few exceptions, the molecular mechanisms underlying the pro-proliferative effect of these microRNAs, most of which appear to act at the level of already differentiated cardiomyocytes, remain to be thoroughly elucidated. The possibility of harnessing the miRNA network to achieve cardiac regeneration paves the way to exciting therapeutic applications. This could be achieved by either administering miRNA mimics or inhibitors, or transducing the heart with viral vectors expressing miRNA-encoding genes.
Collapse
Affiliation(s)
- Mauro Giacca
- Molecular Medicine, International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, Padriciano 99, 34149 Trieste, Italy.
| | - Serena Zacchigna
- Cardiovascular Biology Laboratories, International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, Padriciano 99, 34149 Trieste, Italy.
| |
Collapse
|
41
|
Li Y, Liu D, Zhou Y, Li Y, Xie J, Lee RJ, Cai Y, Teng L. Silencing of Survivin Expression Leads to Reduced Proliferation and Cell Cycle Arrest in Cancer Cells. J Cancer 2015; 6:1187-94. [PMID: 26516368 PMCID: PMC4615356 DOI: 10.7150/jca.12437] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/27/2015] [Indexed: 01/20/2023] Open
Abstract
Survivin is an anti-apoptotic gene that is overexpressed in most human tumors. RNA interference using short interfering RNA (siRNA) can be used to specifically inhibit survivin expression. Tumor cells were treated with a newly designed survivin siRNA, which was modified with 2′-OMe. Cellular survivin mRNA and protein levels were determined by real-time qRT-PCR and Western blot, respectively. Cell cycle and apoptosis were determined by flow cytometry. Cell proliferation was measured by MTT assay. Our data showed that the novel survivin-targeted siRNA could efficiently knockdown the expression of survivin and inhibit cell proliferation. Survivin mRNA was reduced by 95% after 48h treatment with 20nM siRNA. In addition, the siRNA could markedly arrest the cell cycle at the G2/M checkpoint and induce cellular apoptosis in a dose-dependent manner. The percentage of apoptotic cells reached 50% when treated with 40nM siRNA. In conclusion, we have identified a novel chemically modified siRNA against survivin that is highly efficient and delineated its mechanism of action, thus demonstrating a potential therapeutic role for this molecule in cancer. Further evaluation of this siRNA for therapeutic activity is warranted.
Collapse
Affiliation(s)
- Yuhuan Li
- 1. Institute of Life Sciences, Jilin University, Changchun, Jilin, P. R. China
| | - Da Liu
- 1. Institute of Life Sciences, Jilin University, Changchun, Jilin, P. R. China
| | - Yulin Zhou
- 1. Institute of Life Sciences, Jilin University, Changchun, Jilin, P. R. China
| | - Yujing Li
- 1. Institute of Life Sciences, Jilin University, Changchun, Jilin, P. R. China
| | - Jing Xie
- 1. Institute of Life Sciences, Jilin University, Changchun, Jilin, P. R. China
| | - Robert J Lee
- 1. Institute of Life Sciences, Jilin University, Changchun, Jilin, P. R. China ; 2. Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH, U.S.A
| | - Yong Cai
- 1. Institute of Life Sciences, Jilin University, Changchun, Jilin, P. R. China
| | - Lesheng Teng
- 1. Institute of Life Sciences, Jilin University, Changchun, Jilin, P. R. China
| |
Collapse
|
42
|
Jang M, Kim JH, Nam HY, Kwon IC, Ahn HJ. Design of a platform technology for systemic delivery of siRNA to tumours using rolling circle transcription. Nat Commun 2015; 6:7930. [PMID: 26246279 PMCID: PMC4918333 DOI: 10.1038/ncomms8930] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/25/2015] [Indexed: 11/23/2022] Open
Abstract
For therapeutic applications of siRNA, there are technical challenges with respect to targeted and systemic delivery. We here report a new siRNA carrier, RNAtr NPs, in a way that multiple tandem copies of RNA hairpins as a result of rolling circle transcription (RCT) can be readily adapted in tumour-targeted and systemic siRNA delivery. RNAtr NPs provide a means of condensing large amounts of multimeric RNA transcripts into the compact nanoparticles, especially without the aid of polycationic agents, and thus reduce the risk of immunogenicity and cytotoxicity by avoiding the use of synthetic polycationic reagents. This strategy allows the design of a platform technology for systemic delivery of siRNA to tumour sites, because RCT reaction, which enzymatically generates RNA polymers in multiple copy numbers at low cost, can lead to directly accessible routes to targeted and systemic delivery. Therefore, RNAtr NPs suggest great potentials as the siRNA therapeutics for cancer treatment. RNA interference has provided a promising tool to suppress the expression of specific genes associated with human diseases. Here, the authors present a platform technology for the systemic delivery of siRNA to tumour sites using rolling circle transcription.
Collapse
Affiliation(s)
- Mihue Jang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul 136-791, South Korea
| | - Jong Hwan Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul 136-791, South Korea
| | - Hae Yun Nam
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, 388-1 Pungnap-2 dong, Songpa-Gu, Seoul 136-736, South Korea
| | - Ick Chan Kwon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul 136-791, South Korea
| | - Hyung Jun Ahn
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul 136-791, South Korea
| |
Collapse
|
43
|
Jiang K, Li J, Yin J, Ma Q, Yan B, Zhang X, Wang L, Wang L, Liu T, Zhang Y, Fan Q, Yang A, Qiu X, Ma B. Targeted delivery of CXCR4-siRNA by scFv for HER2+ breast cancer therapy. Biomaterials 2015; 59:77-87. [DOI: 10.1016/j.biomaterials.2015.04.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 01/24/2023]
|
44
|
Lee MS, Kim NW, Lee JE, Lim DW, Suh W, Kim HT, Park JW, Jeong JH. Micelle-templated dendritic gold nanoparticles for enhanced cellular delivery of siRNA. Macromol Res 2015. [DOI: 10.1007/s13233-015-3091-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Liu Z, Gong H, Zeng R, Liang X, Zhang LM, Yang L, Lan Y. Efficient delivery of NF-κB siRNA to human retinal pigment epithelial cells with hyperbranched cationic polysaccharide derivative-based nanoparticles. Int J Nanomedicine 2015; 10:2735-49. [PMID: 25897219 PMCID: PMC4396640 DOI: 10.2147/ijn.s75188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A hyperbranched cationic polysaccharide derivative-mediated small interfering (si)RNA interference strategy was proposed to inhibit nuclear transcription factor-kappa B (NF-κB) activation in human retinal pigment epithelial (hRPE) cells for the gene therapy of diabetic retinopathy. Two hyperbranched cationic polysaccharide derivatives containing the same amount of cationic residues, but with different branching structures and molecular weights, including 3-(dimethylamino)-1-propylamine-conjugated glycogen (DMAPA-Glyp) and amylopectin (DMAPA-Amp) derivatives, were developed for the efficient delivery of NF-κB siRNA into hRPE cells. The DMAPA-Glyp derivative showed lower toxicity against hRPE cells. Furthermore, the DMAPA-Glyp derivative more readily condensed siRNA and then formed the nanoparticles attributed to its higher branching architecture when compared to the DMAPA-Amp derivative. Both DMAPA-Glyp/siRNA and DMAPA-Amp/siRNA nanoparticles were able to protect siRNA from degradation by nuclease in 25% fetal bovine serum. The particle sizes of the DMAPA-Glyp/siRNA nanoparticles (70–120 nm) were smaller than those of the DMAPA-Amp/siRNA nanoparticles (130–180 nm) due to the higher branching architecture and lower molecular weight of the DMAPA-Glyp derivative. In addition, the zeta potentials of the DMAPA-Glyp/siRNA nanoparticles were higher than those of the DMAPA-Glyp/siRNA nanoparticles. As a result, siRNA was much more efficiently transferred into hRPE cells using the DMAPA-Glyp/siRNA nanoparticles rather than the DMAPA-Amp/siRNA nanoparticles. This led to significantly high levels of suppression on the expression levels of NF-κB p65 messenger RNA and protein in the cells transfected with DMAPA-Glyp/siRNA nanoparticles. This work provides a potential approach to promote hyperbranched polysaccharide derivatives as nonviral siRNA vectors for the inhibition of NF-κB activation in hRPE cells.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Institute of Polymer Science, School of Chemistry and Chemical Engineering, Key Laboratory of Designed Synthesis and Application of Polymer Material, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Haijun Gong
- Department of Ophthalmology, Guangdong Provinci Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Rui Zeng
- Department of Ophthalmology, Guangdong Provinci Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xuan Liang
- Institute of Polymer Science, School of Chemistry and Chemical Engineering, Key Laboratory of Designed Synthesis and Application of Polymer Material, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Li-Ming Zhang
- Institute of Polymer Science, School of Chemistry and Chemical Engineering, Key Laboratory of Designed Synthesis and Application of Polymer Material, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Liqun Yang
- Institute of Polymer Science, School of Chemistry and Chemical Engineering, Key Laboratory of Designed Synthesis and Application of Polymer Material, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yuqing Lan
- Department of Ophthalmology, Guangdong Provinci Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
46
|
Hong CA, Eltoukhy AA, Lee H, Langer R, Anderson DG, Nam YS. Dendrimeric siRNA for Efficient Gene Silencing. Angew Chem Int Ed Engl 2015; 54:6740-4. [PMID: 25892329 DOI: 10.1002/anie.201412493] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/09/2015] [Indexed: 11/09/2022]
Abstract
Programmable molecular self-assembly of siRNA molecules provides precisely controlled generation of dendrimeric siRNA nanostructures. The second-generation dendrimers of siRNA can be effectively complexed with a low-molecular-weight, cationic polymer (poly(β-amino ester), PBAE) to generate stable nanostructures about 160 nm in diameter via strong electrostatic interactions. Condensation and gene silencing efficiencies increase with the increased generation of siRNA dendrimers due to a high charge density and structural flexibility.
Collapse
Affiliation(s)
- Cheol Am Hong
- Department of Biological Sciences, Department of Materials Science and Engineering, KI for NanoCentury (KINC CNiT), Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Republic of Korea)
| | - Ahmed A Eltoukhy
- Department of Biological Engineering, The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA)
| | - Hyukjin Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul (Republic of Korea)
| | - Robert Langer
- Department of Biological Engineering, The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA)
| | - Daniel G Anderson
- Department of Biological Engineering, The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA).
| | - Yoon Sung Nam
- Department of Biological Sciences, Department of Materials Science and Engineering, KI for NanoCentury (KINC CNiT), Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Republic of Korea).
| |
Collapse
|
47
|
Hong CA, Eltoukhy AA, Lee H, Langer R, Anderson DG, Nam YS. Dendrimeric siRNA for Efficient Gene Silencing. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201412493] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Chu S, Tang C, Yin C. Effects of mannose density on in vitro and in vivo cellular uptake and RNAi efficiency of polymeric nanoparticles. Biomaterials 2015; 52:229-39. [PMID: 25818429 DOI: 10.1016/j.biomaterials.2015.02.044] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 12/13/2022]
Abstract
To evaluate the effects of mannose density on in vitro and in vivo cellular uptake and RNA interference (RNAi) efficiency of polymeric nanoparticles (NPs) in macrophages, mannose-modified trimethyl chitosan-cysteine (MTC) conjugates with mannose densities of 4%, 13%, and 21% (MTC-4, MTC-13, and MTC-21) were synthesized. Tumor necrosis factor-alpha (TNF-α) siRNA loaded MTC NPs with particle sizes of ∼150 nm exhibited desired structural stability and effectively protected siRNA from enzymatic degradation. Generally, cellular uptake and RNAi efficiency were affected by mannose density. As expected, MTC-21 NPs presented the maximum in vitro uptake and RNAi efficacy in Raw 264.7 cells among all NPs tested. However, MTC-4 NPs exhibited the optimal in vivo uptake by peritoneal exudate cell macrophages (PECs). In the inflammation model of acute hepatic injury, orally delivered MTC-4 and MTC-13 NPs worked better in silencing TNF-α expression and alleviating liver damage than MTC-21 NPs. As for the ulcerative colitis model, MTC-4 NPs outperformed MTC-13 and MTC-21 NPs with respect to TNF-α knockdown and therapeutic efficacy following oral administration. These results highlighted the importance of ligand density in cellular uptake and RNAi efficiency, which could serve as a guideline in the rational design of targeted nanocarriers for anti-inflammation therapy.
Collapse
Affiliation(s)
- Shuang Chu
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Cui Tang
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200433, China.
| | - Chunhua Yin
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
49
|
Cancer-targeted MDR-1 siRNA delivery using self-cross-linked glycol chitosan nanoparticles to overcome drug resistance. J Control Release 2014; 198:1-9. [PMID: 25481438 DOI: 10.1016/j.jconrel.2014.11.019] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/18/2014] [Indexed: 02/07/2023]
Abstract
P-glycoprotein (Pgp) mediated multi-drug resistance (MDR) is a major cause of failure in chemotherapy. In this study, small interfering RNA (siRNA) for Pgp down-regulation was delivered to tumors to overcome MDR in cancer. To achieve an efficient siRNA delivery in vivo, self-polymerized 5'-end thiol-modified siRNA (poly-siRNA) was incorporated in tumor targeting glycol chitosan nanoparticles. Pgp-targeted poly-siRNA (psi-Pgp) and thiolated glycol chitosan polymers (tGC) formed stable nanoparticles (psi-Pgp-tGC NPs), and the resulting nanoparticles protected siRNA molecules from enzymatic degradation. The psi-Pgp-tGC NPs could release functional siRNA molecules after cellular delivery, and they were able to facilitate siRNA delivery to Adriamycin-resistant breast cancer cells (MCF-7/ADR). After intravenous administration, the psi-Pgp-tGC NPs accumulated in MCF-7/ADR tumors and down-regulated P-gp expression to sensitize cancer cells. Consequently, chemo-siRNA combination therapy significantly inhibited tumor growth without systemic toxicity. These psi-Pgp-tGC NPs showed great potential as a supplementary therapeutic agent for drug-resistant cancer.
Collapse
|
50
|
The potential and advances in RNAi therapy: Chemical and structural modifications of siRNA molecules and use of biocompatible nanocarriers. J Control Release 2014; 193:113-21. [DOI: 10.1016/j.jconrel.2014.05.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/13/2014] [Accepted: 05/17/2014] [Indexed: 01/21/2023]
|